
Title Efficient algorithm for computing all low s-t edge connectivities
in directed graphs

Author(s) Wu, X; Zhang, C

Citation

The 40th International Symposium on Mathematical Foundations
of Computer Science (MFCS 2015), Milano, Italy, 24-28 August
2015. In Lecture Notes in Computer Science, 2015, v. 9235, p.
577-588

Issued Date 2015

URL http://hdl.handle.net/10722/219233

Rights

The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-662-48054-0; This work is
licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38081875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Efficient Algorithm for Computing All Low s-t
Edge Connectivities in Directed Graphs

Xiaowei Wu and Chenzi Zhang

The University of Hong Kong
xwwu, czzhang@cs.hku.hk

Abstract. Given a directed graph with n nodes andm edges, the (strong)
edge connectivity λ(u, v) between two nodes u and v is the minimum
number of edges whose deletion makes u and v not strongly connected.
The problem of computing the edge connectivities between all pairs of
nodes of a directed graph can be done in O(mω) time by Cheung, Lau
and Leung (FOCS 2011), where ω is the matrix multiplication factor
(≈ 2.373), or in Õ(mn1.5) time using O(n) computations of max-flows
by Cheng and Hu (IPCO 1990).
We consider in this paper the “low edge connectivity” problem, which
aims at computing the edge connectivities for the pairs of nodes (u, v)
such that λ(u, v) ≤ k. While the undirected version of this problem
was considered by Hariharan, Kavitha and Panigrahi (SODA 2007), who
presented an algorithm with expected running time Õ(m+nk3), no algo-
rithm better than computing all-pairs edge connectivities was proposed
for directed graphs. We provide an algorithm that computes all low edge
connectivities in O(kmn) time, improving the previous best result of
O(min(mω,mn1.5)) when k ≤

√
n. Our algorithm also computes a min-

imum u-v cut for each pair of nodes (u, v) with λ(u, v) ≤ k.

1 Introduction

Given an undirected graph, the edge connectivity between two nodes is the
minimum number of edges whose deletion disconnects those two nodes, which
by Menger’s Theorem [12] is also the maximum number of edge-disjoint paths
between them. The definition of edge connectivity can be naturally generalized
to directed graphs [13] [1] [6] (it is denoted by “strong edge connectivity” in some
literatures): given a digraph G(V,E), the edge connectivity λ(u, v) between two
nodes u, v ∈ V is the minimum number of edges whose deletion makes u and
v not strongly connected. The edge connectivity of a graph is the minimum
edge connectivity between any two nodes in the graph. Computing the edge
connectivity is a classic and well-studied problem.

Given two nodes u and v in a digraph, the edge connectivity λ(u, v) =
min{f(u, v), f(v, u)}, where f(u, v) is the max-flow from u to v, if we attach
unit capacity to each edge. Given a unit capacity network with m edges and n
nodes, Even and Tarjan [5] showed that Dinic’s algorithm [4] for computing the
s-t max-flow terminates in O(min{m 3

2 ,mn
2
3 }) time. The above algorithm was

the fastest algorithm for computing unit capacity max-flow for almost 40 years
until very recently Lee and Sidford [11] proposed an Õ(m

√
n) time algorithm

using a new method to solve LP.
The problem of computing the edge connectivities between all pairs of nodes

of a digraph was also considered. Note that the problem can be trivially solved
by computing O(n2) max-flows, which yields a total running time of Õ(mn2.5)
by Lee and Sidford [11]. Cheung et al. [3] considered the problem and proposed
an O(mω) time randomized algorithm, where ω is the matrix multiplication
factor (≈ 2.373), using the idea of network coding. We provide in this paper an
efficient algorithm that computes the edge connectivities λ(u, v) for all pairs of
nodes (u, v) such that λ(u, v) ≤ k in O(kmn) time, for any integer k ≥ 1. Our
algorithm also computes a minimum u-v cut for each such pair of nodes (u, v).
Gomory-Hu Tree. It was observed by Gomory and Hu [7] long ago that the
edge connectivities between all pairs of nodes in an undirected graph G(V,E)
can be represented by a weighted tree T on all nodes V such that
– the edge connectivity between any two nodes u, v ∈ V equals the weight of

the lightest edge on the unique u-v path in T .
– the partition of the nodes produced by removing this edge from T forms a

minimum u-v cut in graph G.
Any tree satisfying both conditions is called a cut-equivalent tree, or Gomory-

Hu tree of G; if a tree satisfies only the first condition, then it is called a flow-
equivalent tree of G. The computation of a Gomory-Hu tree of any undirected
graph can be reduced to the computation of n max-flows [7, 8], which yields a
total running time of Õ(mn1.5) using the current fastest unit capacity max-flow
algorithm [11]. Currently the above running time is the best for any deterministic
cut-equivalent tree construction. For randomized Gomory-Hu tree construction,
Hariharan et al. [10] proposed an algorithm that with high probability computes
a Gomory-Hu tree for any unweighted undirected graph in Õ(mn) time.

The definition of Gomory-Hu tree and flow-equivalent tree can be naturally
generalized to digraphs. Schnorr [13] attempted to construct the Gomory-Hu tree
for general weighted digraphs. However, it was later pointed out by Benczur [1]
that for general weighted digraphs, Gomory-Hu trees do not exist. We generalize
the counter-example of Benczur [1] and show that the Gomory-Hu tree does not
exist even in some unweighted digraph.

Fact 1 (Non-existence of Gomory-Hu tree for digraphs) There exists an
unweighted digraph that does not have any Gomory-Hu tree.

Contrary to the Gomory-Hu tree, a flow-equivalent tree always exists for
any weighted digraph. Cheng and Hu [2] generalized the result of Gomory and
Hu [7] to construct a flow-equivalent tree using O(n) computations of max-
flows, which yields a total running time of Õ(mn1.5). Actually Cheng and Hu
proved something even more powerful: given any set V of n nodes, if we attach
arbitrary weight w(S) to each subset S ⊆ V of nodes, the minimum weight cuts
that separate all

(
n
2

)
pairs of nodes can be represented by an ancestor tree, which

is a tree spanning all nodes V .

2

We show in this paper that in directed unweighted graphs, the problem
of computing the all-pairs edge connectivities and the computation of flow-
equivalent tree are highly related to each other. By the following theorem, the
result of Cheng and Hu [2] and that of Cheung et al. [3] hold for both problems.

Theorem 1 (Reducibility). For any digraph G with n nodes, the all-pairs edge
connectivities problem and the flow-equivalent tree problem are O(n2)-reducible
– given the edge connectivities λ(u, v) of all pairs of (u, v), a flow-equivalent

tree of G can be constructed in O(n2) time.
– given a flow-equivalent tree of G, the edge connectivities λ(u, v) of all pairs

of (u, v) can be computed in O(n2) time.

Low Edge Connectivities. In many applications, computing the edge con-
nectivities of pairs of nodes which are poorly connected in the graph is more
important. In particular, we consider the problem of computing the edge con-
nectivities for the pairs of nodes (u, v) whose edge connectivities are at most k
in the input graph, for any integer k ≥ 1. Using the same definition from Hari-
haran et al. [9], the output should be represented succinctly as a weighted tree
T whose nodes are V1, V2, . . . , Vl, a partition of V , with the property that (1) for
all i ∈ [l], λ(u, v) > k for all u, v ∈ Vi; (2) edge connectivity between u ∈ Vi and
v ∈ Vj , if i 6= j, is equal to the weight of the lightest edge in the unique Vi-Vj
path in T . We call the above weighted tree a k-edge-connectivity tree. Note that
for k ≥ ∆ = maxu,v∈V λ(u, v), the k-edge-connectivity tree is a flow-equivalent
tree. The problem for undirected graphs was considered by Hariharan et al. [9],
who presented a randomized algorithm with expected running time Õ(m+nk3).

We consider in this paper the same problem in digraphs. For the special case
when k = 1, Georgiadis et al. [6] showed that the 1-edge-connectivity tree can be
constructed in linear time. However, for general k, the best algorithm to solve
this problem involves computing all-pairs edge connectivities, which requires
Õ(mn1.5) time by Cheng and Hu [2]. We improve in this paper the above result
to O(kmn). It is easy to verify from our proofs that the following result holds
even in directed multigraphs (in which case m = ω(n2) is possible).

Theorem 2 (Computing low edge connectivities). Given a digraph G(V,E)
and an integer k ≥ 1, a k-edge-connectivity tree of G can be computed in O(kmn)
time.

While it is shown by Cheng and Hu that the
(
n
2

)
edge connectivities can

be computed using O(n) computations of max-flows, improving their running
time in the low edge connectivity case is non-trivial. As we compute λ(u, v), we
actually obtain a minimum u-v cut, which defines a partition of nodes and this
piece of information can be reused in the computation of the edge connectivities
of other pairs of nodes. The above observation is crucial for Cheng and Hu’s
algorithm. However, in the low edge connectivity problem, if λ(u, v) ≥ k, then
we can not afford to compute a minimum u-v cut.

Instead, we decompose the computation of edge connectivities such that for
each pair of nodes (u, v), the lower bound for λ(u, v) is increased by 1 (if possible)

3

in each iteration. We maintain partitions of nodes in our algorithm and attach a
seed node to each partition. Using the seeds to represent the edge connectivities
between nodes in the same partition and a crucial merge-flow subroutine, we
are able to reduce the total computation time in each iteration to O(mn), which
directly yields Theorem 2.

2 Preliminaries

Given a subset S ⊆ V of nodes, let d−(S) = |{(u, v) ∈ E|u ∈ S, v ∈ V \S}| be
the out-degree of S, d+(S) = |{(u, v) ∈ E|u ∈ V \S, v ∈ S}| be the in-degree of
S and d(S) = min{d−(S), d+(S)} be the degree of S.

Definition 1 (Edge-Connectivity). Given u, v ∈ V , the edge-connectivity
λ(u, v) between u and v is the minimum number of edges whose removal makes
u and v not strongly connected. We assume λ(u, u) =∞ for all u ∈ V .

Given two nodes u, v ∈ V , we use f(u, v) to denote the max-flow from u to v
(assume that unit capacity is attached to each directed edge in the graph). By the
above definition, we have λ(u, v) = min{f(u, v), f(v, u)} = λ(v, u). Moreover,
there must exist at least one S (V such that u ∈ S, v ∈ V \S and d(S) =
d(V \S) = λ(u, v). By Menger’s Theorem, we have the following basic fact.

Fact 2 (i-Edge-Connectivity is an Equivalence Relation) For any inte-
ger i ≥ 1, given any nodes a, b, c ∈ V such that λ(a, b) ≥ i and λ(b, c) ≥ i, we
have λ(a, c) ≥ i.

Throughout this paper, we use n to denote the number of nodes, m for the
number of edges and ∆ = maxu,v∈V,u6=v λ(u, v) to denote the maximum edge-
connectivity between any two nodes in V . Unless otherwise stated, a graph is
always directed and unweighted.

Definition 2 (Blocks, Partition). Given a graph G(V,E), for any integer
i ≥ 0, an i-edge-connected (i-ec) block is a subset of nodes B ⊆ V such that
∀u, v ∈ B, λ(u, v) ≥ i and ∀u ∈ B, v ∈ V \B, λ(u, v) < i. An i-edge-connected
partition, denoted by Ωi, is the collection of all i-edge-connected blocks of G.

Definition 3 (Seed). We attach a unique seed r(B) ∈ B to each block B. For
any (i+ 1)-ec block B′ that is a subset of a i-ec block B, if r(B) ∈ B′, then we
set r(B′) = r(B).

By definition, we have Ω0 = {V } and Ω∆+1 = {{u}|u ∈ V }. Note that
∪∆+1
i=0 Ωi is a Laminar family and hence we can organize all the blocks by a tree

rooted at V such that block B is the parent block of block B′ ∈ Ωi iff B′ ⊆ B
and B ∈ Ωi−1. We call B′ a child block of B. If r(B′) = r(B), then we call B′ the
closest child block of B. Note that if u ∈ V is the seed of some block in Ωi, then
u will be a seed for exactly one block in Ωj , for each j = i+ 1, i+ 2, . . . ,∆+ 1.

4

Proof of Fact 1: The following graph does not have a Gomory-Hu tree, where
“↔" stands for two directed edges in two directions. It is easy to see that the
given graph has four 5-edge-connected blocks: A,B,C,D.

A B

C D

Suppose the given graph has a Gomory-Hu tree T , then if we contract all
edges of weight at least 5 in T , then all nodes in the same 5-edge-connected block
should become a single super-node. Hence in the contracted tree, there are only
four super-nodes: uA, uB , uC , uD, each of them corresponds to a block.

It can be easily verified that ∀a ∈ A, we have: ∀d ∈ D,λ(a, d) = 1, ∀b ∈
B, λ(a, b) = 2, ∀c ∈ C, λ(a, c) = 3. Hence the four super-nodes are connected
by three edges of weight at most 3. However, in the contracted tree, uA, uB
and uC can not be leaf nodes: if uA is a leaf node, then after removing the edge
connected to uA in the contracted tree from T , the nodes will be partitioned into
two sets A and B ∪C ∪D and we have d(A) = 4, which is a contradiction since
the edge connecting uA should be of weight at most 3; similarly, uB and uC can
not be leaf nodes since d(C) ≥ d(B) ≥ 5. Since any tree must have at least two
leaf nodes, we conclude that G does not have any Gomory-Hu tree. ut

Throughout this paper, we will use Tarjan’s O(m) time algorithm [14] for
computing the strongly connected components of a digraph as a subroutine.

3 Flow-Equivalent Tree for Directed Graph

We first show that a k-edge-connectivity tree can be efficiently constructed given
the partitions Ω1, Ω2, . . . , Ωk, Ωk+1. The following lemma is important for the
proofs of Theorem 1 and Theorem 2.

Lemma 1 (Partitions to k-edge-connectivity tree). For any integer k ≥ 1,
given partitions Ω1, Ω2, . . . , Ωk+1 of graph G(V,E), a k-edge-connectivity tree
of G can be constructed in O(kn) time.

Proof. Let S be the set of seeds for blocks in Ωk+1. Note that we only need to
build a tree spanning all nodes in S since (1) ∀u, v ∈ S, we have λ(u, v) ≤ k; (2)
∀u ∈ V , there exists r ∈ S s.t. λ(u, r) > k. We initialize the flow-equivalent tree
T = (S, ∅) and add edges to the tree as follows.

For i = k, k−1, . . . , 1, 0, for each B ∈ Ωi with at least 2 child blocks, connect
the seeds of the child blocks (which must be in S) by a single path in T . Set the

5

weight of each edge in the path to be i. By the above construction, it is easy to
check that after considering each i we have
– all edges added to the current flow-equivalent tree are of weight at least i.
– two seeds r1 and r2 are connected iff λ(r1, r2) ≥ i (can be easily proved by

induction on i).
Hence, every time when we add an edge (u, v) to the flow-equivalent tree, u and
v must not be connected and the weight of the edge is set to be λ(u, v), which
means that after the whole construction, T is tree spanning S and for any two
seeds u and v, the minimum weight of edges in the unique path between u and
v equals λ(u, v).

Replacing each r ∈ S in the tree by the (k+1)-ec block B such that r(B) = r
gives a k-edge-connectivity tree. Note that when considering Ωi, we only need
to scan each node once. Hence the total running time for constructing the flow-
equivalent tree is O(kn). ut

Using Lemma 1 with k = ∆, we are able to prove Theorem 1. Recall that a
∆-edge-connectivity tree is a flow-equivalent tree.
Proof of Theorem 1: First, given a flow-equivalent tree T (V,ET) of G(V,E),
we can recover the edge-connectivities λ(u, v) for all pairs of nodes as follows.
Sort the edges in ET by their weights in non-decreasing order in O(n log n) time.
In every step we remove the edge e with minimum weight we from T , and set
the edge connectivity λ(u, v) = we for each pair of (u, v) that are disconnected
in T by the removal of e. Hence the total running time can be bounded by
T (n) = maxi∈[n]{i(n− i) + T (i) + T (n− i) + O(n)}, which can be bounded by
O(n2), using mathematical induction on n ≥ 1.

By Lemma 1, to show that a flow-equivalent tree can be constructed given
the edge-connectivities between all pairs of nodes, we only need to construct
Ω1, Ω2, . . . , Ω∆ of graph G(V,E) in O(n2) time.

Algorithm 1 all-partitions(G(V,E)):
1: let Ω0 = {V }, set r(V) to be an arbitrary node in V .
2: for each t = 1, 2, . . . ,∆ do
3: Ωt = ∅, i = 1.
4: for each B ∈ Ωt−1 do
5: Bi = {v ∈ B|λ(r(B), v) ≥ t}, r(Bi) = r(B).
6: Ωt = Ωt ∪ {Bi}, i = i+ 1. . O(|B|) time
7: while ∪i−1

j=1Bj 6= B do
8: pick an arbitrary u ∈ B\ ∪i−1

j=1 Bj .
9: Bi = {v ∈ B|λ(u, v) ≥ t}, r(Bi) = u.
10: Ωt = Ωt ∪ {Bi}, i = i+ 1. . O(|B|) time

Given the edge-connectivities of all pairs of nodes, the above algorithm con-
structs each Ωt in O(max{1, |Ωt| − |Ωt−1|}n) time for all t = 1, 2, . . . ,∆. Hence
all partitions Ω1, Ω2, . . . , Ω∆ of graph G(V,E) can be constructed in O(n2) time,
which by Lemma 1 means that a flow-equivalent tree can be constructed given
the edge-connectivities between all pairs of nodes in O(n2) time. ut

6

4 Computing Low Edge Connectivities

For any integer k ≥ 1, we describe in this section how to compute the partitions
Ω1, Ω2, . . . , Ωk, Ωk+1 of G in O(kmn) time.

Note that given the i-ec partition Ωi, the (i + 1)-ec partition Ωi+1 can be
obtained by computing all child blocks of each i-ec block B ∈ Ωi. During each
refinement step, we also need to assign seeds to the child blocks. The following
algorithm applies the above steps to construct partitions Ω1, Ω2, . . . , Ωk, Ωk+1,
where function blocks(B, r(B), r(B), i) returns all i-ec blocks of the (i − 1)-ec
block B.

Algorithm 2 partitions(G(V,E), k):
1: fix any node s ∈ V , let Ω0 = {V }, r(V) = s.
2: for each i = 1, 2, . . . , k, k + 1 do
3: Ωi = ∅.
4: for each B ∈ Ωi−1 do
5: Ωi = Ωi ∪ blocks(B, r(B), r(B), i). . partition B into i-ec blocks
6: return Ω1, Ω2, . . . , Ωk, Ωk+1.

4.1 Block Refinement

Suppose that before constructing Ωi, for each pair of nodes (u, v): (1) we have
already computed a current flow F(u, v), which is stored as a set of edge-disjoint
paths from u to v; (2) |F(u, v)| = min{λ(u, v), i − 1}. Then for each (i − 1)-ec
pair of nodes (u, v), we try to find an augmenting path from u to v (from v to
u) in the residual graphs with flow F(u, v) (flow F(v, u)). If we can increase the
flow by 1 in both directions, then u and v are at least i-ec and we place them into
the same i-ec block. Otherwise we find a min-cut (W,V \W) with d(W) = i− 1
that separates u and v in G and hence recursion can be applied.

Algorithm 3 blocks(B, r, u, i):
1: S = {u}, r(S) = u,R = B\S,B = ∅. . if u 6= r, then ∀v ∈ B, λ(v, r) = i− 1
2: while R 6= ∅ do
3: pick an arbitrary node v ∈ R.
4: if flow(u, v, r, i) 6= NULL and flow(v, u, r, i) 6= NULL then . O(m) time
5: S = S ∪ {v}, R = R\{v}.
6: else . λ(u, v) = i− 1
7: if flow(u, v, r, i) == NULL then
8: let G̃ be the residual graph with flow F(u, v).
9: else
10: let G̃ be the residual graph with flow F(v, u). . O(m) time
11: let W be the set of nodes strongly connected to u in G̃.
12: B = B ∪ blocks(R\W, r, v, i), R = R ∩W .
13: return B ∪ {S}.

The above algorithm takes a subset B ⊆ B′ of an (i−1)-ec block B′, together
with the seed r = r(B′) and a starting node u ∈ B, computes all i-ec blocks

7

that are subsets of B recursively. The function flow(u, v, r, i) computes a flow
|F(u, v)| = i or returns NULL if f(u, v) < i.

Note that whenever we find a min-cut (W,V \W) with d(W) = i − 1 that
separates u and v in G, then ∀x ∈ B\W , we have λ(u, x) = i− 1, which means
that (W,V \W) is a minimum u-x cut for all u ∈ W and x ∈ B\W . Hence
we can recursively compute the i-ec blocks for R\W without splitting any i-ec
block. Assume that flow(u, v, r, i) computes a flow |F(u, v)| = i or returns NULL
if f(u, v) < i (such an algorithm will be provided in Section 4.2), we have the
following lemma immediately.

Lemma 2 (Block Refinement). Given a subset B ⊆ B′ of an (i − 1)-edge-
connected block B′ and the seed r = r(B), Algorithm 3 returns all i-ec blocks
that are subsets of B.

While we assume that before constructing Ωi, we have already computed a
current flow |F(u, v)| = min{λ(u, v), i− 1} between any pair of nodes, it is easy
to observe that the time and space complexity is too large: in the worst case we
need to update Θ(n2) current flows when constructing one partition and store
O(mn2) edges, which may be ω(m2) already. Hence, we need to represent all
Θ(n2) current flows using a sparse structure, i.e., O(n) current flows, such that
the current flow between any pair of nodes can be efficiently recovered.

4.2 Computing the Current Flow with Seed Replacement

Note that in order to test i-edge-connectivity in an (i − 1)-ec block B, we only
need to do the test between every node u ∈ B with the seed of B. Moreover,
given any two nodes u, v ∈ B, if we have already computed F(u, r) and F(r, v)
such that |F(u, r)| = i and |F(r, v)| = i, then we can recover a flow F(u, v) with
|F(u, v)| = i from u to v in O(m) time using the following algorithm. We regard
a path P as a sequence of edges and use |P | to denote the number of edges in
P .

Lemma 3 (Merge-Flows). Given u, v ∈ B ∈ Ωi, r = r(B), |F(u, r)| = i and
|F(r, v)| = i, Algorithm 4 computes a flow F(u, v) with |F(u, v)| = i from u to
v in O(m) time.

Proof. Let P1, P2, . . . , Pi be i edge-disjoint paths from u to r and Q1, Q2, . . . , Qi
be i edge-disjoint paths from r to v. Note that there might exist edges that are
used by both the Pj ’s and the Ql’s (such a shared edge will be given two labels
by Algorithm 4). We argue that we can compute a matching between the Pj ’s
and the Ql’s in O(m) time such that each Pj is matched with QmatchP(j) to form
a new path Hj from u to v. Moreover, all Hj ’s are edge-disjoint. Then we have
F(u, v) = {H1, H2, . . . ,Hi} as required.

In Algorithm 4,Hj is set to be (pj,1, pj,2, . . . , pj,top(j), ql,x+1, ql,x+2, . . . , ql,|Ql|),
where l = matchP(j), pj,top(j) = ql,x is a shared edge (or top(j) = |Pj | and
x = 0). Note that by the end of the while loop, we have matchP(j) 6= 0 for all
j ≤ i and we have formed a partial matching between Pj ’s and Ql’s: the number

8

Algorithm 4 merge-flow(u, v, r, i)
1: let F(u, r) = {P1, P2, . . . , Pi}, F(r, v) = {Q1, Q2, . . . , Qi} and M = 0.
2: for each j ≤ i do
3: label edges in Pj as (pj,1, pj,2, . . . , pj,|Pj |).
4: label edges in Qj as (qj,1, qj,2, . . . , qj,|Qj |).

5: ∀j ≤ i, let top(j) = 0, head(j) = 0, matchP(j) = 0, matchQ(j) = 0.
6: while M < i do
7: pick an arbitrary j ≤ i s.t. matchP(j) = 0.
8: if top(j) == |Pj | then
9: matchP(j) = −1, M =M + 1. . finished if r is reached
10: else
11: top(j) = top(j) + 1.
12: if pj,top(j) has another label ql,x then
13: if matchQ(l) == 0 then . match Ql with Pj , at position x
14: matchQ(l) = j, head(l) = x.
15: matchP(j) = l, M =M + 1.
16: else if x > head(l) then
17: matchP(matchQ(l)) = 0, matchP(j) = l.
18: matchQ(l) = j, head(l) = x.
19: set F(u, v) = ∅. . add i edge-disjoint paths in F(u, v)
20: for each j ≤ i do
21: if matchP(j) > 0 then
22: l = matchP(j), x = head(l).
23: F(u, v) = F(u, v) ∪ {(pj,1, pj,2, . . . , pj,top(j), ql,x+1, ql,x+2, . . . , ql,|Ql|)}.
24: else . matchP(j) = −1
25: pick any l ≤ i such that matchQ(l) == 0, set matchQ(l) = j.
26: F(u, v) = F(u, v) ∪ {(pj,1, pj,2, . . . , pj,|Pj |, ql,1, ql,2, . . . , ql,|Ql|)}.
27: return F(u, v).

of Pj ’s with matchP(j) = −1 equals the number of Ql’s with matchQ(l) = 0. We
can form an arbitrary matching between Pj ’s with matchP(j) = −1 and Ql’s
with matchQ(l) = 0.

At any moment during the execution of Algorithm 4, we use Ep = ∪j∈[i]{pj,1,
pj,2, . . . , pj,top(j)} to denote the set of “p-edges” that are already scanned and
Eq = ∪l∈[i]{ql,head(l)+1, ql,head(l)+2, . . . , ql,|Ql|}. We show that Ep∩Eq = ∅ during
the whole execution.

Showing that Ep ∩ Eq = ∅ is trivial before the while loop since Ep = ∅.
During each while loop (line 7-18) we increase top(j) by one, for some j ≤ i,
which include one more edge e in Ep. If e is not shared, then it is safe to include
e in Ep. Otherwise (line 13-18), assume e = pj,top(j) = ql,x. The algorithm makes
sure that head(l) ≥ x at the end of this iteration of while loop, which exclude
e = ql,x from Eq and maintains Ep∩Eq = ∅. Hence we conclude that Ep∩Eq = ∅
at the end of the whole while loop. Since the Hj ’s only use edges in Ep once and
use edges in Eq once, all paths Hj ’s are edge-disjoint.

9

It is easy to check that each while loop can be executed in O(1) time and
increases the size of Ep by exactly one, the first part (line 1-18) of Algorithm 4
executes in O(m) time. Since the execution time of the second part (line 19-27)
of Algorithm 4 can be bounded by O(|Ep ∪Eq|) = O(m), we conclude that the i
edge-disjoint paths F(u, v) can be computed in O(m) time by Algorithm 4. ut

Hence instead of computing and storing Θ(n2) current flows, when construct-
ing Ωi, we only need to know the current flow between nodes in the same (i−1)-ec
block. Moreover, to represent the current flow between two nodes in the same
block, we only need to store the current flows between the seed of the block and
all other nodes in the block, which reduces the total number of current flows we
need to update from Θ(n2) to O(n).

Algorithm 5 flow(u, v, r, i)
1: if u 6= r and v 6= r then . min{λ(u, r), λ(v, r)} = i− 1
2: merge-flow(u, v, r, i− 1). . O(m) time
3: if v is reachable from u in the residual graph with flow F(u, v) then
4: find an augmenting path from u to v in the residual graph. . O(m) time
5: merge the path with i− 1 paths in F(u, v).
6: return F(u, v).
7: else
8: return NULL.

Lemma 4. For all i ≥ 1, after constructing Ωi−1, we have
1. F(u, v) contains i − 1 edge-disjoint paths from u to v if u ∈ B ∈ Ωi−1, v =

r(B) or v ∈ B ∈ Ωi−1, u = r(B).
2. given u, v ∈ B ∈ Ωi−1 and r = r(B), Algorithm 5 computes a flow F(u, v)

with |F(u, v)| = i or returns NULL if λ(u, v) = i− 1 in O(m) time.

Proof. We prove the above statements by induction on i ≥ 1.
The base case (i = 1) is trivial since (1) Ω0 = {V } and |F(u, v)| = 0 for

all u, v ∈ V ; (2) computing a path from u to v in G (if possible) can be done
in O(m) time. Now assume the statement is true for i and consider i + 1. By
induction hypothesis, ∀u ∈ B ∈ Ωi, we have |F(u, r(B))| = |F(r(B), u)| = i.
Moreover, for any two nodes u and v, line 4 of Algorithm 3 computes in O(m)
time i edge-disjoint paths from u to v and i edge-disjoint paths from v to u.

By Algorithm 3, it is easy to observe that ∪S∈BS = B, where B is the
set of i-ec blocks returned after executing blocks(B, r, u, i). Note that in every
execution of Algorithm 3, we increase the size of B by exactly one. Let S be the
last i-ec block that is included into B in some execution of Algorithm 3. Hence
to prove statement-(1) for i+1, we only need to show that for all v ∈ S, we have
|F(r(S), v)| = |F(v, r(S))| = i, which is obvious since every node v is included
in S only if v passes of the test in line 4.

Assuming that statement-(1) is true for i+1, proving statement-(2) is straight-
forward. By Lemma 3, line 2 of Algorithm 5 executes in O(m) time and hence
we can get a current flow |F(u, v)| = i − 1 from u to v in O(m) time. Then in
O(m) time, we can either increase the flow from u to v by one, or conclude that
λ(u, v) = i− 1. ut

10

4.3 Complexity of the Construction

We have described how to compute all child blocks of any block B using recursive
algorithm (Algorithm 3) which uses a subroutine Algorithm 5 to compute a
flow from u to v in O(m) time. We will analyze the total running time for the
construction of partitions Ω1, Ω2, . . . , Ωk, Ωk+1 in this section.

Notice that given an (i− 1)-ec block B, Algorithm 3 (run as blocks(B, r(B),
r(B), i)) computes all child blocks of B by using Algorithm 5 O(|B|) times.
Moreover, we have the following important observations:
– in every call of Algorithm 5 (run as flow(u, v, r, i)), exactly one of u, v has

been assigned to be the seed for an i-ec block.
– before every recursive call of Algorithm 3 (line 11), we compute the strongly

connected components of the residual graph with flow F(u, v) (or F(v, u)),
where λ(u, v) = i − 1 and exactly one of u, v has been assigned to be the
seed for an i-ec block.

– in every recursive call of Algorithm 3 (line 12), node v will be assigned to be
the seed of some child block of B.

Charging argument. By the above observation, we can charge the running
time O(m) for computing a current flow from u to v using Algorithm 5 and the
running time O(m) for computing the strongly connected components to the
non-seed node. Hence any node u will not be charged after being assigned to be
the seed of some block by the above argument.

Lemma 5 (Running time on each node). By the above charging argument,
every node u will only be charged a total running time of O(km).

Proof. First observe that Algorithm 5 (run as flow(u, v, r, i) and flow(v, u, r, i))
is always called twice at a time (for computing flows |F(u, v)| = |F(v, u)| = i
from u to v and from v to u) and the computation cost will be charged to the
same (non-seed) node. Suppose the node being charged is u, we say that u is
charged with requirement i in the above case.

Note that for every node u, after being charged with requirement i, either u
is placed in some i-ec block, or we conclude that λ(u, v) = i−1. Note that a non-
seed node in an i-ec block will not be charged with requirement i again. Moreover,
if the requirement is not satisfied (flow(u, v, r, i) = NULL or flow(v, u, r, i) =
NULL), then after being charged an extra O(m) running time for computing
the strongly connected components, u will be immediately assigned to be a seed.

Since all computation cost between u and v afterwards will be charged to
the non-seed node v, we conclude that every node u will only be charged a total
running time of O(km). ut

Proof of Theorem 2: To prove Theorem 2, it suffices to show that partitions
Ω1, Ω2, . . . , Ωk, Ωk+1 can be constructed in O(kmn) time, by Lemma 1.

By Lemma 2, we can use Algorithm 3 (block(B, r(B), r(B), i)) to compute all
the child blocks of any block B. Hence Algorithm 2 correctly computes partitions
Ω1, Ω2, . . . , Ωk, Ωk+1. Thus we only need to bound the running time.

11

By Lemma 5, the total running time charged on nodes is at most O(kmn).
Since the total running time not charged on any node, i.e., while loops and for
loops, for the computation of partitions can be bounded by O(∆n), we conclude
that the computation of partitions Ω1, Ω2, . . . , Ωk, Ωk+1 (and hence the k-edge-
connectivity tree) of any graph G can be done in O(kmn) time. ut

References

1. András A Benczúr. Counterexamples for directed and node capacitated cut-trees.
SIAM Journal on Computing, 24(3):505–510, 1995.

2. Chung-Kuan Cheng and T. C. Hu. Ancestor tree for arbitrary multi-terminal
cut functions. In Proceedings of the 1st Integer Programming and Combinatorial
Optimization Conference, Waterloo, Ontorio, Canada, May 28-30 1990, pages 115–
127, 1990.

3. Ho Yee Cheung, Lap Chi Lau, and Kai Man Leung. Graph connectivities, network
coding, and expander graphs. In Rafail Ostrovsky, editor, IEEE 52nd Annual
Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA,
USA, October 22-25, 2011, pages 190–199. IEEE Computer Society, 2011.

4. EA Dinits. Algorithm of solution to problem of maximum flow in network with
power estimates. Doklady Akademii Nauk SSSR, 194(4):754, 1970.

5. Shimon Even and R Endre Tarjan. Network flow and testing graph connectivity.
SIAM journal on computing, 4(4):507–518, 1975.

6. Loukas Georgiadis, Giuseppe F. Italiano, Luigi Laura, and Nikos Parotsidis. 2-edge
connectivity in directed graphs. In Piotr Indyk, editor, Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San
Diego, CA, USA, January 4-6, 2015, pages 1988–2005. SIAM, 2015.

7. Ralph E Gomory and Tien Chung Hu. Multi-terminal network flows. Journal of
the Society for Industrial & Applied Mathematics, 9(4):551–570, 1961.

8. Dan Gusfield. Very simple methods for all pairs network flow analysis. SIAM
Journal on Computing, 19(1):143–155, 1990.

9. Ramesh Hariharan, Telikepalli Kavitha, and Debmalya Panigrahi. Efficient algo-
rithms for computing all low st edge connectivities and related problems. In Pro-
ceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 127–136. Society for Industrial and Applied Mathematics, 2007.

10. Ramesh Hariharan, Telikepalli Kavitha, Debmalya Panigrahi, and Anand Bhal-
gat. An o (mn) gomory-hu tree construction algorithm for unweighted graphs. In
Proceedings of the thirty-ninth annual ACM symposium on Theory of computing,
pages 605–614. ACM, 2007.

11. Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming:
Solving linear programs in õ (vrank) iterations and faster algorithms for maxi-
mum flow. In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual
Symposium on, pages 424–433. IEEE, 2014.

12. Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae,
10(1):96–115, 1927.

13. Claus-Peter Schnorr. Bottlenecks and edge connectivity in unsymmetrical net-
works. SIAM Journal on Computing, 8(2):265–274, 1979.

14. Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J.
Comput., 1(2):146–160, 1972.

12

