
Title Dynamic tree shortcut with constant degree

Author(s) Chan, HTH; Wu, X; Zhang, C; Zhao, Z

Citation
The 21st Annual International Computing and Combinatorics
Conference (COCOON 2015), Beijing, China, 4-6 August 2015. In
Lecture Notes in Computer Science, 2015, v. 9198, p. 433-444

Issued Date 2015

URL http://hdl.handle.net/10722/219232

Rights

The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-21398-9_34; This work is
licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38081873?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dynamic Tree Shortcut with Constant Degree

T-H. Hubert Chan1, Xiaowei Wu1, Chenzi Zhang1, and Zhichao Zhao1

The University of Hong Kong
{hubert,xwwu,czzhang,zczhao}@cs.hku.hk

Abstract. Given a rooted tree with n nodes, the tree shortcut problem
is to add a set of shortcut edges to the tree such that the shortest path
from each node to any of its ancestors is of length O(logn) and the
degree increment of each node is constant. We consider in this paper
the dynamic version of the problem, which supports node insertion and
deletion. For insertion, a node can be inserted as a leaf node or an internal
node by sub-dividing an existing edge. For deletion, a leaf node can be
deleted, or an internal node can be merged with its single child. We
propose an algorithm that maintains a set of shortcut edges in O(logn)
time for an insertion or deletion.

1 Introduction

The problem of adding a set of shortcut edges S to a tree T (V,E) to reduce
the hop-diameter of the resulting graph G(V,E ∪ S) has been studied for many
years [17, 1, 5, 4, 15, 12]. We call a simple path P from node u to v in G
straight if the sequence of nodes in P is a sub-sequence of the unique path
from u to v in T . The hop-diameter of the graph is the maximum number
of edges in the shortest straight path between any two nodes in the graph.
Given a rooted tree with n nodes, the hop-diameter of the tree can be as large
as Θ(n). In applications like index-based search or broadcast in tree-networks,
the hop-diameter (or the height) of the tree is crucial to the performance. To
improve the efficiency, researchers have been analysing how to add shortcut edges
between ancestor and descendant such that the hop-diameter of the resulting
graph is small (i.e., log n). Note that the hop-diameter can be easily reduced to
O(1) by adding a shortcut edge between each pair of ancestor and descendant
in the tree. However, the resulting graph has maximum degree Ω(n). Hence
another objective on shortcutting a tree is the degree increment on each node
u ∈ V , which is the number of edges in S incident to u. We refer to the problem
of shortcutting a tree as the tree-shortcut problem, which has application to
spanners [7, 11].

A natural extension of the tree-shortcut problem is to support operations
on the tree [10]. In the dynamic setting, the tree structure will be changed in
each iteration (by one operation) and we need to maintain the set of shortcut
edges such that the hop-diameter and the degree increment on each node are
still bounded. We refer to the dynamic version of the tree-shortcut problem

as the dynamic-tree-shortcut problem. We consider in this paper the dynamic-
tree-shortcut problem that supports two kinds of operations: node insertion and
deletion. The insertion operation inserts a node to the tree as a leaf node or as an
internal node by sub-dividing an existing edge. The deletion operation deletes a
leaf node (together with the incident edge) or an internal node that has a single
child (the internal node is merged with its child after the deletion).

1.1 Related works

Yao [17] studied a special version of tree-shortcut problem that has applica-
tion to range query, in which the given tree is a single chain with n nodes. It
is shown in [17] that we can add Θ(n) shortcut edges to guarantee O(α(n))
hop-diameter, where α(n) is the inverse Ackermann function introduced by Tar-
jan [13]. Note that the maximum degree increment on each node in their con-

struction isΩ(n
1

α(n)). Their hop-diameter is proved to be asymptotically optimal,
if the total number of shortcut edges is Θ(n). Their result was later generalized
to arbitrary trees by Chazelle [5] and Thorup [15] such that Θ(n) shortcut edges

are added to a tree with n nodes to obtain O(α(n)) hop-diameter and Ω(n
1

α(n))
degree increment. Conjecture on a generalized version of the tree-shortcut prob-
lem on directed graphs were also made [14], but it was later disproved [8, 9].
Solomon and Elkin [12] considered the trade-off between degree increment and
hop-diameter of the tree-shortcut problem, and proposed an algorithm that guar-
antees O(k) degree increment on each node and O(logk n+ α(k)) hop-diameter
by adding O(n) shortcut edges to the tree, where k is any integer less than
n. Note that [12] obtained, for the first time, constant degree increment and
O(log n) hop-diameter for the tree-shortcut problem. However, operations such
as node insertion and deletion are not supported by their data structure.

As a parallel line of research, the dynamic-tree-shortcut problem is also ex-
tensively studied. Sleator and Tarjan [10] derived a dynamic data structure that
can be used to shortcut a tree such that the degree increment on each node and
the hop-diameter are both bounded by O(log n). Moreover, they showed that
the data structure can be maintained in O(log n) time against operations such
as cutting a tree into two by removing one edge, or linking two trees by adding
an edge. Note that node insertion and deletion are special cases of the above
operations and hence are also supported by [10]. A centroid decomposition of
the tree and a biased search tree [3] on each centroid path were maintained
in [10]. We adopt similar ideas on constructing shortcut edges for the dynamic-
tree-shortcut problem and improve their result by reducing the degree increment
to a constant.

1.2 Our Contribution

Given a rooted tree with n nodes, we construct in this paper a dynamic data
structure for shortcut edges that guarantees O(1) degree increment on each node
and O(log n) hop-diameter. Moreover, we show that our data structure can be

2

maintained against node insertions and deletions in O(log n) time by adding
or deleting O(log n) shortcut edges after each operation. We summarize and
compare some related results as follows.

Degree-increment Hop-diameter Update time for node insertion/deletion

[5, 15] Ω(n1/α(n)) O(α(n)) Not supported
[12] O(k) O(logk n+ α(k)) Not supported
[10] O(logn) O(logn) O(logn)

This paper O(1) O(logn) O(logn)

In the table, n is the number of nodes in the tree (before node insertion/deletion), k
is any integer less than n and α(n) is the inverse Ackermann function of n.

2 Preliminaries

Given a rooted tree T (V,E), the distance d(u, v) between two nodes u, v ∈ V is
the number of edges in the unique path from u to v in the tree. For each internal
node u ∈ V , let Child(u) be the set of children of u in the tree. We use [n] to
denote {1, 2, . . . , n} for any positive integer n and log n to denote log2 n.

Definition 1 (Operation). There are two kinds of operations on the tree.
– Insertion. Operation (x, insertion) inserts a new node x to the tree T (V,E).

The new node x can be inserted as a child of an existing node or an internal
node that subdivides an existing tree edge. Note that x indicates a position
in the new tree.

– Deletion. Operation (x, deletion) deletes an existing node x, which is either
a leaf node or an internal node with only one child, from the tree T (V,E).
If x is a leaf node, then the edge incident to x is also deleted; otherwise x is
merged with its single child. Note that x specifies a node in the original tree.

Definition 2 (Shortcut Edge). In a rooted tree, a shortcut edge is an edge
between a node and one of its descendants.

Let S be a set of shortcut edges built on T (V,E). Let G(V,E ∪ S) be the
graph obtained by adding the shortcut edges in S to the tree T (V,E). In the
dynamic setting, we always use G and T to denote the current graph and tree
(after the operations and updates).

For each edge e = (u, v) ∈ E ∪ S, let le = d(u, v) be its length. Note that
le = 1 for all e ∈ E. A path (from node u1 to node uq) is denoted by a sequence
of nodes P = (u1, u2, . . . , uq). The length of path P = (u1, u2, . . . , uq) is the sum

of lengths of the edges in the path, which is
∑q−1

i=1 l(ui,ui+1) =
∑q−1

i=1 d(ui, ui+1).
With a slight abuse of notation, we use |P | to denote the number of nodes in P
and u ∈ P to denote that u ∈ V is in the path.

Definition 3 (Straight Path). A path P = (u1, u2, . . . , uq) is straight iff its
length equals the distance d(u1, uq) between u1 and uq.

3

Definition 4 (Hop-distance, Hop-diameter, Degree). The hop-distance
hG(u, v) between two nodes u, v ∈ V in G is the minimum number of edges in a
straight path from u to v. The hop-diameter ∆G = maxu,v∈V {hG(u, v)} of G is
the maximum hop-distance between any two nodes. Let degS(u) be the number of
shortcut edges incident to u ∈ V . We call degS(u) the degree of u. The maximum
degree in G is denoted by degS := maxu∈V {degS(u)}.

Theorem 1. A set of shortcut edges S for a rooted tree T (V,E) of n nodes can
be found such that graph G(V,E ∪ S) ensures ∆G = O(log n) and degS = O(1).
For each operation on T , shortcut edges S can be maintained in O(log n) time,
where n is the number of nodes before the operation.

We prove Theorem 1 in the rest of this paper by providing a data structure in
Section 3, and an algorithm in Section 4 to maintain the data structure against
operations. The following definitions are important for the construction and the
update algorithm. Let Tu be the sub-tree rooted at node u. We denote by |Tu|
the number of nodes in Tu.

Definition 5 (Heavy Child Mapping). For any internal node u, a child x of
u is heavy iff 4|Tx| ≥ maxy∈Child(u){|Ty|}. A mapping f that maps each internal
node u to one of its children is called a heavy child mapping iff f(u) is a heavy
child of u for all internal node u ∈ V .

Note that the heavy child mapping may be non-unique. For each internal
node u we set f(u) = arg maxx∈Child(u){|Tx|} when the tree T (V,E) is given at
the beginning. We may change the mapping f in the update algorithm. However,
we always maintain f as a heavy child mapping after each update. Based on the
heavy child mapping f(u), let ŵu = |Tu| − |Tf(u)| for each internal node u and
ŵu = 1 for each leaf node u.

Definition 6 (Proper Weighting). A weighting function w that assigns an
integer weight wu to each node u ∈ V is a proper weighting iff wu ∈ [ŵu4 , 4ŵu].

Note that a proper weighting is based on a heavy child mapping. The proper
weighting on all nodes is also not unique. We set wu = ŵu for each node u ∈ V
when the tree T (V,E) is given at the beginning. We may change the weights of
nodes in the update algorithm. However, we always maintain the proper weight-
ing w after each update. Given a path P = (u1, u2, . . . , uq) and a proper weight-
ing w, let w(P) =

∑q
i=1 wui . Unless otherwise specified, we assume that a heavy

child mapping f and a proper weighting w are maintained throughout this paper.

3 The Structure of Shortcut Edges

To build shortcut edges on the tree, we first break the tree into centroid paths
and then build shortcut edges within each centroid path. We further break a
centroid path into buckets, each of which contains O(log n) consecutive nodes.
We build Static-Path-Shortcut (Section 3.1) on each bucket and Dynamic-Path-
Shortcut (Section 3.2) between buckets using biased-skip-list. Due to page limit,
missing proofs are provided in Appendix A.

4

Centroid Paths. For each internal node u ∈ V , we call (u, f(u)) a joint. Let
Ef = {(u, f(u))|u is an internal node in V } be the set of all joints. We call the
edges in E\Ef links. Given a rooted tree T (V,E) and a heavy child mapping
f , we partition the tree into paths P1, P2, . . . , Pr by removing all links. We call
each of those paths a centroid path, and the set of centroid paths the Tree-
Decomposition of T . The set of centroid paths can be induced by Tf (V,Ef). For
all i ∈ [r], we have Pi = (x, f(x), f(f(x)), . . .) for some x ∈ V . We call x the
top-node of Pi.

Claim 1. The nodes in the path P from any node u ∈ V to the root of the tree
are contained in at most O(log n) centroid paths.

Proof. Note that P consists of joints and links. For each link (x, y) in P such
that x ∈ Child(y), we have x 6= f(y). By definition of heavy child mapping f , we
have |Ty| ≥ 5

4 |Tx|, which means that the number of links in P is O(log n). Since
all consecutive joints in P are contained in the same centroid path, the nodes in
P are contained in at most O(log n) centroid paths.

3.1 Static Path Shortcut

In this section, we consider how to add shortcut edges to a path. Given P and w,
the Static-Path-Shortcut defined as follows is a set of shortcut edges and must
be unique. We can run Alg. 1 as SPS(P, 1, q, t) to construct it.

Definition 7 (Static-Path-Shortcut). Given a path P = (u1, u2, . . . , uq) and
a proper weighting w, let tk =

∑
i∈[k] wui for all k ∈ [q] and t0 = 0. If q ≤ 2,

then the Static-Path-Shortcut of P is an empty set; otherwise the Static-Path-
Shortcut of P contains the edge (u1, um), where tm−1 <

tq
2 ≤ tm, and the edges

in the Static-Path-Shortcuts of sub-paths (u2, . . . , um−1) and (um+1, . . . , uq). A
sub-path (ui, . . . , uj) is empty if j < i.

Lemma 1. Given a path P = (u1, u2, . . . , uq) and proper weighting w, its Static-
Path-Shortcut S can be constructed in O(q) time such that degS = O(1) and

hG(u1, ui) = O(log w(P)
wui

) for i ∈ [q], where we consider P as a tree rooted at u1.

Algorithm 1 SPS(P, i, j, t):

Input: Path P = (u1, u2, . . . , uq), positions 1 ≤ i < j ≤ q and cumulative weights t.
1: if i+ 1 < j then
2: τ ← tj+ti−1

2
;

3: find integer l ≥ 0 such that ti+2l−1 ≤ τ ≤ ti+2l+1−1 or tj−2l+1+1 ≤ τ ≤ tj−2l+1.
4: find m such that tm−1 < τ ≤ tm in the above range using binary search.
5: return {(ui, um)} ∪ SPS(P, i+ 1,m− 1, t) ∪ SPS(P,m+ 1, j, t)

3.2 Dynamic Path Shortcut

Definition 8 (Path-Decomposition). Given a path P = (u1, u2, . . . , uq), a
Path-Decomposition of P is a sequence of buckets B1, B2, . . . , Bk such that

5

Bi = (ubi−1+1, ubi−1+2, . . . , ubi) for all i ∈ [k], where 0 = b0 < b1 < b2 < . . . <
bk = q. The number of nodes in each bucket Bi, denoted by |Bi| = bi − bi−1,
satisfies 2 log(4n) ≤ |Bi| ≤ 10 log(4n). For the case when |P | < 2 log(4n), we set
k = 1 and the bucket size requirement is removed.

Note that the Path-Decomposition of a path P may be non-unique. We
ensure 4 log(4n) ≤ |Bi| ≤ 8 log(4n) when the tree is given for the first time
but only maintain 2 log(4n) ≤ |Bi| ≤ 10 log(4n) in the update algorithms. If
|P | ≤ 8 log(4n), we use one bucket to contain all nodes. We consider a bucket
as a sub-path of the path P . We use u ∈ Bi to denote that u is in bucket Bi.
Given a proper weighting w, let w(Bk) = 1 and w(Bi) =

∑
u∈Bi+1

wu be the

weight of Bi, for i ∈ [k − 1]. Note that by definition, the weight of a bucket is
the total weight of nodes in the next bucket. The reason behind this definition
will be clear in the proof of Lemma 2.

Definition 9 (Biased-Skip-List [2]). Given a sequence of buckets B1, B2 . . . , Bk

and a proper weighting w, a biased-skip-list h assigns an integer height hi to
each bucket Bi such that (1) blogw(Bi)c ≤ hi ≤ log(4n) for all i ∈ [k]; (2)
h1 = hk = hmax = maxi∈[k]{hi}.

Definition 10 (Successor Pointer). Given a biased-skip-list h, for each height
h ≤ hmax, buckets of height at least h are kept in sorted order in a doubly linked
list called h-list. The successor pointer si,h points to the successor of Bi in h-list.

Recall the following algorithms [2] of direct search and finger search.

Algorithm 2 Direct Search(h, s, x):

Input: biased-skip-list h, successor pointers s and target bucket Bx.
1: i← 1; j ← hmax;
2: while i 6= x do
3: if si,j ≤ x then
4: i← si,j ;
5: else if i < x then
6: j ← j − 1;

Algorithm 3 Finger Search(h, s, x, y):

Input: biased-skip-list h, successor pointers s, start bucket Bx and target bucket By.
1: i← x; j ← hx;
2: while i 6= y do
3: if j < hi AND si,j+1 ≤ y then . Up phase.
4: i← si,j+1; j ← j + 1;
5: else if si,j ≤ y then
6: i← si,j ;
7: else if i < y then . Down phase.
8: j ← j − 1;

6

Fact 1 ([2]). Given a biased-skip-list, the time complexity for direct search of

bucket Bx is O(log w(P)
w(Bx)

) and the time complexity for finger search is O(logw(P)).

The time complexity to maintain the biased-skip-list(s) is O(logW) for the fol-
lowing operations, where W = max{Wa,Wb}, Wa and Wb are the total weights
of buckets before and after the operation, respectively: (1) adding, deleting or
re-weighting one bucket. (2) splitting a biased-skip-list into two. (3) merging two
biased-skip-lists into one.

Definition 11 (Dynamic-Path-Shortcut). Given a Path-Decomposition
B1, B2, . . . , Bk of path P = (u1, u2, . . . , uq) and a biased-skip-list h on the buck-
ets, the Dynamic-Path-Shortcut is a set of shortcut edges that contains
– edges in the Static-Path-Shortcut of each bucket Bi,
– (ubi−1+1, ubi−hi+1) and (ubi−hi+1, ubi) for all i ∈ [k],
– (ubi−t+1, ubj−t+1) and (ubi−t+2, ubj−t+1) for all i, j, t such that 2 ≤ t ≤ hi

and Bj = si,t,
– (ubi , ubi+1

) for all i ∈ [k − 1].

Lemma 2. Given a path P with proper weighting w, its Dynamic-Path-Shortcut

S guarantees degS = O(1), hG(u1, ui) = O(log w(P)
wui

) and hG(ui, uj) = O(log(4n))

for all ui, uj ∈ P .

Lemma 3. To maintain the Dynamic-Path-Shortcut(s) of path P , the time com-
plexity for the update algorithms is O(log(4n)) for the following operations.
– Adding, removing or re-weighting (while maintaining a proper weighting) a

node u ∈ P .
– Splitting the path P into two paths by deleting one edge in P .
– Concatenate a path P ′, with its Dynamic-Path-Shortcut, to the end of P .

3.3 Dynamic Tree Shortcut

Definition 12 (Dynamic-Tree-Shortcut). Given a rooted tree T (V,E), a
heavy child mapping f and a proper weighting w, the Dynamic-Path-Shortcut
of T contains all edges in the Dynamic-Path-Shortcut of each centroid path Pi

in the Tree-Decomposition P1, P2, . . . , Pr of T .

Lemma 4. Given a rooted tree T of n nodes, the Dynamic-Path-Shortcut S
guarantees degS = O(1) and hG(u, v) = O(log n) for each ancestor-descendant
pair (u, v).

Proof. First observe that degS = O(1) by Lemma 2 and the disjunction of
centroid paths.

Let P be the tree path from node v to its ancestor u, which is a sub-path
of the tree path from v to the root. By Claim 1, nodes in P are contained in
k = O(log n) centroid paths. Let P ′1, P

′
2, . . . , P

′
k be those centroid paths such

that u ∈ P ′1, v ∈ P ′k and the parent of the top-node of P ′i+1 is contained in P ′i ,
for all i ∈ [k − 1].

7

Let xi be the top-node of P ′i , for all i ∈ [k]. For all i ∈ [k − 1], let yi ∈ P ′i
be the parent of xi+1. Let yk = v. Hence P follows v = yk (xk, yk−1)
(xk−1, yk−2) . . . (x2, y1) u. By definition of proper weighting, for all
1 < i ≤ k we have

w(P ′i) ≤ 4|Txi | ≤ 4(|Tyi−1 | − |Tf(yi−1)|) = 4ŵyi−1 ≤ 16wyi−1 .

Instead of following tree path P , by Lemma 3, there exists a constant c such
that we can use the Dynamic-Path-Shortcut of each centroid path to reach xi
from yi by a straight path of length c log

w(P ′i)
wyi

for all 1 < i ≤ k, and reach u

from y1 by a straight path of length O(log n).
Hence the hop-distance between v and u using Dynamic-Path-Shortcut is

hG(u, v) ≤ O(log n) +

k∑
i=2

(c log
w(P ′i)

wyi

+ 1) ≤ O(log n) + k + c

k∑
i=2

(log
16wyi−1

wyi

)

≤ O(log n) + (4c+ 1)k + c log
wy1

wv
= O(log n).

4 Update Algorithm for Operations

We have introduced how to build shortcut edges on a given tree such that the
degree increment and the diameter are bounded after the construction. In this
section, we will describe how to update the Dynamic-Tree-Shortcut after each
operation (x, insertion/deletion) by giving update algorithms. The real challenge
for maintaining the Dynamic-Tree-Shortcut is that the heavy child mapping f
and proper weighting w, if not updated accordingly, may not hold due to the
change of the number of nodes. Throughout this section, we assume the current
number of nodes n in the tree is large enough.

By Definition 12, as long as the heavy child mapping f , the proper weight-
ing w and the Dynamic-Path-Shortcut of each centroid path are maintained,
the Dynamic-Tree-Shortcut is maintained as Lemma 4. For the maintainance of
Dynamic-Path-Shortcut, the most crucial part is to maintain the buckets. We
define three statuses of an object: intact, safe and risky, where an object is a
bucket or a node or a joint. We call an object maintained iff it is in one of
those three statuses. Note that the status of an object may change after each
operation.

intact safe risky

Bucket B |B|
log(4n)

∈ [4, 8] |B|
log(4n)

∈ [3, 4) ∪ (8, 9] |B|
log(4n)

∈ [2, 3) ∪ (9, 10]

Node u wu
ŵu

= 1 wu
ŵu
∈ [1

2
, 1) ∪ (1, 2] wu

ŵu
∈ [1

4
, 1
2
) ∪ (2, 4]

Joint (u, f(u))
|Tf(u)|

maxv∈Child(u) |Tv|
= 1

|Tf(u)|
maxv∈Child(u) |Tv|

∈ [1
2
, 1)

|Tf(u)|
maxv∈Child(u) |Tv|

∈ [1
4
, 1
2
)

For the case when a centroid path P is of size |P | ≤ 10 log(4n), since one
bucket B is sufficient to contain the whole path, we call the bucket B intact if
|B| ≤ 8 log(4n); safe if 8 log(4n) < |B| ≤ 9 log(4n) and risky if 9 log(4n) < |B| ≤

8

10 log(4n). By the above definitions, at the beginning when the tree is given,
the Dynamic-Tree-Shortcut we construct in Section 3 ensures that all buckets,
joints and nodes are intact.

Due to page limit, the update algorithms for the reconstruction of risky
buckets, risky joints and risky nodes are deferred to Appendix C. All those
algorithms rebuild a risky object and turn it intact.

We give the following algorithm to update the Dynamic-Tree-Shortcut for
each operation (x, insertion/deletion). Given an operation (x, insertion/deletion),
we call a joint (u, f(u)) touched if u is an ancestor of x; a node u touched if u
is in the path P from x to the root and f(u) /∈ P . Let k1 = 18 and k2 = 36 be
constant parameters.

Algorithm 4 Update(x, insertion/deletion)

1: insert or delete a node at position x
2: update the Dynamic-Path-Shortcut of the centroid path containing x . Lemma 3
3: n← n+ 1 if x is inserted; n← n− 1 if x is deleted
4: rebuild an arbitrary risky bucket (if exist)
5: rebuild k1 touched risky joints that are closest to x (if exist)
6: rebuild k2 touched risky nodes that are closest to x (if exist)

Lemma 5. Given a Dynamic-Tree-Shortcut of a rooted tree such that all buck-
ets, joints and nodes are intact, Alg. 4 keeps all buckets, joints and nodes main-
tained for any sequence of operations.

We prove Lemma 5 by analysing the buckets, joints and nodes one by one as
follows. The analysis of maintaining nodes is in Appendix B.

4.1 Maintaining the Buckets

Lemma 6. Alg. 4 keeps all buckets maintained for any sequence of operations,
if initially all buckets are intact.

Proof. First we show that it takes more than n
2 operations to turn a bucket from

intact to risky, or from safe to not-maintained, where n is number of nodes in the
tree before those operations. Notice that if the size of a bucket is changed after
operation (x, insertion/deletion), then it must be in the centroid path containing
x. By Alg. 4 line 2 and Lemma 3, the bucket will be reconstructed and become
intact. Hence the only case a bucket B changes from intact to risky is due to the
change of the number of nodes in the tree, while the size of the bucket remains
unchanged. Let n′ be the number of nodes in the tree when bucket B becomes
risky. Then we have either 4 log(4n) ≤ |B| < 3 log(4n′) or 9 log(4n′) < |B| ≤
8 log(4n). In the first case we have n′−n > n4/3−n = n(n1/3− 1) > n > n

2 and

in the second case we have n − n′ > n − n8/9 = n(1 − n−1/9) > n
2 . Since n is

changed by 1 after each operation, the number of operations needed to change
a bucket from intact to risky is more than n

2 . Similar argument can be applied
to show that the number of operations needed to change a bucket from safe to
not-maintained is also more than n

2 .

9

Assume the contrary of Lemma 6 and let bucket B be the first bucket that
is not maintained. Consider the last moment t when B is safe and let n∗ be
the number of nodes in the tree at moment t. Since each safe or risky bucket
at moment t must be of size at least 2 log(4n∗), the number of safe or risky
buckets is at most n∗

2 log(4n∗) . Consider moment t+ n∗

2 , after n∗

2 operations. Note

that at this moment, all intact buckets at moment t and buckets created after
moment t must not be risky. Moreover, bucket B must be risky at this moment,
by the above analysis. However, since B is risky between moment t and t+ n∗

2 , a

risky bucket other than B must be rebuilt after each of the past n∗

2 operations,

which is a contradiction since there are at most n∗

2 log(4n∗) risky buckets between

moment t and moment t+ n∗

2 .

4.2 Maintaining the Joints

Note that the status of a joint (u, f(u)) will not change if the sizes of all sub-
trees of u remain unchanged. Hence we only need to maintain the joints that are
touched, after each operation. For each joint (u, f(u)), between its two consecu-
tive rebuilds, we call the last moment before (u, f(u)) is changed from intact to
safe the marginal moment of (u, f(u)).

Definition 13 (Class). We put joints into classes Ci, i ∈ [log n], right after
their marginal moments. A joint (u, f(u)) is put into Ci iff |Tf(u)| ∈ [2i, 2i+1). A
joint (u, f(u)) ∈ Ci is removed from Ci if it is touched by 2i−1 operations after
its marginal moment.

We show that joints in classes are either safe or intact. Since risky joints may
be rebuilt, each joint can be put into and removed from classes multiple times.

Lemma 7. For all i ∈ [log n], each joint (u, f(u)) ∈ Ci is either safe or intact.

Proof. It suffices to show that (u, f(u)) ∈ Ci will become risky only after be-
ing touched by more than 2i−1 operations. Consider the marginal moment of
(u, f(u)). Since (u, f(u)) is intact at this moment, we have |Tf(u)| ≥ |Tx| for all
x ∈ Child(u). Let t = |Tf(u)| ∈ [2i, 2i+1) at this marginal moment.

Now consider the time when (u, f(u)) becomes risky. Let t′ = |Tf(u)| at
this moment. Since (u, f(u)) is risky, there exists y ∈ Child(u) such that y 6=
f(u) and |Ty| > 2t′. Note that at the marginal moment of (u, f(u)), we have
|Ty| ≤ t, as argued above. Since only one node is inserted or deleted in each
operation, the number of operations between the above two moments, is more
than |t− t′|+ |t− 2t′| = t(|1− t′

t |+ |1− 2 t′

t |) ≥
t
2 ≥ 2i−1.

Lemma 8. Each operation touches at most 4 joints in each class.

Proof. Fix one operation and one class Ci. Consider any joint (u, f(u)) ∈ Ci.
Similar to the proof of Lemma 7, let t = |Tf(u)| ∈ [2i, 2i+1) at the marginal
moment of (u, f(u)). Note that at the marginal moment, u has another child
v 6= f(u) such that |Tv| = t, since (u, f(u)) becomes safe after the next operation.

10

Since (u, f(u)) can only be touched by 2i−1 ≤ t
2 operations, at any moment when

(u, f(u)) ∈ Ci we have maxy∈Child(u){|Ty|} ≤ 2 min{|Tf(u)|, |Tv|}, as argued in
Lemma 7. Hence for all joint (u, f(u)) ∈ Ci, we have maxy∈Child(u){|Ty|} ≤
2
3 |Tu|. Let (x1, f(x1)), (x2, f(x2)), . . . , (xl, f(xl)) be all joints in Ci touched by
this operation such that xj+1 is a descendant of xj for all j ∈ [l − 1], we have

2i−2i−1 ≤ |Tf(xl)| ≤
2

3
|Txl | ≤ (

2

3
)l−1|Tx2 | ≤ (

2

3
)l−1(2i+1+2i−1) = 5(

2

3
)l−12i−1,

which implies that l ≤ 1 +
⌊

log 5
log 3

2

⌋
= 4.

Lemma 9. Alg. 4 keeps all joints maintained for any sequence of operations, if
initially all joints are intact.

Proof. Assume the contrary and let (u, f(u)) be the first joint that is not main-
tained such that all other joints in Tu are maintained. Consider the last moment t
when (u, f(u)) is safe and the moment t′ when (u, f(u)) becomes not maintained.
Let r = |Tf(u)| at moment t and r′ = |Tf(u)| at moment t′. Let v ∈ Child(u) such
that |Tv| > 4r′ at moment t′. Note that |Tv| ≤ 2r at moment t since (u, f(u)) is
safe at moment t. Let m be the number of operations that touch (f(u), f(f(u)))
or (v, f(v)) between moment t and t′. Similar to the proof of Lemma 7, we have
m ≥ |r − r′|+ |2r − 4r′| ≥ r

2 .
Now consider all joints in Tf(u) and Tv at moment t. Note that there are at

most 3r joints. We count the number of reconstructions of risky joints between
moment t and t′. A risky joint may become risky again after being rebuilt and
hence a joint may be counted multiple times. Note that the classes do not contain
the touched joints (u, f(u)) such that |Tf(u)| = 1. However, at most three such
joints are touched by each operation. The total number of reconstructions of
risky joints between moment t and t′ can be upper bounded by 3r + 3m+the
number of joints that are removed from the node-classes, which by Lemma 8, is
3r + 3m+

∑
i∈[logn]

4m
2i−1 ≤ 3r + 3m+ 8m ≤ 17m.

Since by assumption (u, f(u)) is not maintained at moment t′, by Alg. 4
line 5, k1 = 18 risky joints in Tf(u) or Tv are rebuilt after each of those m
operations, which implies that k1m = 18m ≤ 17m and is a contradiction.

4.3 Time Complexity Analysis

Lemma 10. The time complexity of Algorithm 4 is O(log n).

Proof. As argued in Lemma 3, updating the Dynamic-Path-Shortcut after in-
serting or deleting one node can be done in O(log n) time. As attached in Ap-
pendix C, rebuilding a risky bucket/joint/node can be done in O(log n) time.
Hence we only need to find the risky bucket/joints/nodes in O(log n) time.

If we use a max-heap to store the sizes of all buckets and a min-heap to store
the sizes of the buckets that contain only a fraction of some centroid path, then
it takes O(log n) time to find the bucket with maximum size and the bucket with

11

minimum size such that does not contain a whole centroid path. Note that if
there exist any risky buckets, then one of those two buckets must be risky. We
prove the following fact in Appendix D.

Claim 2. It takes O(log n) time to find the k1 touched risky joints that are
closest to x after each operation (x, insertion/deletion).

As proved in Lemma 1, at most O(log n) nodes can be touched by each
operation and hence O(log n) time suffices to update their weights and to identify
the risky nodes.

References

[1] Noga Alon and Baruch Schieber. Optimal preprocessing for answering on-line
product queries. Technical report, 1987.

[2] Amitabha Bagchi, Adam L. Buchsbaum, and Michael T. Goodrich. Biased skip
lists. Algorithmica, 42(1):31–48, 2005.

[3] Samuel W Bent, Daniel D Sleator, and Robert E Tarjan. Biased search trees.
SIAM Journal on Computing, 14(3):545–568, 1985.

[4] Hans L. Bodlaender, Gerard Tel, and Nicola Santoro. Trade-offs in non-reversing
diameter. Nord. J. Comput., 1(1):111–134, 1994.

[5] Bernard Chazelle. Computing on a free tree via complexity-preserving mappings.
Algorithmica, 2:337–361, 1987.

[6] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Cheong
Schwarzkopf. Computational geometry: Algorithms and applications. In Com-
putational Geometry. Springer Berlin Heidelberg, 2000.

[7] Michael Elkin and Shay Solomon. Optimal euclidean spanners: really short, thin
and lanky. In STOC, pages 645–654, 2013.

[8] William Hesse. Directed graphs requiring large numbers of shortcuts. In SODA,
pages 665–669, 2003.

[9] Sofya Raskhodnikova. Transitive-closure spanners: A survey. In Property Testing,
pages 167–196, 2010.

[10] Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic
trees. J. Comput. Syst. Sci., 26(3):362–391, 1983.

[11] Shay Solomon. From hierarchical partitions to hierarchical covers: optimal fault-
tolerant spanners for doubling metrics. In STOC, pages 363–372, 2014.

[12] Shay Solomon and Michael Elkin. Balancing degree, diameter and weight in
euclidean spanners. In ESA (1), pages 48–59, 2010.

[13] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J.
ACM, 22(2):215–225, 1975.

[14] Mikkel Thorup. On shortcutting digraphs. In Proceedings of the 18th International
Workshop on Graph-Theoretic Concepts in Computer Science, WG ’92, pages 205–
211, London, UK, UK, 1993. Springer-Verlag.

[15] Mikkel Thorup. Parallel shortcutting of rooted trees. J. Algorithms, 23(1):139–
159, 1997.

[16] Marc J. van Kreveld and Mark H. Overmars. Union-copy structures and dynamic
segment trees. J. ACM, 40(3):635–652, 1993.

[17] Andrew Chi-Chih Yao. Space-time tradeoff for answering range queries (extended
abstract). In STOC, pages 128–136, 1982.

12

A Proofs in Section 3

A.1 Static Path Shortcut

Proof of Lemma 1: First, we can calculate tk for all k ∈ [q] in O(q) time. For
ease of notation, we set tk = 0 for all k ≤ 0 and tk = tq for all k ≥ q + 1. Then
we run Alg. 1 as SPS(P, 1, q, t), which finds the position m such that divide the
given range evenly in terms of weights, and do the same recursively on the two
sub-paths.

By checking integer l = 0, 1, 2, . . . for the two ranges [1+2l−1, 1+2l+1−1] and
[q−2l+1+1, q−2l+1] simultaneously, the smallest l required as in line 3 of Alg. 1
can be found in O(min{logm, log(q−m)}) time. Given l, the range containing m
is of width 2l and hence binary search takes O(l) = O(min{logm, log(q −m)})
time to locate the position m. Let g(x) be the time complexity of Alg. 1 when
j − i + 1 = x. Note that g(x) = 0 for all x ≤ 2. Then we have g(q) = g(m −
2) + g(q − m) + O(min{logm, log(q − m)}), which by mathematical induction
implies that g(q) ≤ c(q − log q) = O(q), for some constant c. Thus the Static-
Path-Shortcut S of path P can be constructed in O(q) time.

It is easy to observe that there is at most one shortcut edge added to each
node. Hence we have degS = O(1). Next we analyze the hop-distance hG(u1, ui)
between u1 and ui.

For any 1 ≤ a ≤ b ≤ q, we call [a, b] = {a, a+1, . . . , b} a range if SPS(P, a, b, t)
is called during the execution of SPS(P, 1, q, t). By construction of the shortcut
edges, given any two rangesR1 andR2 such thatR1∩R2 6= ∅, we haveR1 ⊆ R2 or
R2 ⊆ R1. Suppose i ∈ [a2, b2] ⊆ [a1, b1], then we have

∑b2
j=a2

wuj ≤ 1
2

∑b1
j=a1

wuj ,
by the definition of Static-Path-Shortcut. Hence we know that the number of

ranges that contain i is at most log w(P)
wui

, since the total weight doubles in each

outer range. Let [a1, b1], [a2, b2], . . . , [ak, bk] be the whole sequence of ranges that
contain i: 1 = a1 < a2 < . . . < ak ≤ i ≤ bk ≤ . . . ≤ b2 ≤ b1 = q. Note that for
each 1 ≤ j < k there exists a straight path from uaj to uaj+1 of size at most 2.
Since [ak, bk] is the minimum width range that contains i, then either ak = bk
or we have one of the following: (1) i = ak; (2) ui is connected to uak by a
shortcut edge. Hence we have a straight path from u1 = ua1

to ui of size at most

2 log w(P)
wui

+ 1 = O(log w(P)
wui

), which implies that hG(u1, ui) = O(log w(P)
wui

).

A.2 Dynamic Path Shortcut

Proof of Lemma 2: It is easy to observe by construction and by Lemma 1 that
there is at most a constant number of shortcut edges added to each node. Hence
we have degS = O(1).

By Definition 11, we can construct a straight path from u1 to each ui as fol-

lows. If ui ∈ B1, then by Lemma 1, we already have hG(u1, ui) = O(log w(P)
wui

) by

following the Static-Path-Shortcut. Otherwise, let Bx+1 be the bucket containing
ui. Starting from u1, we can reach ub1−h1+1 by one shortcut edge. Since there is
a shortcut edge between any two consecutive buckets in each t-list in the biased-
skip-list, we can reach ubx−hx+1 from ub1−h1+1 following Direct Search(h, s, x)

13

using O(log w(P)
w(Bx)

) edges, by Fact 1. Then via shortcut edge (ubx−hx+1, ubx) and

path edge (ubx , ubx+1), we can reach the first node in bucket Bx+1. By Lemma 1,

we can reach ui ∈ Bx+1 using O(log

∑
u∈Bx+1

wu

wui
) = O(log w(Bx)

wui
) edges. Hence

we have hG(u1, ui) = O(log w(P)
w(Bx)

) +O(log w(Bx)
wui

) +O(1) = O(log w(P)
wui

).

Similar to the above analysis, we can use finger search to construct a straight
path from ui to uj . W.l.o.g, assume that i < j. Note that hG(ui, uj) = O(log(4n))
is trivial if ui and uj are contained in a constant number of consecutive buckets.
Otherwise let ui ∈ Bx−1 and uj ∈ By+1. Note that we can reach ubx−hx+1 from
ui and reach uj from uby−hy+l via O(log(4n)) edges, for any l ∈ [hy]. Hence fol-
lowing Finger Search(h, s, x, y), we can reach uby−hy+l from ubx−hx+1, for some
l ∈ [hy] using O(logw(P)) edges by Fact 1, which implies that hG(ui, uj) =
O(log(4n)).

Proof of Lemma 3: During the following analysis, as long as the size of a bucket
is changed, we apply the following update to the bucket. If the bucket is of size
less than 4 log(4n), then it is merged with an arbitrary neighbour bucket (if
there is any) in the biased-skip-list. If the bucket is of size larger than 8 log(4n),
then it is evenly divided into two buckets. Note that we not only maintain a
proper Path-Decomposition, but further restrict the bucket size to be within
[4 log(4n), 8 log(4n)], which is stronger than definition of buckets.

If we add, remove or re-weight one node u ∈ P , then we can reconstruct
one bucket such that u is added, removed or re-weighted in the new bucket.
Note that by Fact 1, the biased-skip-list of the buckets can be maintained in
O(log(4n)) time, since only the weight of the bucket before the new bucket need
to be changed. By Definition 11 and Lemma 1, only O(log(4n)) shortcut edges
related to the new bucket need to be rebuilt. Hence, the Dynamic-Path-Shortcut
can be maintained in O(log(4n)) time.

Suppose edge (u, v) is deleted and the path is split into two paths. If u and
v are contained in two buckets, then we can directly split the biased-skip-list
into two; otherwise we divide the bucket that contains u and v into two buckets
and then split the biased-skip-list into two to separate those two buckets. Note
that the above procedure only add, delete or re-weight a constant number of
buckets while splitting the biased-skip-list. Fact 1 and Lemma 1 implies that the
Dynamic-Path-Shortcut can be maintained in O(log(4n)) time.

Similar to the above analysis, to concatenate a path P ′ to the end of path P ,
it suffices to add, remove or re-weight a constant number of boundary buckets
while merging two biased-skip-lists into one. Hence by Fact 1, the Dynamic-
Path-Shortcut can also be maintained in O(log(4n)) time.

B Maintaining the Nodes

The analysis for maintaining the nodes is quite similar to the above analysis.
We present a brief proof in this section. The status of a node u will only be
changed when a node is inserted to or deleted from Tv for some v ∈ Child(u)

14

and v 6= f(u). For each node u, between its two consecutive rebuilds, we call the
last moment before u is changed from intact to safe the marginal moment of u.

Definition 14 (Node-Class). We put nodes into node-classes Ci, i ∈ [log n]
right after their marginal moments. Node u is put into Ci iff ŵu ∈ [2i, 2i+1).
Node u ∈ Ci is removed if u is touched by 2i−1 operations after its marginal
moment.

Lemma 11. For all i ∈ [log n], each node u ∈ Ci is either safe or intact.

Proof. Let t = ŵu at the marginal moment of u. Note that wu = t ≥ 2i at this
moment.

Consider the time when u becomes risky and let t′ = ŵu at this moment.
Then we have t = wu ≥ 2t′ or t = wu ≤ t′

2 at this moment. Hence the number
of operations that touches u before u becomes risky is at least |t − t′| ≥ t

2 ≥
2i−1.

Lemma 12. Each operation touches at most 16 nodes in each node-class.

Proof. Fix one operation and one node-class Ci. Let x1, . . . , xl be all touched
nodes in Ci such that xj+1 is a descendant of xj for all j ∈ [l− 1]. By Lemma 9,
all joints are maintained and hence |Tf(xj)| ≥ 1

4 |Txj+1
| ≥ 1

4 ŵxj+1
for all j ∈ [l−1].

Hence for all j ∈ [l − 2], ŵxj ≥ ŵxj+1 + |Tf(xj+1)| ≥ ŵxj+2
+ 1

4 ŵxj+2 = 5
4 ŵxj+2 .

Since ŵxj ∈ [2i−1, 5 · 2i−1) for all j ∈ [l], we have 5 · 2i−1 ≥ ŵx1 ≥ 5
4 ŵx3 ≥

(5
4)b

l−1
2 cŵxl ≥ (5

4)b
l−1
2 c2i−1, which implies that

⌊
l−1
2

⌋
≤
⌊

log 5
log 5

4

⌋
= 7 and l ≤

16.

Lemma 13. Alg. 4 keeps all nodes maintained for any sequence of operations,
if initially all nodes are intact.

Proof. Assume the contrary and let u be the first node that is not maintained
such that all other nodes in Tu are maintained. Consider the last moment t
when u is safe and the moment t′ when u becomes not maintained. Let r = ŵu

at moment t and r′ = ŵu at moment t′. Hence 1
2r ≤ wu ≤ 1

4r
′ or 4r′ ≤ wu ≤ 2r,

which means that the operations that touch u between moment t and t′ is m ≥
|r − r′| ≥ r

2 .

There are at most r nodes in Tu \ Tf(u) at moment t. Note that the node-
classes do not contain the touched nodes u such that ŵu = 1. However, at most
one such node is touched by each operation. The total number of reconstructions
of risky nodes between moment t and t′ can be upper bounded by r + m+the
number of nodes that are removed from the classes, which by Lemma 12, is
r + m +

∑
i∈[logn]

16m
2i−1 ≤ r + m + 32m ≤ 35m. Since by assumption u is not

maintained at moment t′, by Alg. 4 line 6, k2 = 36 risky nodes other than u
in Tu are rebuilt after each of those m operations, which implies that k2m =
36m ≤ 35m and is a contradiction.

15

C Reconstruction Algorithms

The following algorithms can be used to rebuild a risky object and turn it intact.
To assist the reconstruction, we can store and maintain ŵu for each node u ∈ V
and |Tu| for the top-node u of each centroid path. Note that by Claim 1, only
O(log n) number of those values need to be updated after each operation. By
Fact 1 and Lemma 3, the complexity of the following three update algorithms is
O(log n).

Algorithm 5 Rebuild Bucket(B,P):

Input: Bucket B in the Path-Decomposition of path P
1: if |B| < 4 log(4n) then
2: merge B with an arbitrary neighbor bucket

3: if |B| > 8 log(4n) then
4: split B evenly into two buckets

5: update related bucket weights
6: update the biased-skip-list on the buckets
7: update the dynamic-path-shortcut of P

Algorithm 6 Rebuild Node(u):

1: wu ← ŵu = |Tu| − |Tf(u)|
2: update the weight of the bucket whose weight depends on wu
3: update the biased-skip-list on the buckets
4: update the dynamic-path-shortcut of the path containing u

Algorithm 7 Rebuild Joint(u):

1: remove (u, f(u)) and split the centroid path containing u into two centroid paths
2: f(u)← arg maxv∈Child(u){|Tv|}
3: add (u, f(u)) and merge the centroid paths containing u and v = f(u)
4: Rebuild Node(u)
5: Rebuild Bucket(B) for all changed buckets B

D Proof of Claim 2

We use a modified version of dynamic segment tree [16], [6], with the slackness
of a node as key, to find risky joints in each centroid path.

Definition 15 (Dynamic-Segment-Tree). Given a centroid path P = (u1, u2, . . . , uq)
and a biased-skip-list h (with the successor pointer s) on the nodes, the dynamic-
segment-tree of P is defined as follows. The node set of the dynamic-segment-tree

16

is V = {vi,j |i = j or ∃k ≤ hmax, si,k = j + 1} ∪ {v1,q}, among which node v1,q
is the root. We use p(vi,j) to denote the parent of node vi,j ∈ V . For all non-
root node vi,j, let p(vi,j) = vk,l iff (1) [i, j] [k, l]; (2) there does not exist any
va,b ∈ V such that [i, j] [a, b] [k, l].

By properties of biased-skip-list [2], the dynamic-segment-tree we constructed
guarantees that the height of the tree is O(log n) and each internal node in V
has a constant number of children. By considering each vi,j ∈ V as an integer
interval [i, j] = {i, i+ 1, . . . , j}, we use vi,j ⊆ [k, l] to denote that [i, j] ⊆ [k, l].

Definition 16 (Slackness). The slackness S(vi,j) of node vi,j ∈ V is defined
as follows.
– If i = j, then S(vi,j) = |Tf(ui)| −

⌈
1
2 maxx∈Child(ui)\{f(ui)}{|Tx|}

⌉
if |Child(ui)| ≥ 2 and S(vi,j) =∞ otherwise.

– If i 6= j, then S(vi,j) = minx∈[i,j]{S(vx,x)}.

By definition, joint (ui, f(ui)) in P is risky iff S(vi,i) < 0. Recall that a joint
(ui, f(ui)) is touched by operation (x, insertion/deletion) if x is a descendant of
ui. If x is in Tf(ui), then we should increase or decrease S(vi,i) by 1; otherwise,
we need to recompute S(vi,i).

Definition 17 (Slackness-Difference). The slackness-difference of each vi,j ∈
V is defined as follows. Let d(vi,j) = S(vi,j) if vi,j = v1,q and d(vi,j) = S(vi,j)−
S(p(vi,j)) otherwise.

The slackness-difference d(vi,j) is attached to each node vi,j ∈ V and main-
tained throughout the sequence of operations. Although the slackness is not
stored, the following fact implies that with the help of d(vi,j), the slackness of
each node can be easily calculated.

Fact 2. For all vi,j ∈ V , let P̂ be the path from vi,j to v1,q in the dynamic-
segment-tree, then we have S(vi,j) =

∑
vk,l∈P̂ d(vk,l).

By the Fact 2, if we increase (or decrease) d(vi,j) by t, then the slackness of
each descendant of vi,j will be increased (or decreased) by t. Moreover, if d(vi,j)
is changed and vk,l is an ancestor of vi,j , then d(vk,l) and d(va,b) need to be
changed accordingly, where va,b ∈ Child(vk,l), since vk,l may have descendant
whose slackness is not changed.

Lemma 14. The dynamic-segment-trees together with the slackness-difference
on each node of all centroid paths in T (V,E) can be maintained in O(log n) time
after each operation.

Proof. Given a path P with weight attached to each node, by the construction
and the maintainance of biased-skip-list [2], it can be verified that the dynamic-
segment-tree(s) together with the slackness-difference attached to each node can
be maintained in O(log n) time for the following operations: (1) inserting, delet-
ing or re-weighting a node u ∈ P ; (2) splitting the path P into two paths by

17

deleting one edge in P ; (3) concatenate a path P ′, who has its own dynamic-
segment-tree, to the end of path P .

Notice that after each operation on the tree, the dynamic-path-shortcut will
be updated as described in Section 3 and a constant number of risky buckets,
joints and nodes will be rebuilt. Hence, the dynamic-segment-tree of each cen-
troid path can be updated accordingly as described above. Besides the above
updates, if some joints in centroid path P are touched after one operation, then
the slackness-differences of nodes in the dynamic-segment-tree of P need to be
updated, since the slackness of some nodes vi,i are changed.

Fix any centroid path P = (u1, u2, . . . , uq). Let {u1, u2, . . . , ux} be the whole
set of nodes such that for all i ∈ [x], (ui, f(ui)) is touched after one operation.
By definition of slackness, we know that (i) for all vi,j ⊆ [1, x− 1], S(vi,j) need
to be increased or decreased by 1 and the slackness-differences of the ancestors
of vi,j need to be updated accordingly; (ii) S(vx,x) need to be recalculated and
the slackness-differences of the ancestors of vx,x need to be updated accordingly.
Let y ∈ Child(x)\{f(x)} be the node touched by the same operation. We show

that update (i) and (ii) can be done in O(log w(P)
|Ty|) time.

By Fact 1, we can find the path P ∗ in the dynamic-segment-tree of P from

vx,x to v1,q in O(log w(P)
wx

) time, which means that |P ∗| = O(log w(P)
wx

). Let

Q = {vi,j |vi,j ∈ P ∗ or p(vi,j) ∈ P ∗}. Then we also have |Q| = O(log w(P)
wx

).

For update-(i), let T = {vi,j |vi,j ⊆ [1, x − 1] and p(vi,j) 6⊆ [1, x − 1]} and

T̃ = {vi,j |vi,j ∈ T or ∃vk,l ∈ T, vi,j is an ancestor of vk,l}. Then we only need to

update d(vi,j) for all vi,j ∈ T̃ , since for all vk,l ⊆ [1, x − 1], there exists exactly

one ancestor of vk,l in T . Note that T̃ ⊆ Q since for all vi,j ∈ T , all ancestors of

vi,j are contained in P ∗. Hence |T̃ | = O(log w(P)
wx

) and update-(i) can be done in

O(log w(P)
wx

) = O(log w(P)
|Ty|) time.

For update-(ii), based on the slackness-differences of all nodes in Q, we can

calculate the slackness (before the operation) of all nodes in Q in O(log w(P)
wx

)
time. To update the slackness of vx,x, we only need to find out whether |Ty| =
maxz∈Child(x)\{f(x)} |Tz|. Note that this can be done in O(log wx

|Ty|) time by main-

taining a biased-search-tree [3] on Child(x)\{f(x)}, with the tree-size as key and
weight. Given the recalculated value of S(vx,x) and all other slackness of nodes

in Q, we can update their slackness in |Q| = O(log w(P)
wx

) time. Hence update-(ii)

can be done in O(log w(P)
wx

) +O(log wx
|Ty|) = O(log w(P)

|Ty|) time.

Note that y must be the top-node of some centroid path P ′. Hence we have
|Ty| ≥ 1

4w(P ′). By using a similar argument as in Lemma 4, we know that the
total update time for all dynamic-segment-trees (with the slackness-differences)
of the centroid paths is O(log n).

Proof of Claim 2: Assume that all slackness-differences are maintained, we
show how to determine the k1 touched risky joints that are closest to node
v, after each operation (v, insertion/deletion). Since k1 is constant and we can

18

rebuild a risky joint in O(log n) time once it is found, we only need to show how
to find the risky joint that is closest to v.

By Claim 1, the touched joints are contained in O(log n) centroid paths.
By checking whether the slackness-difference of the root node of the dynamic-
segment-tree of each centroid path is negative or not, we can identify in O(log n)
time the centroid path closest to v that contains a risky joint. Let P be that
centroid path and {u1, u2, . . . , ux} be the whole set of nodes such that (ui, f(ui))
is touched. We use the same definition of T and T̃ as above, where |T̃ | =

O(log w(P)
wx

) = O(log n). As argued above, we can calculate the slackness of

each node in T̃ in O(log n) time. Then in O(log n) time, we can find out the
node vi,j in T with negative slackness that is closest to x. Starting from vi,j , we
can find out the child of vi,j with negative slackness that is closest to x in O(1)
time. By doing this recursively for O(log n) rounds, we can reach the leaf node
vk,k with negative slackness that is closest to x, which implies that (uk, f(uk))
is the risky joint that is closest to x.

Hence the risky joint that is closest to v, after each operation (v, insertion/deletion),
can be found in O(log n) time, which finishes the proof.

19

