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Abstract 
Hybrid-excitation in-wheel motor drive receives the attractive merit for its fault-tolerant operation. This 

paper gives the performance comparison of three types of hybrid-excitation in-wheel motor drives in 

electric vehicles (EVs) for their fault-tolerant operations. By using finite-time element analysis, the torque 

output is utilized as the fault indicator to investigate the performances of each motor drive under normal, 

faulty, and remedial operations.   
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1 Introduction  
In recent years, electric vehicles (EVs) have been 
paid great attention on their fault-tolerant 
operation [1]-[4]. A single failure of the core 
components in EVs could lead to unexpected 
shutdown. In the literatures, the faults of EVs can 
be divided into four main sections, namely, 
battery, electric motor, power electronics, and 
powertrain [5]-[10]. Among them, electric motor 
drives receives great attention for its fault-
tolerant operation [3]. 
As the main motive power converting 
components of EVs, electric motor faults are 
generally divided into two categories, namely, 
electric fault and mechanical fault [9]. It can also 
be subdivided into four main faults as following 
[11]-[14]: (1) Rotor-related fault; (2) Stator-
related fault; (3) Bearing fault; (4) Eccentricity-
related fault. 
This paper aims to investigate the comparison of 
in-wheel motor drives for their fault-tolerant 
operations. By using time-stepping finite-
element-analysis (TS-FEA), the performance 
comparison of three motor drives is presented. It 
demonstrates the torque performance of each 

motor drive under normal, faulty, and remedial 
operations. The rest of the paper is organized as 
follow. Section II gives a review of motor faults in 
EVs. Section III illustrates the operation principles 
of the hybrid-excitation in-wheel motor drives. 
Section IV compares the performances of three 
motor drive models for their fault-tolerant 
operation. And Section V gives the conclusion.  

2 Review of Motor Faults for EVs 
Figure 1 represents an exploded diagram of 
induction machine and the corresponding fault 
occurrence rates. The machine mainly consists of 
stator, rotor, bearing, and shaft.  And the bar chart 
indicates that stator-related fault and bearing fault 
are the dominating faults in electric motors [15]-
[17]. For further classification and exploration, 
Table 1 summarizes the motor drive faults by 
percentage, cause, feature, frequency, and 
diagnostic approach [18]-[25]. It can be found that 
the frequency components of the corresponding 
faults on electric motor can be expressed by 
common mathematical expressions [23]. In 
addition, the presence of these faults can be 
detected by applying motor current signature 
analysis.
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Figure 1: Exploded diagram of induction machine and the corresponding fault occurrence rates 

 
Table 1: Power levels for charging (230V) 

 Electrical Faults Mechanical Faults 

 Rotor-related faults Stator-related faults Bearing faults Eccentricity-related faults 

Percentage 5%-10% 40%-50% 40%-50% 5%-10% 

 
 
 
Cause 

Thermal stress; 
 Magnetic stress; 
 Residual stress; 
 Dynamic stress; 
 Environmental stress; 
 Mechanical stress; 

High temperatures; 
Slack core lamination; 
Contamination due to oil, 
moisture, and dirt; 
Short circuit or starting 
stresses; 
Electrical discharges; 

Contamination and 
corrosion; 
Improper lubrication; 
Improper installation of 
bearing; 

Unequal air gap between the 
stator and rotor; 
 

Feature Broken rotor bar; 
Cracked rotor end 
rings; 
Shorted rotor field 
windings; 

Abnormal connection of 
stator windings; 
Open or short circuit of 
stator windings; 

Outer bearing race defect; 
Inner bearing race defect; 
Ball defect; 
Train defect; 

Bend shaft; 
Static air-gap Irregularities; 
Dynamic air-gap 
irregularities; 

Frequency ( )( ) fsspfs ±−= 1η
Where pη =1,2,3, 

( )( ) fkspnfs ±−= 1  
Where n=1, 2, k=1, 3, 5,.. 

vbea nfff ±=  
Where n=1, 2,..; 

vf is vibration frequency 

( )( )[ ]kpsnNf drecc ±−+= 1
Where dn is NO. of rotor 
bar; K=1,3,5,…. 

Diagnostic  
approach 

Spectrum analysis of 
motor current 
signature analysis; 
FFT based; 
 

Flux-based technique; 
Motor current signature 
analysis; 
Power decomposition; 
 

Traditional spectrum 
analysis; 
Envelop detection 
techniques 
 

Spectrum analysis of motor 
current signature analysis; 
 

3 Hybrid-Excitation In-Wheel 
Motor Drive 

The paper aims to investigate the hybrid-
excitation fault-tolerant in-wheel motor drive. 
Figure 2 presents a schematic diagram of the 
hybrid-excitation in-wheel motor drive [26]. It 
mainly consists of a three-phase rectifier, a 
braking chopper, a three-phase full-bridge 
inverter, an H-bridge converter, and a three-
phase hybrid-excitation in-wheel motor. As can  

 
be seen, the fault-tolerant operation of the motor 
drive is dependent of operation of the full-bridge 
inverter and the H-bridge converter. The three-
phase full-bridge inverter aims to control the 
armature winding current independently, and the 
H-bridge converter has the capability of 
controlling the magnitude and direction of the DC 
field winding [27]-[28]. Hence, by controlling the 
three-phase full-bridge inverter and the H-bridge 
converter, the motor drive can perform the fault-
tolerant operation. 
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Figure 2: Hybrid-excitation in-wheel motor drive

 
Figure 3 shows the topologies of the proposed 
motors, which give a general presentation of the 
construction for the proposed machines. Three 
topologies are presented and compared in the 
study. Each topology has different construction 
in terms of rotor and stator. Type (a) is selected 
with the most common construction. While type 
(b) and type (c) are designed with in-wheel 
construction. Compared with type (c), it can be 
found that type (b) has double-lay stator 
construction, which consists of outer rotor, outer-
layer stator, and inner-layer stator. Type (c) has 
only one outer-rotor and one stator. 
 

 
 

Figure 3: Motor topologies. 

4 Performance Comparison of 
Fault-Tolerant Operation 

As shown in Figure 4, the schematic diagrams of 
the proposed machines are presented [29]. It can 
be found that all proposed machines have DC 
windings as the hybrid field excitation. 
Furthermore, type (b) and type (c) have 
permanent-magnets (PMs) as the hybrid field 
excitation in addition to DC windings.  Hence, 
with two sets of windings, the proposed machines 
possess the advantage of fault-tolerant capability. 

4.1 Principle of Fault-Tolerant 
Operation 

 
For the proposed machines, phase-current 
reconfiguration is applied to investigate the fault-
tolerant operation. This approach aims to 
reconstruct the magnitude and phase angle of the 
phase currents to keep the magnetomotive force 
(MMF) constant after fault occurs. Open circuit 
fault is investigated in this study. In general, the 
three-phase current phasor is 120° apart in space 
from each other with the same magnitude under 
normal operation. Under phase A open circuit fault, 
ia becomes zero, amplitudes of ib and ic are 
increased by 1.732, ib is lagged by 30° and ic is led 
by 30°. The sum of MMF generated by three-phase 
current is given by: 

MMF = MMFa + MMFb + MMFc  
= Nia + aNib + a2Nic      (1) 
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Figure 4: 2-D diagrams of proposed three machines 

 
Figure 5: Fault-tolerant performance under normal, 

faulty, and remedial operation 

 

4.2 Torque Performance Analysis 
 

 
          Table 2: Toque performance comparison 

Model Operation 
modes 

Torque 
ripple 

Average 
torque 

 
Type A 

Normal 34.5% 12.2Nm 
Faulty - - 

Remedial 82.4% 11.9Nm 

 
Type B 

Normal 32.5% 15.1Nm 
Faulty 87.6% 10.5Nm 

Remedial 58.6% 14.5Nm 

 
Type C 

Normal 39.1% 27.4Nm 
Faulty 96.3% 17.9Nm 

Remedial 41.8% 27.3Nm 

By performing time-stepping finite element 
analysis (TS-FEA), the performances of the 
proposed operations can be calculated and 
analysed. The torque performance of the proposed 
machines under normal, faulty, and remedial 
operation are depicted in Figure 5. It can be found 
that the phase-current reconfiguration approach is 
able to remedy the open circuit fault and retrieve 
the torque level as the normal operation does.  

The corresponding torque ripple rate and average 
torque results are quantitatively compared and 
summarized in Table 2. With type (a), the remedial 
operation can retrieve almost the same torque 
value as the normal operation, which shows around 
12 Nm. But the torque ripple shows distinct 
fluctuation after remedial operation, which 
increases from 34.5% to 82.4 %. For type (b), the 
normal operation and remedial operation show 
almost the same average torque of around 15 Nm, 
the faulty average torque value is only 10.5 Nm. It 
is noted that the torque ripple drops from 87.7 % to 
58.6 % after remedial phase-current 
reconfiguration. Similarly, type (c) successfully 
retrieves nearly the same average torque value 
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with the remedial operation. And the torque 
ripple is 39.1% under normal operation and 
41.8% under remedial operation. The faulty 
torque ripple is 96.3%.  Hence, all the proposed 
machines have the capability of fault-tolerant 
operation. They are able to retrieve the torque 
level after phase-current reconfiguration. It 
should be noted that type (a) has slightly higher 
torque ripple than the other two modes, which is 
due to the reason that the other two machines 
have PMs as the hybrid field excitation in 
addition to DC windings.  

5 Conclusion 
In this paper, the performance comparison is 
conducted with three hybrid-excitation machines 
for fault-tolerant operation. The torque output is 
used as the fault indicator. By applying phase-
current reconfiguration, the proposed machines 
are able to remedy the open-circuit fault and 
retrieve nearly the same torque level. By 
comparison, it reveals that machine type (a) has 
lower capability in controlling the torque ripple, 
which is owing to the lack of PM as the hybrid 
excitation source.  
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