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A Novel Linear Algebra Method for the
Determination of Periodic Steady States of

Nonlinear Oscillators

Abstract—Periodic steady-state (PSS) analysis of nonlinear
oscillators has always been a challenging task in circuit simu-
lation. We present a new way that uses numerical linear algebra
to identify the PSS(s) of nonlinear circuits. The method works
for both autonomous and excited systems. Using the harmonic
balancing method, the solution of a nonlinear circuit can be
represented by a system of multivariate polynomials. Then, a
Macaulay matrix based root-finder is used to compute the Fourier
series coefficients. The method avoids the difficult initial guess
problem of existing numerical approaches. Numerical examples
show the accuracy and feasibility over existing methods.

Keywords—Steady-state analysis, autonomous oscillator, non-
linear circuit simulation, Macaulay matrix

I. INTRODUCTION

Accurate simulation of the behaviors of microwave and
radio-frequency (RF) circuits has become a key issue in mixed-
signal circuit design due to the exponential growth of the
complexity in the past few years. Periodic steady-state (PSS)
analysis plays a critical role, especially in the simulation of
RF communication circuits [1].

Two specialized PSS algorithms, namely, shooting Newton
(SN) and harmonic balance (HB) [2]–[5] are deployed in tradi-
tional SPICE simulators for decades. They are well developed
for the PSS analysis of excited systems, i.e., systems with
certain periodic inputs. In such systems, the period of the PSS
is always forced to be the same as that of the input. SN will
then iteratively shoot for aligning the initial and final values
over the given period, while HB numerically solves for the
Fourier series coefficients with respect to the known period.
However, it is difficult for traditional SN and HB to work under
an unknown oscillating frequency. Therefore, they cannot
readily be used to determine the PSS of autonomous systems
(i.e., systems without external inputs) such as oscillators in RF
communication circuits.

Several modifications have been made for SN and HB
to adapt to autonomous systems by treating the unknown
oscillation frequency as a new state variable [6]–[9]. These
methods still require solving systems of nonlinear equations
via the Newton-Raphson method, which highly depends on the
initial guess. There might be multiple solutions to the nonlinear
equations where only one is stable. Therefore it is always hard
to choose an initial value of the frequency in the right basin
of attraction, especially for RF oscillators.

To avoid dependence on the initial guess when solving
nonlinear systems numerically, other methods, such as Volterra
series [10], [11], have been proposed. The oscillation fre-
quency is then obtained by solving a univariate equation which

consists of Volterra transfer functions. However, Volterra series
approximation might be inaccurate, especially for highly non-
linear oscillators. Moreover, Volterra transfer functions suffer
from singularity problems when applied to descriptor systems.
At the same time, algebraic geometry has been used to solve
polynomial systems without any initial guesses. For example
in [12], a polynomial system of harmonic balancing equations
is solved using a Groebner basis. Nonetheless, although no
initial guesses are needed in the method, Groebner bases can
only deal with integer coefficients. In addition, Groebner bases
typically generate polynomials with very large coefficients
(usually hundreds of digits), which is generally inconvenient
to use in engineering.

On the other hand, a new numerical way of finding all the
roots of a multivariate polynomial system has been recently
introduced in [13], [14]. This method uses only numerical
linear algebra and works with arbitrary real coefficients while
finding all the roots by computing the null space of the
Macaulay matrix. The main computational tools in this method
are either the singular value decomposition (SVD) or the rank-
revealing QR decomposition, for which numerically backward
stable implementations exist [15].

In this paper, a novel linear algebraic method is proposed
for the PSS analysis of nonlinear oscillators. First, a general
nonlinear system is transformed into an equivalent polynomial
differential algebraic equation (DAE) system. Then, a polyno-
mial system is constructed from the DAE system via harmonic
balancing equations. After that, the Macaulay matrix based
root-finder is used to solve for the Fourier series coefficients
from the polynomial system. The proposed method completely
avoids initial guesses as in iterative numerical solvers such
as SN and HB, and works perfectly with arbitrary system
coefficients. Moreover, it is able to find all solutions as long
as the PSS of the system exists.

The paper is organized as follows. Section II reviews
the background preliminaries of the polynomial DAE system.
Then, our numerical linear algebra method is proposed in
Section III. Numerical examples are given in Section IV.
Several notable remarks are presented in Section V. Section VI
concludes this paper.

II. BACKGROUND AND PRELIMINARIES

A. Systems of polynomial differential algebraic equations

First, we start with a general nonlinear DAE system

F (x, ẋ, ẍ, . . . , u) = 0, (1)



where x ∈ Rñ, u ∈ Rl are the state vector and input vector,
respectively. F (·) is an arbitrary nonlinear vector function. In
practical circuit modeling, F (·) usually satisfies certain com-
mon nonlinearities, such as polynomial, rational, sinusoidal
and exponential etc. For instance, diodes are usually modeled
by an exponential nonlinear function iD = Is(e

vD/(nVT ) − 1)
and typical MOSFET models include recursive polynomial,
rational and exponential nonlinearities. It is proven in [16]
that if the DAE system (1) complies such condition, it can
always be converted to another equivalent DAE system with
only polynomial nonlinearities

Fp(x, ẋ, ẍ, . . . , u) = 0, (2)

where x ∈ Rn, u ∈ Rl and Fp(·) is a polynomial vector
function of u, x, ẋ, ẍ, etc.

The best way to illustrate the process is by means of
an example. Suppose we have a “diode-type” exponential
nonlinear system

F (z, u) = −ż − z − e4z + 1 + u = 0, (3)

wherein u is a scalar input and z the scalar state variable. By
setting z1 = z, z2 = e4z1 − 1 and x = (z1, z2)T such that
ż2 = 4e4z1 ż1 = 4(z2 + 1)(−z1 − z2 + u), we end up with the
polynomial DAE system

Fp(x, ẋ, u) = C0ẋ + G1x + G2x⊗ x + D1x⊗ u + Bu = 0

with C0 =

(
−1 0
0 −1

)
, G1 =

(
−1 −1
−4 −4

)
,

G2 =

(
0 0 0 0
0 −4 0 −4

)
, D1 =

(
0 0
0 4

)
, B=

(
1
4

)
,

where the ⊗ symbol denotes the Kronecker product.

For notational ease, we will illustrate our proposed algo-
rithm on the following simplified Fp(·)1

Fp(x, ẋ, ẍ, u)=C0ẋ+ C1x⊗ ẋ+ C2x
2© ⊗ ẋ+ E0ẍ+G1x

+G2x
2© +G3x

3© +D1x⊗ u+D2x
2© ⊗ u

+Bu = 0, (4)

where Ci ∈ Rn×ni+1

, E0 ∈ Rn×n, Gi ∈ Rn×ni

, Di ∈ Rn×lni

and B ∈ Rn×l are all constant matrices. All derivations in this
paper can easily accommodate higher order powers or cross
products of u, x, ẋ, ẍ, etc. A formal proof and procedure on
how to convert the original DAE system into an equivalent
polynomial system can be found in [16].

III. LINEAR ALGEBRA PSS FINDER

A. Harmonic balancing equation

We are now ready to set up a system of multivariate
polynomials from (4) by the harmonic balancing method.

Suppose the PSS solution of x in (4) can be approximated
by a truncated Fourier series

x(t) =

m∑
k=−m

pke
jkωt, (5)

where pk ∈ Cn are vectors of complex coefficients and ω
is a constant if the frequency of the input u is known. For

1We use the shorthand x⊗ x = x 2© etc. throughout the paper.

autonomous systems, ω can be regarded as an extra unknown
variable. Since for any real signal x(t), its coefficients in the
Fourier bases ejkωt and e−jkωt must be a pair of complex
conjugates, we can specifically define

p0 = p0r, p±k = pkr ± jpki, k = 1, . . . ,m, (6)

where p0r, pkr, pki ∈ Rn. We further define the coefficients
matrix P = (p−m, p−m+1, . . . , p0, . . . , pm−1, pm) and the
Fourier basis Φm(t) = (e−jmωt, . . . , ejmωt)T , thus x(t) =
PΦm. Similarly, a periodic input u can always be expressed
under the Fourier basis as u = UΦm.

The differential operational matrix under the Fourier basis
is then defined as

Dm = j ω diag([−m,−m+ 1, . . . ,m− 1,m]). (7)

It can be found that the time derivative of the basis functions
Φm is DmΦm. Therefore ẋ and ẍ are simply PDmΦm and
PD2

mΦm, respectively.

The Kronecker power x 2© can be written as

x 2© = (PΦm) 2© = (PΦm)⊗ (PΦm) = P 2©Φm
2©. (8)

The Kronecker product of the Fourier basis Φm
2© can be

simplified to a selector matrix, denoted Sm,m, times Φ2m. For
example the selector matrix Sm,m when m = 1 is

Φ1
2© =

e−jωt

1
ejωt

⊗

e−jωt

1
ejωt



=


1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1


T 

e−j2ωt

e−jωt

1
ejωt

ej2ωt

 = S1,1Φ2.

Similarly, the Kronecker product of the Fourier basis Φm
3©

can be simplified to

Φm
3© = Sm,mΦ2m ⊗ Φm = Sm,mS2m,mΦ3m

∆
=Sm,m,mΦ3m.

(9)

High order Kronecker products can be constructed in the same
way. It should be noticed that instead of growing exponentially,
the basis dimension increases only linearly by taking the ad-
vantage of selector matrices. Therefore, we have the following
equalities

x = PΦm,

ẋ = PDmΦm,

ẍ = PD2
mΦm,

x 2© = P 2©Sm,mΦ2m,

x⊗ ẋ = P 2©(Im ⊗Dm)Sm,mΦ2m,

x⊗ u = (P ⊗ U)Sm,mΦ2m,

x 3© = P 3©Sm,m,mΦ3m,

x 2© ⊗ ẋ = P 3©(I2m ⊗Dm)Sm,m,mΦ3m,

x 2© ⊗ u = (P 2© ⊗ U)Sm,m,mΦ3m,

· · ·



Replacing the corresponding terms in (4), the original equation
can be written in the Fourier basis as

0 = C0PDmΦm + C1P
2©(Im ⊗Dm)Sm,mΦ2m

+C2P
3©(I2m ⊗Dm)Sm,m,mΦ3m + E0PD2

mΦm

+G1PΦm + G2P
2©Sm,mΦ2m + G3P

3©Sm,m,mΦ3m

+D1(P ⊗ U)Sm,mΦ2m + D2(P 2© ⊗ U)Sm,m,mΦ3m + BUΦm.
(10)

Since we are interested in the coefficients with respect to the
basis Φm, it is necessary to truncate all other bases with an
order higher than m or lower than −m. The truncation can be
achieved by removing the columns in each S that correspond
to elements that are not in the basis Φm. Suppose the new
selector matrix is S̃ after the truncation, (10) then becomes

0 = C0PDmΦm + C1P
2©(Im ⊗Dm)S̃m,mΦm

+C2P
3©(I2m ⊗Dm)S̃m,m,mΦm + E0PD2

mΦm

+G1PΦm + G2P
2©S̃m,mΦm + G3P

3©S̃m,m,mΦm

+D1(P ⊗ U)S̃m,mΦm + D2(P 2© ⊗ U)S̃m,m,mΦm + BUΦm.
(11)

The Φm is a common factor to each term in (11) and can hence
be removed to arrive at the harmonic balancing equation

0 = C0PDm + C1P
2©(Im ⊗Dm)S̃m,m

+C2P
3©(I2m ⊗Dm)S̃m,m,m + E0PD

2
m

+G1P +G2P
2©S̃m,m +G3P

3©S̃m,m,m

+D1(P ⊗ U)S̃m,m +D2(P 2© ⊗ U)S̃m,m,m +BU. (12)

It should be noted that both sides of (12) are n-by-(2m+1)
matrices. Therefore, after separating the real and imaginary
parts of (12), (12) can be regarded as a system of n(2m+ 1)
multivariate polynomials with n(2m+ 1) unknowns (p0r, pkr
and pki).

For autonomous cases, the extra variable ω needs to be
introduced, which makes (12) underdetermined. This results in
an infinite amount of solutions, which come from two sources.
First, for autonomous systems, any arbitrary phase shift of a
solution to (12) will also be a valid solution to the original
system. Therefore, to enforce the solutions be isolated from
one another, it is necessary to fix the phase of the solution by,
e.g., setting the first element2 of p1i to 0 (forcing the phase
of the first order harmonic of the first state variable to be
0 or π). Note that setting p1i to 0 in (12) and the addition
of ω results in a polynomial system of n(2m + 1) equations
and unknowns. Second, it is readily found that each harmonic
order of the fundamental frequency is also a valid oscillating
frequency. In other words, if (ω, p1, p2, p3, p4, . . .) is a set of
solutions to (12), then so are (2ω, 0, p1, 0, p2, 0, p3, . . .) and
(3ω, 0, 0, p1, 0, 0, p2, . . .), etc. Thus, to ensure ω to be the fun-
damental oscillating frequency, we set the first element of p1r

nonzero by adding an extra polynomial equation h·p1
1r−1 = 0,

where h is an extra variable.

In this way autonomous systems will have n(2m+ 1) + 1
polynomials and unknowns, while forced systems will have
n(2m + 1) polynomials and unknowns. For the remainder
of this article we denote the number of polynomials and
unknowns by n̂ and consider systems of n̂ polynomials in the
variables x1, . . . , xn̂.

2We denote p11i to be the first element of the vector p1i, etc.

The procedure of building the harmonic balancing polyno-
mial system is summarized in Algorithm 1.

Algorithm 1 Polynomial system builder
Input: F (x, ẋ, ẍ, . . . , u), n, m
Output: system of n̂ polynomials in n̂ unknowns

1: convert F (x, ẋ, ẍ, . . . , u) = 0 into an equivalent polyno-
mial system Fp(x, ẋ, ẍ, . . . , u) = 0

2: get B, Ci, Ei, Gi, Di, etc. from Fp
3: build an n-by-2m+ 1 coefficient matrix P
4: apply P , B, Ci, Ei, Gi, Di, etc. in (12)
5: get the multivariate polynomial system f1, . . . , fn(2m+1)

6: if autonomous then
7: n̂= n(2m+ 1) + 1
8: p1

1i = 0
9: add an equation fn̂: hp1

1r − 1 = 0
10: else
11: n̂= n(2m+ 1)
12: end if

B. Multivariate polynomial root-finder

We have established in the previous section that the co-
efficients of a truncated Fourier series of the periodic state
solution can be computed as the roots of a multivariate
polynomial system. The next step now is to find all the roots
of this multivariate polynomial system. The main ingredient
of our numerical root finder, which is partly described in
[13], [14], is the Macaulay matrix M(d). For a given degree
d ∈ N and system of n̂-variate polynomials f1, . . . , fn̂ of
degrees d1, . . . , dn̂, the Macaulay matrix M(d) contains the
coefficients of 

f1
x1f1

...
xd−d1
n̂ f1
f2

x1f2
...

xd−ds
n̂ fn̂


, (13)

where each polynomial fi is multiplied with all monomials
from degree 0 up to d − di for all i = 1, . . . , n̂. Each of
these polynomials f1, . . . , fn̂ can be made homogeneous by
adding an additional variable x0 such that each term has the
same degree. The roots of the homogeneous polynomials are
then described by the projective coordinates (x0, x1, . . . , xn̂).
Roots at infinity are roots for which x0 = 0 and affine roots are
roots for which x0 6= 0. We will denote the homogenization
of f1 by fh1 and P n̂d will denote the vector space of n̂-variate
homogeneous polynomials of degree d. The row space of
M(d) is then the vector space

Md =

{
n̂∑
i=1

hi f
h
i | hi ∈ P n̂d−di

}
. (14)

Let q(d), r(d), c(d) respectively denote the number of
columns, the rank and the nullity of M(d). Then the rank-
nullity theorem can be written as

q(d) = r(d) + c(d), (15)



where q(d) =
(
d+n̂
n̂

)
= dimP n̂d and r(d) = dimMd. By

rewriting (15), the following expression for c(d) is found

c(d) = q(d)− r(d),

= dimPnd − dimMd,

= dimPnd /Md.

The function in the degree d that describes the dimension of
the quotient space P n̂d /Md is called the Hilbert Function [17,
p. 462]. It can be shown that there is a degree d? for which
the Hilbert Function becomes a polynomial and its degree
corresponds with the dimension of the projective solution
set [17, p. 464]. This implies that for a polynomial system
with a finite number of s projective solutions we have that
c(d) = s (∀d ≥ d?). It is also possible that the number of affine
roots is finite while those at infinity are not finite in number.
In this case c(d) will grow polynomially from a certain degree
d?. We assume from here on, without loss of generality, that
there are a finite number of projective roots and that none of
the s roots z1, . . . , zs have any multiplicities. The canonical
null space K of M(d) is then

K = (δ0|z1 δ0|z2 . . . δ0|zs)

with

δ0|z =
(
xd0 xd−1

0 x1 xd−1
0 x2 . . . xdn̂

)T
in the root z = (x0, x1, . . . , xn̂). Note that for an affine root,
one can set x0 = 1 in δ0|z and obtain

δ0|z =
(
1 x1 x2 . . . xdn̂

)T
.

This affine canonical null space vector has an n̂-variate Van-
dermonde structure, which implies the following shift property(

1 x1 x2 . . . xdn̂
)T
x1 =

(
x1 x2

1 x1x2 . . . x1x
d
n̂

)T
.

(16)
Evidently, this shift property can be written for multiplication
with any monomial xi. In addition, (16) can be expressed
completely in terms of δ0|z by limiting it to the rows of δ0|z
corresponding with monomials of degree at most d−1. Let S1

be the matrix that selects the aforementioned rows and Sxi
the

matrix that selects the corresponding rows after multiplication
with xi. Then (16) can be written as

S1 δ0|z xi = Sxi
δ0|z.

The canonical kernel K can be partitioned into

K = (

sa s− sa
Ka K∞ )

where Ka contains the δ0|z vectors for the affine roots and
K∞ those for the roots at infinity. The shift property can then
be written for all sa affine roots as

S1KaDxi
= Sxi

Ka, (17)

with Dxi a sa× sa diagonal matrix containing the xi compo-
nent of the corresponding affine roots. The Ka matrix is not
known however. Instead, a numerical basis N for the null space
can be computed using either the singular value decomposition
(SVD) or rank-revealing QR [15]. The SVD is the more
robust choice for the determination of the rank of M(d) but

computationally more expensive. Obviously, K = N T and
therefore Ka = N Ta. We now partition N into

( s

k N1

q − k N2

)
such that rank(N1) = sa and compute orthogonal bases
Q1, Q2 such that col(Q1) = col(N1) and col(Q2) = null(N1).
This can also be done using either an SVD or rank-revealing
QR. Then, the following basis change can be performed
Z = N (Q1 Q2). This can be written out as

Z = N Q =

( s

k N1

q − k N2

)
(

sa s− sa
Q1 Q2 ).

Since Q2 is orthogonal to N1 we have that

Z =

( sa s− sa
k N1Q1 0
q − k N2Q1 N2Q2

)
. (18)

Observe that the upper right block of Z is zero, for this reason
this linear basis change is also called a column compression.
Also, since K = N T and Z = N Q, we can write K = Z V
with V = QT T . By applying the same partitioning as (18),
K = Z V can be rewritten as

(
Ka1 K∞1

Ka2 K∞2

)
=

( sa s− sa
k N1Q1 0
q − k N2Q1 N2Q2

) ( sa s− sa
V11 V12

V21 V22

)
,

from which we find that Ka1 = N1Q1V11. Hence, by
choosing S1 and Sxi in (17) such that only rows of Ka1 are
selected we can write (17) as

S1 Ka1 Dxi
= Sxi

Ka1.

Substituting Ka1 this becomes

S1 N1 Q1 V11 Dxi
= Sxi

N1 Q1 V11.

Setting B , S1N1Q1 and A , Sxi N1Q1, we obtain

B V11 Dxi
= A V11, (19)

which is a rectangular eigenvalue problem. This can be solved
as

V11 Dxi V
−1
11 = B†A

where B† is the Moore-Penrose pseudoinverse of B. Alterna-
tively, one could choose S1, Sxi also such that B,A are square
and B of full rank. Then (19) is a generalized eigenvalue
problem. Once the eigenvectors V11 are computed, they can be
used to reconstruct the affine part of the canonical null space
Ka since Ka1 = N1Q1V11. All the affine roots can then be
read off after scaling the first row of the obtained Ka1 such
that all its elements are 1. We summarize the pseudo code for
the proposed root-finding method in Algorithm 2.

As described in [13], the number of affine roots sa can be
determined from monitoring the linearly independent leading
monomials in Md. Indeed, a sufficient condition for the
polynomial system to have a finite number of affine roots
is that for each variable xi (i = 1, . . . , n̂), some pure power
xαi is present in the linearly independent monomials of Md.
The computational complexity of Algorithm 2 is dominated



by the computation of a basis for the null space of M(d).
For the SVD or rank-revealing QR this complexity is O(pq2)
where p is the number of rows and q the number of columns
of M(d). In terms of n̂ this complexity is O(n̂d3n̂/(n̂!)3).
Using a graded monomial ordering for the columns of M(d)
results in a particular matrix structure that can be exploited to
reduce the complexity to O((n̂−1)d3n̂−3/(n̂− 1!)3) [18]. This
optimization however does not take the quasi-Toeplitz structure
nor the sparsity of the Macaulay matrix into account. Indeed,
the density of M(d), which is the ratio of the number of
nonzero elements with the total number of entries, decreases as
O((n̂−1)!/(dn̂)). Further optimizations will hence involve the
development of either direct or iterative methods to compute
the null space of the sparse and structured Macaulay matrix.

Algorithm 2 Affine root-finder
Input: n̂-variate polynomials f1, . . . , fn̂
Output: all affine roots of f1, . . . , fn̂

1: construct M(d) until c(d) stabilizes and all linearly inde-
pendent pure powers xαi are found

2: compute numerical basis N for null space of M(d)
3: perform column compression (18) on N
4: choose S1, Sxi and solve eigenvalue problem (19)
5: reconstruct affine canonical kernel by Ka1 = N1Q1V11

6: scale Ka1 and read off all affine roots

IV. NUMERICAL EXAMPLES

In this section we illustrate our proposed scheme and
compare it with HB by means of several numerical examples.
All algorithms were implemented in MATLAB and done on
a desktop PC @ 3.0 GHz and 16 GB RAM. In addition, we
also compare our computed roots of the polynomial systems
with those computed in Maple using Groebner bases.

A. van der Pol oscillator

Let us consider the following van der Pol-like equation

Fp(x) = ẍ− (1− 3x2)ẋ+ x = 0. (20)

An electrical circuit implementation for this equation is shown
in Figure 1. The tunnel diode has the cubic current-voltage
relationship

i = φt(v) = φ(v − E0) + I,

with φ(v) = γ v3−α v. The equation for the circuit in Figure
1 can then be written as

V̇ =
1

C
(−φ(V )−W )

with Ẇ = V/L. This can be rewritten to

V̈ − 1

C
(α− 3γ V 2) V̇ +

1

LC
V = 0. (21)

Setting α = γ = 1 and C = 1F,L = 1H results in (20).

We set the order of the Fourier approximation to m = 3
and use the harmonic balancing scheme from Subsection III-A.
Due to the odd symmetry property of (20), all even order

C

E0

L IV

Fig. 1. An electrical circuit with a tunnel diode for the van der Pol oscillator.

Fourier coefficients of x must be 0 (i.e., p0 = p±2 = 0).
This results in the following polynomial system

−ω2 − 3 p1r p3i ω + 1 = 0,

6 p2
3r + 3 p1r p3r + 6 p2

3i + 3 p2
1r − 1 = 0,

−9 p3r ω
2 − 9 p3i p

2
3r ω − 9 p3

3i ω − 18 p2
1r p3i ω

+3 p3i ω + p3r = 0,

9 p3
3r ω − 9 p3i ω

2 + 9 p2
3i p3r ω + 18 p2

1r p3r ω
−3 p3r ω + 3 p3

1r ω + p3i = 0,

of 4 polynomials in 4 unknowns (ω, p1r, p3r, p3i). For this
system c(d) grows linearly from d ≥ 7. Only at d = 9 all
pure powers are present in the linearly independent leading
monomials. From the linearly independent leading monomials
we deduce that the number of affine roots sa = 20. Note that
the linear increase of c(d) together with sa = 20 implies that
solutions set of the roots at infinity is 1-dimensional. M(9)
is a 792 × 715 matrix with a rank of 607 and a density
of 0.7%. This means that M(9) consists of more than 99%
zeros. The computed numerical basis for the null space N is
715× 108. If we choose S1 such that it selects all rows of N
corresponding with monomials of degree at most 3, then we
have that rank(N1) = 20. Performing the column compression,
solving the eigenvalue problem and reconstructing the kernel
results in 20 affine roots (ω, p1r, p3r, p3i). Only 4 have a real
ω, they are all the same solution within a sign change

( 0.9426, 0.5825, −0.0288, 0.0676 )
( −0.9426, −0.5825, 0.0288, 0.0676 )
( 0.9426, −0.5825, 0.0288, −0.0676 )
( −0.9426, 0.5825, −0.0288, −0.0676 ).

The 2-norm of the vector containing the residuals is of
order of magnitude 10−13. The absolute difference between
our computed roots and the roots from the Groebner basis is
also of order of magnitude 10−13.

Next, we apply HB on the oscillator. If the initial guess is
carefully chosen to be sufficiently close to the desired solution,
e.g. (1, 0.5, 0, 0), then HB converges to the PSS solution in
9 iterations if a tolerance of 10−13 is used. However, if
an unfortunate “bad” initial guess such as (0.2, 1, 0, 0) or
(0.94, 0.2, 0, 0) is used, HB will diverge after a few iterations,
even when ω is close to the solution in (0.94, 0.2, 0, 0).

B. Wien bridge oscillator

The second example is a Wien bridge oscillator adapted
from [10]. The circuit and its controlled source model are
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Fig. 2. (a) A Wien bridge oscillator circuit. (b) Controlled source model of
the oscillator.

shown in Figure 2, where R1 = R2 = 1Ω and C1 = C2 = 1F .
The voltage-controlled voltage source is described by

h(v) = 3.234v − 2.195v3 + 0.666v5.

Its univariate DAE can be obtained

Fp(v) = v̈ − 0.234 v̇ + v + 6.585 v2 v̇ − 3.334 v4v̇ = 0.
(22)

Similarly, (22) is odd symmetric, therefore all even order
Fourier coefficients should also be 0. Applying the harmonic
balancing scheme for m = 3 results in the polynomial system
shown at the top of the next page.

The dimension of the null space c(d) also grows linearly
from d ≥ 14. Only at d = 16 all pure powers are present in
the linearly independent leading monomials. Hence the number
of affine roots is again finite and determined to be sa = 80.
M(16) is a 5187 × 4845 matrix with a rank of 3999 and a
density of 0.2%. The computed numerical basis for the null
space N is 4845 × 846. Choosing S1 such that it selects all
rows of N corresponding with monomials of degree at most 5
ensures that rank(N1) = 80. Performing the column compres-
sion, solving the eigenvalue problem and reconstructing the
kernel results in 80 affine roots (ω, p1r, p3r, p3i). Only 8 have
a real ω, they are

( 0.7976, −1.4856, 0.4119, −0.0191 )
( 0.7976, 1.4856, −0.4119, −0.0191 )
( −0.7976, 1.4856, −0.4119, 0.0191 )
( 0.7976, −1.4856, 0.4119, 0.0191 )
( 0.9967, 0.1922, −0.0005, 0.0055 )
( −0.9967, −0.1922, 0.0005, 0.0055 )
( 0.9967, −0.1922, 0.0005, −0.0055 )
( −0.9967, 0.1922, −0.0005, −0.0055 )

The 2-norm of the vector containing the residuals is of order
of magnitude 10−13. The absolute difference between our
computed roots and the roots from the Groebner basis is of
order of magnitude 10−12. Observe that these results suggest
that 2 PSSs exist: one with an angular frequency of 0.7976 and
one with an angular frequency of 0.9967. Simulations show
that the PSS with ω = 0.7976 is unstable, while the other PSS
is stable.

Using HB, the stable PSS can be obtained if a “good”
initial value, e.g., (1, 0.2, 0, 0), is given. Otherwise, for instance
using the initial guess (1, 1, 0, 0) HB diverges. Furthermore,
if (0.2, 1, 0, 0) is chosen, HB will converge to the unstable
solution with ω = 0.7976.

C. Biochemical reaction system

Then we illustrate a multivariate example with a rational
nonlinearity. The system is used to describe a biochemical
reaction adapted from [16]. It is an excited system and can
be expressed by

ẋ+ x+
x

1 + 10x
+ u = 0, (23)

where u = cos(2πt) is the external input. Using a Taylor ex-
pansion is inaccurate to approximate the rational nonlinearity
since x is not guaranteed to be within the convergent range
of the Taylor expansion. In our scheme, by adding the extra
variable y = x/(1 + 10x) such that −x+ y + 10x y = 0, we
come up with the polynomial DAE system Fp(ẋ, x, y, u) = 0{

ẋ+ x+ y + u = 0,
−x+ y + 10xy = 0.

(24)

Using m = 2 in the Fourier approximation results in a
polynomial system of 10 equations in 10 unknowns. We have
omitted these polynomials due to lack of space. At d = 7 all
pure powers are present in the linearly independent leading
monomials. The number of affine roots is determined to be
sa = 12. M(7) is a 55055 × 19448 matrix with a rank
of 19425 and a density of 0.02%. Choosing S1 such that
it selects all rows of N corresponding with monomials of
degree at most 2 ensures that rank(N1) = 12. Performing
the column compression, solving the eigenvalue problem and
reconstructing the kernel results in 12 affine roots, of which 4
are real. They are given by

px0r
py0r
px1r
py1r
px2r
py2r
px1i
py1i
px2i
py2i



=





0.0551

−0.0551

−0.0251

−0.0368

−0.0028

0.0307

0.0697

0.0878

0.0022

0.0330



,



−0.1485

0.1485

−0.0049

0.0006

−0.0014

0.0765

0.0789

−0.0479

0.0060

0.0118



,



−0.2551

0.2551

−0.0251

−0.0368

0.0028

−0.0307

0.0697

0.0878

−0.0022

−0.0330



,



−0.0515

0.0515

−0.0050

0.0006

0.0014

−0.0765

0.0789

−0.0479

−0.0060

−0.0118





.

It can be shown that only the first two columns of solutions
satisfy the hypothesis y = x/(1 + 10x). Further transient
simulation shows that the first column is the PSS solution
to the forced system. The 2-norm of the vector containing
the residuals is of order of magnitude 10−11. The absolute
difference between our computed roots and the roots from the
Groebner basis is of order of magnitude 10−10.

Similarly, different initial guesses lead to different results
in HB. This is particularly problematic for this example with
the occurrence of 4 solutions of which only 1 is desired.
For example, (1, 1

11 , 0, . . . , 0) can drive to the solution in
the second column while (0, . . . , 0) results in the right PSS
solution.

D. Colpitts oscillator

Finally we study an NMOS Colpitts oscillator shown in
Figure 3. It is a typical example for autonomous circuits. We
use the same normalized state variables as defined in [19].
The normalized state equations of the Colpitts oscillator can





3.334 p33i p1r ω + 10.002 p3i p
3
1r ω + 3.334 p3i p1r p

2
3r ω − 6.585 p3i p1r ω − 1.0ω2 + 1.0 = 0,

13.336 p43i + 6.668 p23i p
2
1r + 3.334 p23i p1r p3r + 26.672 p23i p

2
3r − 13.17 p23i + 6.668 p41r + 16.67 p31r p3r + 6.668 p21r p

2
3r − 6.585 p21r

+3.334 p1r p33r − 6.585 p1r p3r + 13.336 p43r − 13.17 p23r + 0.234 = 0,

10.002 p53i ω + 40.008 p33i p
2
1r ω + 20.004 p33i p
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3r ω − 19.755 p33i ω + 43.342 p3i p

4
1r ω + 6.668 p3i p

3
1r p3r ω + 40.008 p3i p
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1r p

2
3r ω

−39.51 p3i p
2
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3
1r ω + 40.008 p23i p
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Fig. 3. An NMOS Colpitts oscillator.

be written in the form
ẋ1 = 3

2 (x2 + x3)− 3
4x

2
2,

ẋ2 = 3
2x3,

ẋ3 = − 1
3 (x1 + x2)− 1

2x3.

To verify the existence of the periodic solution, we apply our
scheme for m = 1 and this results in a polynomial system of
10 equations. Here, we also omitted these equations due to the
lack of space. It is possible to reduce this system. Indeed, from
the polynomial system it is immediately clear that p3

0r = 0
and this also allows us to substitute p2

0r by −p1
0r, effectively

reducing the total number of polynomials and unknowns to
8. The dimension of the null space c(d) grows cubicly from
d ≥ 4, which implies that the solution set at infinity is 3-
dimensional. All 6 affine solutions are found at d = 8, at
which the Macaulay matrix is 24024 × 12870 with a density
of 0.02%. Each of the 6 affine roots is real. After removing the
solutions within sign changes, only the following 2 solutions
remain 

ω
h
p1

0r

p2
0r

p3
0r

p1
1r

p2
1r

p3
1r

p2
1i

p3
1i


=





1.0000

1.3416

−0.3333

0.3333

0.0000

0.7454

0.3727

−0.2485

0.3727

0.2485


,



0.0000

1.4142

−1.0000

1.0000

0.0000

0.7071

−0.7071

0.0000

0.0000

0.0000





.

The 2-norm of residuals is of order of magnitude 10−14 and
the absolute difference between our computed roots and the
roots from the Groebner basis is also of order of magnitude
10−14. The result suggests that there are 2 possible PSS for

the Colpitts oscillator. The first column of the solution is
the desired PSS, with ω = 1 satisfying the normalization
condition. The second column indicates the unstable constant
equilibrium point of the Colpitts oscillator, which can be easily
destroyed by a small perturbation.

Not surprisingly, different initial conditions lead to dif-
ferent solutions in HB. For example, (1, 1, 0, 0, 0, 1,−1, 0,
0, 0) leads to the unstable equilibrium point while (1, 1, 1, 0,
0, 1, 0, 0, 0, 0) blows up the iteration. Finally HB converges
to the right PSS solution starting from the initial guess
(1, 1, 0, 0, 0, 1, 1, 0, 0, 0).

V. REMARKS

Several important remarks are in order:

1) Although our balancing equation (12) resembles the
harmonic balance (HB) method [3], [4], [7], it is
important to observe that HB deals with nonlinear
functions by evaluating in the time domain, followed
by fast Fourier transforms (FFT) in each iteration
of Newton’s method. In the proposed method, the
nonlinearity is embedded in the polynomial balancing
formulation and no domain transforms are required.

2) The Groebner basis with respect to the degree neg-
ative lex monomial ordering for the Wien bridge
example has integer coefficients with up to 150 digits
and requires multiprecision integer arithmetic. The
proposed method works in double precision and is
able to compute results with similar accuracy.

3) In subsection II-A, it should be noticed that the size
of the state space in (1) will be enlarged after the
polynomialization process, i.e., n > ñ in (1) and (2).
The number of extra state variables depends on the
number of nonlinearities of each electrical compo-
nent (including recursive nonlinearities). In practical
circuit modeling the number of nonlinearities of each
component is always limited and countable. There-
fore the complexity of the algorithm will not be
increased due to the conversion.

4) If the obtained accuracy of our proposed method is
not sufficient, then only a few Newton iterations,
using the obtained solutions as initial guess, are
sufficient to further improve the accuracy up to the
machine precision.

5) Future work will focus on solving higher order
Fourier approximations. This will result in larger
polynomial systems, which will be the main bottle-
neck for the proposed method. Exploiting the struc-
ture and nonzero pattern of the Macaulay matrix is
then mandatory.



VI. CONCLUSION

In this paper, a novel method for solving the PSS problem
of nonlinear oscillators has been proposed. Prior nonlinear
autonomous system solvers suffer from either convergence is-
sues or intrinsic coefficient problems, which are circumvented
by the proposed method via a Macaulay matrix based poly-
nomial solver. Moreover, exact polynomial DAE systems are
constructed from general nonlinear problems to guarantee the
strong nonlinearities of the original systems. Several examples
confirm the accuracy and feasibility of the proposed method.
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