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Abstract—Volterra series representation is a powerful math-
ematical model for nonlinear devices. However, the difficulties
in determining higher-order Volterra kernels limited its broader
applications. This paper proposed a systematic approach that
enables a convenient extraction of Volterra kernels from X-
parameters for the first time. Then the Vandermonde method
is employed to separate different orders of Volterra kernels at
the same frequency, which leads to a highly efficient extraction
process. The proposed Volterra series representation based on X-
parameters is further benchmarked for verification. The proposed
new algorithm is very useful for the blackbox macro-modeling
of nonlinear devices and systems.
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I. INTRODUCTION

The macro-modeling of nonlinear devices and systems is
a topic of growing interest. However, it is difficult to find
accurate and efficient models to characterize the nonlinear
behavior of devices under arbitrary loads and input signal-
s. X-parameters are a superset of S-parameters and have
been successfully used to describe the behavior of nonlinear
devices [1]–[3]. They are used to describe the numerical
relationships of frequency components between different ports
under certain large signal operating points (LSOPs). In this
descriptive function concept, input signals are represented by
a fundamental component consisting of LSOPs superposed
with small harmonics. Consequently, X-parameter models are
limited for transient simulation situations and they have diffi-
culty in handling input signals with high peak-to-average ratios
that will excite the device over the full linear and nonlinear
operating ranges.

The Volterra series representation is another popular black-
box behavioral model of nonlinear devices with memory [4].
It can support transient simulation and is valid for signals that
can excite both linear and nonlinear responses. The difficuly
in determining higher-order Volterra kernels (VKs) restricted
its application to only weakly nonlinear devices and systems.
The extraction of Volterra kernels from X-parameters was
mentioned in [5]. The novel contribution of this paper is
that for the first time a systematic method for the efficient
extraction of Volterra kernels from X-parameters is presented.
The generalized relationship between Volterra kernels and X-
parameters is explicitly formulated. In addition, it provides a
complete description of Volterra kernels. Using the Vander-
monde method, the kernels contributing to the same output

frequency component are further separated, which leads to a
very efficient process for the determination of Volterra kernels.

The organization of the paper is as follows. Section II
provides a brief description of Volterra series theory. Section
III gives the X-parameter formalism with incommensurate
multi-tone input. Section IV presents the detailed technical
description of the Volterra kernel extraction process. In section
V, numerical example of extracting Volterra series from the
X-parameters is provided to validate the proposed method.
Finally, a conclusion is given in Section VI.

II. VOLTERRA SERIES

A. Volterra Series Representation

Volterra series are useful for describing the input/output
relationship of nonlinear systems with memory. Suppose the
input signal is u(t), the output y(t) can be represented as

y(t) =
∞∑

n=1

yn(t) (1)

with

yn(t) =
1

n!

∫ +∞

−∞
hn(t1, t2, . . . , tn)u(t− t1) (2)

u(t− t2) . . . u(t− tn)dt1dt2 . . . dtn

where hn(t1, t2, . . . , tn) is called the n-th Volterra kernel in
the time domain [4].

B. Determination of the Kernels

The harmonic input method is one of the commonly used
methods for determining the Volterra kernels [4]. In general,
to get the M -th order Volterra kernel, a M -tone excitation is
required. Suppose the input signal is the superposition of M
incommensurate tones:

u(t) =
M∑

m=1

Vm

2
ejωmt + c.c. =

M∑
m=−M
m �=0

Vm

2
ejωmt (3)

where “c.c.” denotes the complex conjugate terms, ω−m =
−ωm, and V−m = V ∗

m for m > 0. Here, Vm is dimensionless
and m is an integer.

The n-th order of the output is represented in (4) with
mi �= 0 and dt̄ = dt1dt2 . . . dtn. Hn (ωm1 , ωm2 , . . . , ωmn)
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yn(t) =
1

n!

∫ +∞

−∞
hn(t1, t2, . . . , tn) ·

n∏
i=1

[
V1

2
ejω1(t−ti) +

V2

2
ejω2(t−ti) + · · ·+ VM

2
ejωM (t−ti) + c.c.

]
dt̄ (4)

=
1

n!

M∑
m1=−M

M∑
m2=−M

· · ·
M∑

mn=−M

[
n∏

i=1

Vmi

2

]
Hn (ωm1 , ωm2 , . . . , ωmn) · exp

(
j

n∑
i=1

ωmit

)

G[k1+r1,r1],[k2+r2,r2],...,[kM+rM ,rM ] (ω1, ω2, . . . , ωM ) =
n!

(k1 + r1)!r1!(k2 + r2)!r2! . . . (kM + rM )!rM !
(5)

·Hn

⎛
⎜⎝ω1, ω1, . . . , ω1︸ ︷︷ ︸

k1+r1

;−ω1,−ω1, . . . ,−ω1︸ ︷︷ ︸
r1

; . . . ;ωM , ωM , . . . , ωM︸ ︷︷ ︸
kM+rM

;−ωM ,−ωM , . . . ,−ωM︸ ︷︷ ︸
rM

⎞
⎟⎠

y(t) =

∞∑
n=1

yn(t) =

∞∑
r1=0

∞∑
r2=0

· · ·
∞∑

rM=0

[
(V1/2)

k1+r1(V ∗
1 /2)

r1 . . . (VM/2)kM+rM (V ∗
M/2)rM

(k1 + r1)!r1!(k2 + r2)!r2! . . . (kM + rM )!rM !

]
(6)

·G[k1+r1,r1],[k2+r2,r2],...,[kM+rM ,rM ] (ω1, ω2, . . . , ωM ) · exp [j(k1ω1 + k2ω2 + · · ·+ kMωM )t]

is the n-th symmetric frequency domain Volterra kernel
or transfer function. Many terms in (4) contain identi-
cal exponents. By collecting all those terms at frequency
(k1ω1 + k2ω2 + · · ·+ kMωM ) (km are integers and 0 ≤
km ≤ n), we could get a simplified Volterra kernel repre-
sentation Gn. The relationship between Gn and Hn is written
in (5) with k1 + 2r1 + k2 + 2r2 + · · · + kM + 2rM = n,
rm are integers and rm ≥ 0. The first km + rm arguments
of Hn are +ωm, the next rm terms are −ωm. For km < 0,
the signs of ωm are reversed. The general representation for
all the frequency components of the output signal due to an
M -tone excitation is given in (6). The Volterra kernels can be
determined by measuring the magnitudes and phases of the
corresponding frequency components of the output signal.

III. X-PARAMETER FORMALISM

X-parameters are the extension of S-parameters and can
be used to describe the behavior of nonlinear devices in the
frequency domain. For better clarification and without losing
generality, we take the incommensurate three-tone excitation
case to illustrate the formalism of the X-parameters [6].
Suppose the incident signal Aq(t) at port q has three large
fundamental incommensurate tones, the scattered signal at port
p contains numerous frequency components. They are the
combinations of the input tones as ω = nω1 + mω2 + lω3

and can be indexed as Bp,[n,m,l]. Then, X-parameters are used
to link the scattered signal B with incident signal A by

Bp,[n,m,l] = X
(F )
p,[n,m,l]P

n
[1,0,0]P

m
[0,1,0]P

l
[0,0,1] (7)

+
∑

q,n′,m′,l′
X

(S)
p,[n,m,l];q,[n′,m′,l′]P

n−n′
[1,0,0]P

m−m′
[0,1,0] P

l−l′
[0,0,1]Aq,[n′,m′,l′]

+
∑

q,n′,m′,l′
X

(T )
p,[n,m,l];q,[n′,m′,l′]P

n+n′
[1,0,0]P

m+m′
[0,1,0] P

l+l′
[0,0,1]A

∗
q,[n′,m′,l′]

The sum runs over all q and all integers n′,m′, l′. The X-
parameters are determined under specific LSOPs (with certain
DC bias and the magnitudes of the input tones). The X(F )

term includes the information of the large signal input tones.
P[1,0,0], P[0,1,0], P[0,0,1] are the initial phases of each tone.

IV. VOLTERRA KERNEL EXTRACTION FROM

X-PARAMETERS

A. Relationship between Volterra Kernels and X-parameters

The determination of the M -th Volterra kernel requires a
M -tones input signal. For better presentation, the M = 3 case
is used to illustrate the relationship between Volterra kernels
and X-parameters. The maximum mixing order is set to M0 =
M . In addition, thanks to the time invariant property, the initial
phase of each tone is set to zero (Vm = V ∗

m). Based on (6) and
(7), we could link the Volterra kernels and X-parameters by
equating the same frequency component of the output signal,
that is, setting Y[n,m,l](nω1+mω2+lω3) = Bp,[n,m,l]. Take the
output frequency with index [n,m, l] = [0, 0, 1] as an example,
the output frequency is ω = nω1+mω2+lω3 = ω3. According
to (6), the phasor of this frequency component can be written
as:

Y[0,0,1](ω3) =
∞∑
r=0

[
(V1/2)

2r1(V2/2)
2r2(V3/2)

1+2r3

(r1!)2(r2!)2(1 + r3)!r3!

]
(8)

·G[0+r1,r1],[0+r2,r2],[1+r3,r3] (ω1, ω2, ω3)

=
V3

2
G1(ω3) +

V 3
3

16
G3(ω3, ω3,−ω3) +

V3V
2
2

8
G3(ω3, ω2,−ω2) +

V3V
2
1

8
G3(ω3, ω1,−ω1) +

V 5
3

384
G5(ω3, ω3, ω3,−ω3,−ω3) + . . .

= Bp,[0,0,1]

where
∑

r indicates a 3-fold sum of all integer indices ri.
As presented in (8), the output at frequency ω3 contains
different order of Volterra kernels: the linear term G1(ω3), the
compression term G3(ω3, ω3,−ω3) � G3c, the desensitization
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terms G3(ω3, ω2,−ω2) � G3d2, G3(ω3, ω1,−ω1) � G3d1 and
other higher-order terms (n > 3). We need to separate the
different order of kernels.

B. The Separation of Volterra Kernels

In general, the magnitude of high-order output decreases
drastically as the magnitude of the input signal decreases
even though the magnitude of higher-order kernel may be
larger. The separation of Volterra kernels depends on this fact.
Provided that the magnitude of the input signal u(t) is smaller
than some upper bound, the high order terms above M are neg-
ligible. By setting an input signal with suitable magnitude, the
infinite summation for each frequency component is truncated
to a finite one by ignoring the higher-order terms. Then the
kernels can be separated based on the Vandermonde method [7]
in the frequency domain. The basic idea consists of arranging
the magnitudes of the input tones so that a matrix similar to
the Vandermonde matrix can be constructed for the kernels.
Take (8) as example and ignore the higher-orders with n > 3,
by changing V3, a matrix equation is constructed:⎡

⎢⎢⎢⎢⎢⎢⎢⎣

V
(1)
3

2

(
V

(1)
3

)3

16
V

(1)
3 V 2

2

8
V

(1)
3 V 2

1

8

V
(2)
3

2

(
V

(2)
3

)3

16
V

(2)
3 V 2

2

8
V

(2)
3 V 2

1

8

V
(3)
3

2

(
V

(3)
3

)3

16
V

(3)
3 V 2

2

8
V

(3)
3 V 2

1

8

V
(4)
3

2

(
V

(4)
3

)3

16
V

(4)
3 V 2

2

8
V

(4)
3 V 2

1

8

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

G1

G3c

G3d2

G3d1

⎤
⎥⎦ (9)

=
[
Y (ω3)

(1) Y (ω3)
(2) Y (ω3)

(3) Y (ω3)
(4)

]T
The different orders of kernels are the solution of (9). It is
essential that the magnitudes of the input tones are properly
chosen. They should be smaller than some upper bound so that
lower-order Volterra kernels will not be skewed by high order
terms. However the magnitudes cannot be too small as well
so that the higher-order terms will not be buried in the noise.
One improvement is to add additional input magnitudes and
use the least square solution of the resulting overdetermined
equations as the estimate of the kernels.

C. Design of the Input Signal

To obtain the complete description of the Volterra kenels
G1(ω1), G2(ω1, ω2) and G3(ω1, ω2, ω3), frequency sweep of
ω1, ω2 and ω3 in the interested region is required. In addition,
for a convenient kernel separation, the frequencies of the output
shall be distinct from each other. Hence, careful attention must
be paid in choosing the frequency components included in the
input signal so that the output frequencies will not overlap
with each other. Suppose the input frequencies are chosen
as (ω1, ω2, ω3) = (P,Q,R)ω0. It is important to choose
(P,Q,R) carefully so that the output frequencies ω = (nP +
mQ+ lR)ω0 will not overlap with each other. Moreover, since
the Volterra kernels have both permutation symmetry property
(e.g., G3(ω1, ω2, ω3) = G3(ω2, ω3, ω1)) and conjugate sym-
metry property (e.g., G3(ω1, ω2,−ω3) = G∗

3(−ω1,−ω2, ω3)),
for each triplet (P,Q,R), as shown in Fig. 1, we will have
6× 6× 6 = 216 points in the G3(ω1, ω2, ω3) space (only 28
points need to be determined due to the symmetry properties).
Therefore we only need to sweep ω0 on one frequency axis,
e.g., the ω1 axis. The other two axes will have the same
frequency sampling distribution. This leads to a very efficient

frequency sweep scheme. As a comparison, in the techniques
presented in literatures, the determination of G3(ω1, ω2, ω3)
required N3 calculation points (assuming that each frequency
axis has N frequency sampling points), while in this paper,
by completely separating the Volterra kernels, only N/3 fre-
quency sampling points are required. Therefore, the extraction
process is efficient.

Fig. 1. Distribution of points in the G3(ω1, ω2, ω3) space with one triplet
(P,Q,R)ω0.

V. NUMERICAL EXAMPLE

The Volterra series representation of a power amplifier is
extracted from the X-parameters. The inset in Fig. 2(a) shows
the macro-model of the amplifier. The 3-tone X-parameters of
the amplifier are generated by applying the ADS X-parameter
generator [8]. The frequency sweep region is 100Hz − 2GHz
with 30 frequency sampling points. To separate different order
of Volterra kernels, the power of each input tone is set to
Pin = [−40,−20,−15,−10,−5] dBm. The proposed method
described in Sec. IV is used to extract the Volterra kernels
G1(f1), G2(f1, f2) and G3(f1, f2, f3). Fig. 2 shows the mag-
nitudes of the Volterra kernels. As shown in Fig. 2(a), the linear
transfer function G1(f) is identical to the S-parameters of the
amplifier with small signal input. Because of the permutation
and conjugate symmetry property, the magnitude distribution
of G2(f1, f2) in Fig. 2(b) has two symmetry planes: f1 = f2
and f1 = −f2. Fig. 2(c) presents a slice of the third order
Volterra kernel G3(f1, f2, f3 = fc) with fc = 1GHz. It has a
symmetry plane with f1 = f2 due to the permutation symmetry
property.

To validate the accuracy of the Volterra kernel separation
and extraction process, Fig. 3 shows the output power of
the fundamental frequency components with the increasing
power of a single tone input at 1 GHz. The dashed line
is obtained from the Volterra series representation with the
highest order M = 7. The dash-dotted line is simulated by the
ADS harmonic balance (HB) simulator with the circuit model.
Fig. 4 presents the time domain output signal calculated by
the Volterra series representation and the ADS HB simulator
with the input power equal to −5 dBm. In both figures, the
results obtained from the Volterra series representation agree
well with those simulated by the ADS HB simulator based on
the circuit model, which verifies the capability of the Volterra
series for characterizing the behavior of nonlinear devices.

VI. CONCLUSION

This paper presents a novel systematic method for ex-
tracting Volterra series representation from X-parameters. By

87



� ��� � ��� �
�

�

�

�

	

��

��

��


�������������

�
��

�
�
��

�
��

�
�
��

��



�
�
�
��
�
�

 !"���#������ ���

$�%������ ����������

(a)

(b)

(c)

Fig. 2. Magnitudes distribution of Volterra kernels of the amplifier extracted
from 3-tone X-parameters. (a) the linear transfer function G1(f); the inset
shows the macro-model of the amplifier. (b) the second order Volterra kernel
G2(f1, f2); (c) the slice of the third order volterra kernel G3(f1, f2, f3) with
f3 fixed to 1 GHz.

completely separating different order of Volterra kernels based
on the Vandermonde method, the complete description of
Volterra kernels can be determined very efficiently. Numerical
results show the capability of Volterra series representation for
describing nonlinear devices in a broad input power region.
The procedure for extracting Volterra kernels with the trunca-
tion order M = 3 is illustrated in detail. The paper gives the
general relationship between Volterra series and X-parameters
and the method can be applied to the extraction of higher-order
Volterra kernels.
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