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Abstract

We give a detailed characterization of optimal
trades under budget constraints in a prediction
market with a cost-function-based automated
market maker. We study how the budget con-
straints of individual traders affect their ability
to impact the market price. As a concrete ap-
plication of our characterization, we give suffi-
cient conditions for a property we call budget
additivity: two traders with budgets B and B′

and the same beliefs would have a combined im-
pact equal to a single trader with budget B +B′.
That way, even if a single trader cannot move
the market much, a crowd of like-minded traders
can have the same desired effect. When the
set of payoff vectors associated with outcomes,
with coordinates corresponding to securities, is
affinely independent, we obtain that a generaliza-
tion of the heavily-used logarithmic market scor-
ing rule is budget additive, but the quadratic mar-
ket scoring rule is not. Our results may be used
both descriptively, to understand if a particular
market maker is affected by budget constraints
or not, and prescriptively, as a recipe to construct
markets.

1 INTRODUCTION

A prediction market is a central clearinghouse for people
with differing opinions about the likelihood of an event—
say Hillary Clinton to win the 2016 U.S. Presidential
election—to trade monetary stakes in the outcome with one
another. At equilibrium, the price to buy a contract paying
$1 if Clinton wins reflects a consensus of sorts on the prob-
ability of the event. At that price, and given the wagers
already placed, no agent is willing to push the price further
up or down. Prediction markets have a good track record
of forecast accuracy in many domains [11, 19].

The design of combinatorial markets spanning multiple

logically-related events raises many interesting questions.
What information can be elicited—the full probability dis-
tribution, or specific properties of the distribution? What
securities can the market allow traders to buy and sell?
How can the market support and ensure a variety of trades?
For example, in addition to the likelihood of Clinton win-
ning the election, we may want to elicit information about
the distribution of her electoral votes.1 If we create one se-
curity for each possible outcome between 0 and 538, each
paying $1 iff Clinton gets exactly that many electoral votes,
the market is called complete, allowing us to elicit a full
probability distribution. Alternatively, if we create just two
securities, one paying out $x if Clinton wins x electoral
votes, and the other paying out $x2, we cannot elicit a full
distribution, but we can still elicit the mean and variance of
the number of electoral votes.

When agents are constrained in how much they can trade
only by risk aversion, prediction market prices can be in-
terpreted as a weighted average of traders’ beliefs [2, 20],
a natural reflection of the “wisdom of the crowd” with a
good empirical track record [14] and theoretical support
[2]. However, when agents are budget constrained, discon-
tinuities and idiosyncratic results can arise [7, 16] that call
into question whether the equilibrium prices can be trusted
to reflect any kind of useful aggregation.

We consider prediction markets with an automated market
maker [1, 4, 13] that maintains standing offers to trade ev-
ery security at some price. Unlike a peer-to-peer exchange,
all transactions route through the market maker. The com-
mon market makers have bounded loss and are (myopi-
cally) incentive compatible: the best (immediate) strategy
is for a trader to move the market prices of all securities
to equal his own belief. The design of such an automated
market maker boils down to choosing a convex cost func-
tion [1]. This amount of design freedom presents an oppor-
tunity to seek cost functions that satisfy additional desider-
ata such as computational tractability [1, 6].

1 A U.S. Presidential candidate receives a number of electoral
votes between 0 and 538. The candidate who receives a plurality
of electoral votes wins the election.



Most of the literature assumes either risk-neutral or risk-
averse traders with unbounded budgets. In this paper, we
consider how agents with budget constraints trade in such
markets, a practical reality in almost all prediction markets
denominated in both real and virtual currencies. Our re-
sults help with a systematic study of the market’s liquidity
parameter, or the parameter controlling the sensitivity of
prices to trading volume. Setting the liquidity is a nearly
universal practical concern and, at present, is more (black)
art than science. We adopt the notion of the “natural budget
constraint” introduced by Fortnow and Sami [8]: the agent
is allowed only those trades for which the maximum loss
for any possible outcome does not exceed the budget.

The main contribution of this paper is a rich, geometric
characterization of the impact of budget constraints. Price
vectors, outcomes and trader beliefs are embedded in the
space of the same dimension as the number of securities.
Outcome vectors enumerate security payoffs; belief vec-
tors enumerate the traders’ expectations of payoffs. We
consider, for a fixed belief, the locus of the resulting price
vectors of an optimal trade as a function of the budget. We
show that the price vector moves in the convex hull of the
belief and the set of tight outcomes, in a direction that is
perpendicular to the set of tight outcomes. We also intro-
duce the concept of budget additivity: two agents with bud-
gets B and B′ and the same beliefs have the same power to
move the prices as a single agent with the same belief and
budgetB+B′. An absence of budget additivity points to an
inefficiency in incorporating information from the traders.
We show that budget additivity is a non-trivial property by
giving examples of market makers that do not satisfy bud-
get additivity. We give a set of sufficient conditions on the
market maker and the set of securities offered which guar-
antee budget additivity. Further, for two of the most com-
monly used market makers (the quadratic and logarithmic
market scoring rules), we show sufficient conditions on the
set of securities that guarantee budget additivity.

Of greatest practical interest is the application of our re-
sults to markets consisting of several independent ques-
tions, with each question priced according to a separate
logarithmic market scoring rule. This setup constitutes a
de facto industry standard, and the companies that use (or
used) it include Inkling Markets,2 Consensus Point,3 Mi-
crosoft and Yahoo! [17]. Our Theorems 5.6 and 5.8 show
that these markets are budget additive.

Previously, Fortnow and Sami [8] considered a different
question: do budget-constrained bidders always move the
market prices in the direction of their beliefs? They showed
that the answer to this is no: there always exist market
prices, beliefs and budgets such that the direction of price
movement is not towards the belief. We give a richer char-
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acterization of how the market prices move in the presence
of budget constraints, by charting the path the prices take
with increasing budgets. The impossibility result of Fort-
now and Sami [8] can be easily derived from our character-
ization (see Appendix D).4

A designer of a prediction market has a lot of freedom but
little guidance, and our results can be used both descrip-
tively and prescriptively. As a descriptive tool, our results
enable us to analyze commonly used market makers and
understand if budget constraints hamper information aggre-
gation in these markets. As a prescriptive tool, our results
can be used to construct markets that are budget additive. In
particular, we speculate that budget additivity simplifies the
choice of the liquidity parameter in the markets, because it
allows considering trader budgets in aggregate.

Proof overview and techniques. Our analysis borrows
heavily from techniques in convex analysis and builds on
the notion of Bregman divergence. We use the special case
of Euclidean distance (corresponding to a quadratic market
scoring rule) to form our geometric intuition which we then
extend to arbitrary Bregman divergences. For the sake of
an example, consider a complete market over a finite set of
outcomes, where the market prices lie in a simplex, exactly
coinciding with the set of probability distributions over out-
comes. Every possible outcome imposes a constraint on
the set of prices to which a trader can move the market, be-
cause the trader is not allowed to exceed the budget if that
outcome occurs. The prices satisfying this constraint form
a ball with the outcome at its center. The set of feasible
prices to which the trader can move the market is therefore
the intersection of these balls (see Figure 1).

The key structural result we obtain is the chart of the price
movement. Suppose that there is an infinite sequence of
agents with infinitesimally small budgets all with the same
belief. What is the path along which the prices move from
some initial values? This is determined by the agents’ be-
lief and the set of budget constraints that are tight at any
point, corresponding to the highest risk outcomes (out-
comes with the highest potential loss). We show that the
price vector can always be written as a convex combina-
tion of these highest risk outcomes and the agents’ belief.
Further, the market prices move in a direction that is per-
pendicular to the affine space of these outcomes.

The agents’ belief partitions the simplex interior into re-
gions, where each region is the interior of the convex hull
of the agent belief and a particular subset of outcomes. For
a region that is full-dimensional, every interior point can
be uniquely written as a convex combination of the agent
belief and all except one outcome. Assume that the current
price vector lies in this region. In the anticipation of the
further development, we call this outcome profitable and
others risky. Motivated by the characterization above, we

4The full version of this paper on arXiv includes the appendix.
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Figure 1: Left: ◦ —current state, × —belief, � —optimal action for a given belief and budget. Three circles bound the
allowed final states for budget 0.1. We plot optimal actions for two different beliefs. Right: A path from the initial state to
the belief, consisting of optimal actions for increasing budgets.

move perpendicular to the risky outcomes in the direction
towards the agents’ belief. As a result, we increase the risk
of risky outcomes (equally for all outcomes), while getting
closer to the one profitable outcome (and hence increas-
ing its profit). The characterization then guarantees that the
prices along this path are indeed those chosen by traders at
increasing budgets, because the risky outcomes yield tight
constraints.

We would like the same to be true for the lower dimensional
regions as well; that is, for the set of tight constraints to
be exactly the corresponding set of outcomes defining the
convex hull. In fact, this property is sufficient to guaran-
tee budget additivity. The markets for which the tight con-
straints are exactly the minimal set of outcomes that define
the region the price lies in are budget additive. (We conjec-
ture that the converse holds as well.) The entire path is then
as follows: w.l.o.g. you start at a full-dimensional region,
move along the perpendicular until you hit the boundary of
the region and you are in a lower-dimensional region, move
along the perpendicular in this lower-dimensional region,
and so on until you reach the belief (see Figure 1). The set
of tight constraints is monotonically decreasing. We show
that such markets are characterized by a certain acute an-
gles assumption on the set of possible outcomes. Loosely
speaking, this assumption guarantees that outcomes out-
side the minimal set behave as the profitable outcome in
the above example.

Other related work. There is a rich literature on scor-
ing rules and prediction markets. Two of the most stud-
ied scoring rules are the quadratic scoring rule [3] and the
logarithmic market scoring rule [13]. We consider cost-
function-based prediction markets [4, 12], a fully general
class under reasonable assumptions [1, 5]. Their equiva-
lence with proper scoring rules has been implicitly noted
by Gneiting and Raftery [10]. Several authors have studied
relationships between utility functions and price dynamics
in prediction markets, drawing a parallel to online learning
[2, 5, 9]. Our analysis touches on the problem of setting the

market maker’s liquidity parameter [15, 17], which deter-
mines how (in)sensitive prices are to trading volume. With
budget additivity, the market designer can optimize liquid-
ity according to aggregate budgets, without worrying about
how budgets are partitioned among traders.

2 PRELIMINARIES

Securities and payoffs. Consider a probability space with
a finite set of outcomes Ω ⊆ Rn. A security is a financial
instrument whose payoff depends on the realization of an
outcome in Ω. In other words, the payoff of a security is
a random variable of the probability space. We consider
trading with n securities corresponding to n coordinates of
the outcomes ω ∈ Ω. A security can be traded before the
realization is observed with the intention that the price of a
security serves as a prediction for the expected payoff, i.e.,
the expected value of the corresponding coordinate.

Cost function, prices and utilities. An automated mar-
ket maker always offers to trade securities, for the right
price. In fact the price vector is the current prediction of
the market maker for the expectation of ω. A cost func-
tion based market maker is based on a differentiable con-
vex cost function, C : Rn → R. It is a scalar function of an
n-dimensional vector q ∈ Rn representing the number of
outstanding shares5 for our n securities. We also refer to q
as the state of the market.

The vector of instantaneous prices of the securities is sim-
ply the gradient of C at q, denoted by p(q) := ∇C(q).
The prices of securities change continuously as the secu-
rities are traded, so it is useful to consider the cost of
trading a given quantity of securities. The cost of buy-
ing δ ∈ Rn units of securities (where a negative value
corresponds to selling) is determined by the path integral∫
π
p(q̄) · dq̄ = C(q + δ) − C(q), where π is any smooth

5We allow trading fractions of a security. Negative values cor-
respond to short-selling.



curve from q to q + δ.

When the outcome ω is realized, the vector of δ units of
securities pays off an amount of δ · ω. Thus, the realized
utility of a trader whose trade δ moved the market state
from q to q′ = q + δ is

U(q′, ω; q) := (q′ − q) · ω − C(q′) + C(q) .

We make a standard assumption that the maximum achiev-
able utility, which is also the maximum loss of the market
maker, is bounded by a finite constant (in Section 4, we in-
troduce a standard approach to check this easily). LetM
be the convex hull of the payoff vectors,M := conv(Ω). It
is easy to see thatM contains exactly the vectors µ ∈ Rn
which can be realized as expected payoffs E[ω] for some
probability distribution over Ω. For a trader who believes
that E[ω] = µ, the expected utility takes form

U(q′, µ; q) := E [U(q′, ω; q)] = (q′−q)·µ−C(q′)+C(q) .

Throughout, we consider a single myopic trader who trades
as if he were the last to trade. A key property satisfied by
expected utility is path independence: for any q, q̄, q′ ∈
Rn, U(q′, µ; q̄) + U(q̄, µ; q) = U(q′, µ; q), that is, risk-
neutral traders have no incentive to split their trades. For a
risk-neutral trader, q′ ∈ Rn is an optimal action if and only
if µ = ∇C(q′) = p(q′) (this follows from the first-order
optimality conditions). In other words, the trader is incen-
tivized to move the market to the prices corresponding to
his belief as long as such prices exist. In general, there may
be multiple states yielding the same prices, so the inverse
map p−1(µ) returns a set, which can be empty if no state
yields the price vector µ.

Commonly-used cost functions include the quadratic cost,
logarithmic market-scoring rule (LMSR) and the log-
partition function. They are described in detail in Ap-
pendix A. The quadratic cost is defined by C(q) = 1

2‖q‖
2
2

and p(q) = q. Log-partition function is defined as C(q) =
ln(
∑
ω∈Ω e

q·ω). It subsumes LMSR as a special case for
the complete market with the outcomes corresponding to
vertices of the simplex. The prices under log-partition cost
correspond to the expected value of ω under the distribution
Pq(ω) = eq·ω−C(q) over Ω, i.e., p(q) = EPq [ω].

Budget constraints. Trading in prediction markets needs
an investment of capital. It is possible that an agent loses
money on the trade, in particular U(q′, ω; q) could be neg-
ative for some ω. One restriction on how an agent trades
could be that he is unable to sustain a big loss, due to a bud-
get constraint. We consider the notion of natural budget
constraint defined by Fortnow and Sami [8] which states
that the loss of the agent is at most his budget, for all ω ∈ Ω.
Given a starting market state q0 and a budget of B ≥ 0, a
trader with the belief µ ∈M then solves the problem:

max
q∈Rn

U(q, µ; q0)

s.t. U(q, ω; q0) ≥ −B ∀ω ∈ Ω .
(2.1)

For quadratic costs, each constraint corresponds to a sphere
with one of the outcomes at its center, so the feasible region
is an intersection of these spheres. We will later see that
this generalizes to an intersection of balls w.r.t. a Bregman
divergence for general costs.

In general, there may be multiple q optimizing this objec-
tive. In the following definition we introduce notation for
various solution sets we will be analyzing. The belief µ is
fixed throughout most of the discussion, so we suppress the
dependence on µ.
Definition 2.1 (Solution sets). Let Q̂(B; q0) denote the set
of solutions of Convex Program (2.1) for a fixed initial state
and budget. Let Q̂(q0) =

⋃
B≥0 Q̂(B; q0) denote the set of

solutions of (2.1) for a fixed initial state across all budgets.
Let Q̂(ν; q0) = p−1(ν) ∩ Q̂(q0) denote the set of states q
that optimize (2.1) for some budget B and yield the market
price vector ν.

The next theorem shows that solutions for a fixed initial
state and budget always yield the same price vector. It is
proved in Appendix B.
Theorem 2.2. If q, q′ ∈ Q̂(B; q0), then p(q) = p(q′).

Geometry of linear spaces. We finish this section by re-
viewing a few standard geometric definitions we use in next
sections. Let X ⊆ Rn. Then aff(X) denotes the affine hull
of the set X (i.e., the smallest affine space including X).
We write X⊥ to denote the orthogonal complement of X:
X⊥ := {u ∈ Rn : u · (x′ − x) = 0 for all x, x′ ∈ X}.
We use the convention ∅⊥ = Rn. A set K ∈ Rn is called a
cone if it is closed under multiplication by positive scalars.
If a cone is convex, it is also closed under addition. Since Ω
is finite, the realizable setM = conv(Ω) is a polytope. Its
boundary can be decomposed into faces. More precisely,
X ⊆ Ω, X 6= ∅, forms a face of M if X is the set of
maximizers over Ω of some linear function.6 We also view
X = ∅ as a face of M. With this definition, for any two
faces X , X ′, also their intersection X ∩X ′ is a face.

3 CHARACTERIZING SOLUTION SETS

We start with the optimality (KKT) conditions for the Con-
vex Program (2.1), as characterized by the next lemma.
One of the key conditions is that the solution prices must be
in the convex hull of the belief µ and all the ω’s for which
the budget constraints are tight. The set of tight constraints
is always a face of the polytopeM. We allow an empty set
as a face, which corresponds to the case when none of the
constraints are tight and the solution prices coincide with
µ. The proof follows by analyzing KKT conditions (see
Appendix C of the full version for details).

6Strictly speaking, this is the definition of an exposed face,
but all faces of a polytope are exposed, so the distinction does not
matter here. The exposed face is typically defined to be conv(X),
but in this paper, it is more convenient to work with X directly.



Lemma 3.1 (KKT lemma). Let q0 ∈ Rn. Then q ∈
Q̂(B; q0) if and only if there exists a face X ⊆ Ω such
that the following conditions hold:

(a) U(q, x; q0) = U(q, x′; q0), or equivalently
(q − q0) · (x′ − x) = 0, for all x, x′ ∈ X

(b) U(q, ω; q0) ≥ U(q, x; q0), or equivalently
(q − q0) · (ω − x) ≥ 0, for all x ∈ X , ω ∈ Ω\X

(c) p(q) ∈ conv(X ∪ {µ})
(d) B = −U(q, x; q0) for all x ∈ X if X 6= ∅, or

B ≥ maxω∈Ω[−U(q, ω; q0)] if X = ∅

where conditions (a) and (b) hold vacuously for X = ∅.

The condition (a) requires that q − q0 be orthogonal to the
active setX . The set of points satisfying conditions (a) and
(c) will be called the Bregman perpendicular and will be
defined in the next section. The condition (b) is a statement
about acuteness of the angle between q − q0 (the perpen-
dicular) and the outcomes. It will be the basis of our acute
angles assumption. The condition (d) just states how the
budget is related to the active set X .

Witness cones and minimal faces. We now introduce
some notation to help us state reinterpretations of the con-
ditions in Lemma 3.1. First of all, given a face X , what
is the set of q’s that satisfy conditions (a) and (b)? This is
captured by what we call the witness cone.

Definition 3.2. The witness cone for a face X ⊆ Ω is de-
fined as K(X) := {u ∈ Rn : u · (ω − x) ≥ 0 for all x ∈
X,ω ∈ Ω} if X 6= ∅, and K(X) := Rn if X = ∅.

The following two properties of witness cones are immedi-
ate from the definition:

• Anti-monotonicity: if X ⊆ X ′, then K(X) ⊇ K(X ′).
• Orthogonality: K(X) ⊆ X⊥.

A state q satisfies conditions (a) and (b) for a given face X
if and only if q−q0 ∈ K(X). Now given a state q, consider
the set of faces that could satisfy condition (c). This set has
a useful structure, namely that there is a unique minimal
face (proved in Appendix C of the full version).

Definition 3.3. Given a price vector ν ∈ M, the minimal
face for ν is the minimal face X (under inclusion) s.t. ν ∈
conv(X ∪ {µ}). The minimal face for ν is denoted as Xν .

With the existence of a minimal face and the anti-
monotonicity of the witness sets, it follows that if q and
X satisfy conditions (a), (b) and (c), then so do q and
Xp(q). Thus we obtain the following version of Lemma 3.1
(proved in Appendix C of the full version).

Theorem 3.4 (Characterization of Solution Sets). q ∈
Q̂(q0) if and only if q ∈ [q0 +K(Xp(q))].

Using Theorem 3.4, we immediately obtain a characteriza-
tion of when a price vector ν could be the price vector of
an optimal solution to (2.1).

Corollary 3.5. Q̂(ν; q0) = p−1(ν) ∩ [q0 + K(Xν)]. In
particular, ν is the price vector of an optimal solution to
(2.1) if and only if p−1(ν) ∩ [q0 +K(Xν)] 6= ∅.

We now study an example using the above characteriza-
tion. More examples can be found in Appendix E of the
full version.

Example 3.6 (Quadratic cost on an obtuse triangle; see Ex-
ample E.2 in the full version for details). Consider the fol-
lowing outcome space, belief, and the sequence of market
states (depicted in Figure 2):

ω1 = (0.0, 0.0) q0 = ν0 = 11
14ω2 + 3

14ω3

ω2 = (1.8, 0.0) q1 = ν1 = 1
3ω2 + 2

3µ

ω3 = (6.0, 4.2) q2 = ν2 = 1
9ω1 + 8

9µ

µ = qµ = (2.7, 1.8) q3 = ν3 ≈ 1
19ω1 + 18

19µ

Using the KKT lemma, we can show for j = 1, 2, 3, that
qj = νj is an optimal action at qj−1 = νj−1 under belief
µ, with the corresponding budgets as:

ω1 ω2 ω3

U(q1, ·; q0) 0.45 −0.09 −0.09 B01 = 0.09
U(q2, ·; q1) −0.56 −0.56 1.12 B12 = 0.56
U(q3, ·; q2) −0.565 −0.28 . . . 0.82 . . . B23 = 0.565
U(qµ, ·; q0) −1.215 −1.215 2.565 B0µ = 1.215

The above table also shows that the budget B0µ = 1.215
suffices to move directly from q0 to qµ. However, note that
the sum B01 + B12 + B23 = 1.215 = B0µ, but ν3 6= µ,
i.e., after the sequence of optimal actions with budgetsB01,
B12, and B23, the market is still not at the belief shared by
all agents, even though with the budget B0µ, it would have
reached it.

Budget additivity. The above example suggests that
multiple traders with the same belief may have less power
in moving the market state towards their belief compared
to a single trader with the same belief and the combined
budget. Since prediction markets aim to efficiently aggre-
gate information from agents, it is natural to ask under what
conditions multiple traders with the same beliefs do have a
combined impact equal to a single trader with the combined
budget.

Next, we formally define this property as budget additivity.
We then define the Euclidean version of the acute angles
condition that we show is sufficient for budget additivity.

Definition 3.7 (Budget additivity). We say that a prediction
market is budget additive onM′ ⊆M if for all beliefs µ ∈
M′ and all initial states q0 ∈ p−1(M′) the following holds:
For any budgets B,B′ ≥ 0 and any sequence of solutions
q ∈ Q̂(B; q0) and q′ ∈ Q̂(B′; q), we have p(q), p(q′) ∈
M′ and q′ ∈ Q̂(B +B′; q0).

In other words, the market is budget additive if the se-
quence of optimal actions of two agents with the same be-
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Figure 2: Left: An example of non-additive budgets when payoffs form obtuse angles (see Example 3.6 and its extended
version Example E.2 in the full version). Right: An examples of a non-linear perpendicular for the log-partition cost.

lief and budgetsB andB′ is also an optimal action of a sin-
gle agent with the same belief and a larger budget B +B′.
Thanks to Theorem 2.2 we then also obtain that the price
vector following the sequence of optimal actions by the two
agents is the same as the price vector after the optimal ac-
tion by an agent with the combined budget (all with the
same beliefs).

We now state the acute angles assumption for the Euclidean
case, to give an intuition. Our acute angles assumption
(Definition 5.1) is a generalization of this. We later show
that the acute angles property is sufficient for budget addi-
tivity (Theorem 5.2).
Definition 3.8. We say that the Euclidean acute angles
hold for a face X , if the angle between any point ν̄ ∈ M,
its projection on the affine hull of X and any payoff ω ∈ Ω
is non-obtuse (the angle is measured at the projection).

Based on the above example, one may hypothesize that the
obtuse angles are to blame for the lack of budget additivity.
In the following sections we will show that this is indeed
the case, but that the notion of obtuse/acute angles depends
on the Bregman divergence. In particular, the above ex-
ample would have been budget-additive if we used the log-
partition cost instead of the quadratic cost.

4 BREGMAN DIVERGENCE AND
PERPENDICULARS

We will see next that the utility function U can be writ-
ten as the difference of two terms measuring the distance
between the belief and the market state before and after
the trade. This distance measure is the mixed Bregman
divergence.7 To define the Bregman divergence, first let
C∗ : Rn → (−∞,∞] be the convex conjugate of C de-
fined as C∗(ν) := supq′∈Rn [q′ · ν − C(q′)] . Since C∗ is
a supremum of linear functions, it is convex lower semi-
continuous. Up to a constant, it characterizes the maximum
achievable utility on an outcome ω for a fixed initial state q

7Our notion of Bregman divergence is more general than typ-
ically assumed in the literature.

as supq′∈Rn U(q′, ω; q) = C∗(ω)+
[
C(q)−q·ω

]
. The term

in the brackets is always finite, but C∗ might be positive
infinite. We make a standard assumption that C∗(ω) < ∞
for all ω ∈ Ω, i.e., that the maximum achievable utility,
which is also the maximum loss of the market maker, is
bounded by a finite constant. By convexity, this implies
that C∗(µ) < ∞ for all µ ∈ M. The Bregman divergence
derived from C is a function D : Rn × Rn → (−∞,∞]
measuring the maximum expected utility under belief µ at
a state q

D(q, µ) := C(q) +C∗(µ)− q ·µ = supq′∈Rn U(q′, µ; q) .

From the convexity ofC andC∗ and the definition ofC∗, it
is clear that: (i) D is convex and lower semi-continuous in
each argument separately; (ii) D is non-negative; and (iii)
D is zero iff p(q) = ∇C(q) = µ. By the bounded loss
assumption, Bregman divergence is finite on µ ∈ M. For
µ ∈M, we can write

U(q′, µ; q) = D(q, µ)−D(q′, µ) . (4.1)

Thus, maximizing the expected utility is the same as min-
imizing the Bregman divergence between the state q′ and
the belief µ. From Eq. (4.1) it is also clear that each con-
straint in (2.1) is equivalent to D(q, ω) ≤ D(q0, ω) + B,
and the geometric interpretation is that the agent seeks to
find the state closest to his belief, within the intersection of
Bregman balls

For the quadratic cost, we have C∗(ν) = 1
2‖ν‖

2 and
D(q, ν) = 1

2‖q − ν‖2, i.e., the Bregman divergence co-
incides with the Euclidean distance squared. For log-
partition cost, we have C∗(ν) =

∑
ω∈Ω Pν(ω) lnPν(ω)

where Pν is the distribution maximizing entropy among P
satisfying EP [ω] = ν. The Bregman divergence is the KL-
divergence between Pq and Pν : D(q, ν) = KL(Pν‖Pq).

Convex analysis. We overview a few standard defini-
tions and results from convex analysis. For X ⊆ Rn,
we write riX for the relative interior of X (i.e., the in-
terior relative to the affine hull). For a convex function
F : Rn → (−∞,∞], we define its effective domain



as domF := {u ∈ Rn : F (u) < ∞} (i.e., the set
of points where it is finite). The subdifferential of F at
a point u is the set ∂F (u) := {v ∈ Rn : F (u′) ≥
F (u) + (u′ − u) · v for all u′ ∈ Rn}. We say that F is
subdifferentiable at u if ∂F (u) 6= ∅. A standard result of
convex analysis states that F is always subdifferentiable on
a superset of ri domF . If F is not only convex, but also
lower semi-continuous, then ∂F and ∂F ∗ are inverses in
the sense that v ∈ ∂F (u) iff u ∈ ∂F ∗(v). If F is differ-
entiable everywhere on Rn, then F ∗ is strictly convex on
ri domF ∗.

Let im p := {p(q) : q ∈ Rn} denote the set of prices
that can be expressed by market states. The implications
for our setting are that: (i) C∗ is subdifferentiable on im p;
(ii) p−1(ν) = ∂C∗(ν) for all ν ∈ Rn; (iii) all beliefs
in ri domC∗ can be expressed by some state q; (iv) C∗

is strictly convex on ri domC∗, and similarly D(q, ν) is
strictly convex on ri domC∗ as a function of the second
argument.

Assumptions on the cost function.

• Convexity and differentiability on Rn. C is convex and
differentiable on Rn.
• Finite loss.M⊆ domC∗, i.e., C∗ is finite onM.
• Inclusion of the relative interior. riM⊆ ri domC∗.

The first two assumptions are standard. The third assump-
tion is a regularity condition that we require in our re-
sults. Here we briefly discuss how it compares with the
finite loss assumption. While the two assumptions look
similar, neither of them implies the other. For example,
if domC∗ is an n-dimensional simplex and M is one of
its lower dimensional faces, which are lower dimensional
simplices, then the finite loss assumption holds, but the in-
clusion assumption does not. Similarly, for n = 1 and
M = [0, 1], the inclusion assumption is satisfied by the
conjugate C∗(ν) = 1/ν + 1/(1 − ν) on ν ∈ (0, 1) and
C∗(ν) = ∞ on ν 6∈ (0, 1), but this conjugate does not
satisfy the finite loss assumption.

We do not view the inclusion assumption as very restric-
tive, since it is satisfied by many common cost functions.
For instance, it always holds when C is constructed as in
[1], because their construction guarantees domC∗ = M.
However, the inclusion assumption might not hold for cost
functions that allow arbitrage (e.g., [6]).

Our main result relies on strict convexity of C∗ on
ri domC∗, so some of our statements will require that
the market prices and beliefs lie in that set. The inclu-
sion assumption above guarantees that at the minimum
riM ⊆ ri domC∗, but the boundary of M is not neces-
sarily included. To allow some generality beyond riM, we
define the set

M̃ :=

{
M ifM⊆ ri domC∗

riM otherwise.

In either case we obtain that M̃ ⊆ ri domC∗ ⊆ im p,
i.e., beliefs in M̃ can be expressed by some state q. For
the quadratic cost, M̃ = M. For the log-partition cost,
M̃ = riM.

Perpendiculars. We now define the notion of a Bregman
perpendicular to an affine space. This is a constructive def-
inition. It plays a central role in the definition of the acute
angles assumption, and also in the proof of the main result
(Theorem 5.2). We will see that the set of optimal price
vectors for different budgets is a sequence of Bregman per-
pendiculars. Naturally, perpendiculars are closely related
to the conditions in Lemma 3.1; in particular to the set of
q’s that satisfy conditions (a) and (c) for a given face X .

For quadratic costs, Bregman perpendiculars coincide with
the usual Euclidean perpendiculars. Consider an affine
space and a point not in it. A projection of the point onto
the space is the point in the space that is closest in Eu-
clidean distance to the given point. Now consider moving
this affine space towards the projected point. The locus of
the projection as we move the space is the perpendicular to
the space through the given point. We extend this definition
to arbitrary Bregman divergences by defining the projection
using the corresponding Bregman divergence.

A Bregman perpendicular is determined by three geomet-
ric objects within the affine hull aff(domC∗). The first of
these is an affine space, say A0 ⊆ aff(domC∗). The sec-
ond is a point a1 ∈ aff(domC∗)\A0. The affine space
A = aff(A0 ∪ {a1}) ⊆ aff(domC∗) will be the ambi-
ent space that will contain the perpendicular. Define par-
allel spaces to A0 in A, for an arbitrary point a0 ∈ A0, as
Aλ := A0 +λ(a1− a0) for λ ∈ R. Note that the definition
of Aλ is independent of the choice of a0. The third geo-
metric object is a market state q ∈ Rn such that p(q) ∈ A.
For technical reasons, we will define a perpendicular at q
rather than a more natural notion, which would be at p(q).
Our reason for switching into q-space is that inner products,
defining optimality of the Bregman projection, are between
elements of q-space and ν-space (the two spaces coincide
for Euclidean distance). For all λ ∈ R define a Bregman
projection of q onto Aλ as

νλ := argmin
ν∈Aλ

D(q, ν) .

Since D(q, ν) is bounded from below and lower semi-
continuous, the minimum is always attained (but it may be
equal to ∞). If it is attained at more than one point, we
choose an arbitrary minimizer. Whenever we can choose
νλ ∈ ri domC∗, this νλ must be the unique minimizer by
strict convexity of D(q, ·) on ri domC∗, and the minimum
is finite. We use these νλ’s to define the perpendicular:

Definition 4.1. Given A0, a1 and q as above, the a1-
perpendicular to A0 at q is a map γ : λ 7→ νλ defined
over λ ∈ Λ := {λ ∈ R : νλ ∈ ri domC∗}. We call Λ
the domain of the perpendicular. We define a total order on



νλ, νλ′ ∈ im γ as νλ � νλ′ iff λ ≤ λ′.

In Appendix F.2 of the full version, we show that per-
pendiculars are continuous maps. The name perpendicu-
lar is justified by the following proposition which matches
our Euclidean intuition that the perpendiculars can be ob-
tained by intersecting the ambient space A with the affine
space which passes through q and is orthogonal to A0. It
also shows that the perpendicular corresponds to the set of
prices that satisfy conditions (a) and (c) with the convex
hull relaxed to the affine hull (when A0 is the affine hull
of face X , point a1 coincides with µ and q is the initial
state). Recall that for an arbitrary set X ⊆ Rn, its orthog-
onal complement is defined as X⊥ := {u : u · (x′ − x) =
0 for all x, x′ ∈ X}.
Proposition 4.2. Let γ be the a1-perpendicular to A0 at q,
and let A = aff(A0 ∪ {a1}). The following two statements
are equivalent for any ν′ ∈ Rn:

(i) ν′ ∈ im γ
(ii) ν′ ∈ A ∩ (ri domC∗), p−1(ν′) ∩ (q +A⊥0 ) 6= ∅

Proposition 4.2 is proved in Appendix F of the full ver-
sion. The perpendiculars have the following closure prop-
erty which is useful for showing budget additivity (also
proved in Appendix F of the full version):

Proposition 4.3. Under the assumptions of Proposi-
tion 4.2, γ is also the a1-perpendicular to A0 at any q′ ∈
p−1(im γ) ∩ (q +A⊥0 ).

5 BUDGET ADDITIVITY

We now state the acute angles property which links the
Bregman perpendicular and Corollary 3.5, and is sufficient
for budget additivity.

Definition 5.1. We say that the acute angles hold for a face
X , if for every µ-perpendicular γ to X at q, such that µ ∈
M̃ and q ∈ p−1(M̃), the following holds: If ν′ ∈ im γ
and ν′ � p(q), then p−1(ν′) ∩ [q +K(X)] 6= ∅.

The motivation for the name “acute angles” comes from the
Euclidean distance case, where this assumption is equiva-
lent to Definition 3.8 (see Proposition G.1 in the full ver-
sion). The acute angles property is non-trivial and we have
seen that without this property, budget additivity need not
hold; we conjecture that it is also a necessary condition.
After stating the main theorem, we analyze in more detail
when the acute angles are satisfied by the quadratic and
log-partition costs.

We now state the main result, that the acute angles are suf-
ficient for budget additivity:

Theorem 5.2 (Sufficient conditions for budget additivity).
If acute angles hold for every face X ⊆ Ω, then the predic-
tion market is budget additive on M̃.

Sufficient conditions for acute angles. We next give the
sufficient conditions when the acute angles hold for the
quadratic and log-partition cost functions. We also show
that the acute angles hold for all one-dimensional outcome
spaces, and that they are preserved by taking direct sums of
markets. Recall that a set K ∈ Rn is called a cone if it is
closed under multiplication by positive scalars. A cone is
called acute, if x · y ≥ 0 for all x, y ∈ K. An affine cone
with the vertex a0 is a set K′ of the form a0 + K where K
is a cone.

Theorem 5.3 (Sufficient condition for quadratic cost). Let
X be a face and A′ be the affine space a0 + X⊥ for an
arbitrary a0 ∈ aff(X). Acute angles hold for the face X
and the quadratic cost if and only if the projection of Ω (or,
equivalently,M) onA′ is contained in an affine acute cone
with the vertex a0.

Corollary 5.4. Acute angles hold for the quadratic cost
and a hypercube Ω = {0, 1}n.

Corollary 5.5. Acute angles hold for the quadratic cost
and simplex Ω = {ei : i ∈ [n]} where [n] = {1, 2, . . . , n}
and ei is the i-th vector of the standard basis in Rn.

Theorem 5.6 (Log-partition over affinely independent out-
comes). If the set Ω is affinely independent then acute an-
gles assumption is satisfied for the log-partition cost.

Theorem 5.7 (One-dimensional outcome spaces). Acute
angles hold for any cost function ifM is a line segment.

Let Ω1 ⊆ Rn1 and Ω2 ⊆ Rn2 be outcome spaces with costs
C1 andC2. We define the direct sum of Ω1 and Ω2 to be the
outcome space Ω = Ω1 × Ω2 with the cost C : Rn1+n2 →
R defined as C(q1, q2) = C1(q1) + C2(q2).

Theorem 5.8 (Acute angles for direct sums). If acute an-
gles hold for Ω1 with cost C1, and Ω2 with cost C2, then
they also hold for their direct sum.

As a direct consequence of this theorem, we obtain that
the log-partition cost function satisfies the acute angles as-
sumption on a hypercube. More generally, any direct sum
of costs on line segments satisfies the acute angles. This
means that all cost-based prediction markets consisting of
independent binary questions are budget additive, regard-
less of costs used to price individual questions.

As mentioned in the introduction, a vast number of de-
ployed cost-based prediction markets consists of indepen-
dent questions (not necessarily binary), each priced accord-
ing to an LMSR (i.e., a log-partition cost on a simplex).
Theorems 5.6 and 5.8 imply that this industry standard is
budget additive.

5.1 Proof of Theorem 5.2

In this section we sketch the proof of Theorem 5.2 (for a
complete proof see Appendix H of the full version). We
proceed in several steps. Let ν0 = p(q0). Assuming acute



angles, we begin by constructing an oriented curve L join-
ing ν0 with µ, by sequentially choosing portions of per-
pendiculars for monotonically decreasing active sets. We
then show that budget additivity holds for any solutions
with prices in L, and finally show that the curve L is the
locus of the optimal prices of solutions Q̂(q0), as well as
optimal prices of solutions Q̂(q) for any q ∈ Q̂(q0).

Part 1: Construction of the solution path L. In this part,
we construct:

• a sequence of prices ν0, ν1, . . . , νk with ν0 = p(q0)
and νk = µ
• a sequence of oriented curves `0, . . . , `k−1 where each
`i goes from νi to νi+1

• a monotone sequence of sets Ω ⊇ X0 ⊃ X1 ⊃
· · · ⊃ Xk = ∅, such that the following minimal-
ity property holds: Xi is the minimal face for all
ν ∈ (im `i)\{νi+1} for i ≤ k − 1, and Xk is the
minimal face for νk.
• a sequence of states q1, . . . , qk−1 such that qi ∈
p−1(νi) ∩ [qi−1 +K(Xi−1)]

The curves `i will be referred to as segments. The curve
obtained by concatenating the segments `0 through `k−1

will be called the solution path and denoted L. In the spe-
cial case that ν0 = µ, we have k = 0, X0 = ∅ and L is a
degenerate curve with imL = {µ}.

If ν0 6= µ, we construct the sequence of segments it-
eratively. Let X0 6= ∅ be the minimal face such that
ν0 ∈ conv(X0 ∪ {µ}). By the minimality, µ 6∈ aff(X0).
Let γ be the µ-perpendicular to aff(X0) at q0. The curve γ
passes through ν0 and eventually reaches the boundary of
conv(X0 ∪ {µ}) at some ν1 by continuity of γ (see Theo-
rem F.3). Let segment `0 be the portion of γ going from ν0

to ν1.

This construction gives us the first segment `0. There are
two possibilities:

1. ν1 = µ; in this case we are done;
2. ν1 lies on a lower-dimensional face of conv(X0 ∪
{µ}); in this case, we pick some q1 ∈ p−1(ν1)∩ [q0 +
K(X0)], which can be done by the acute angles as-
sumption, and use the above construction again, start-
ing with q1, and obtaining a new set X1 ⊂ X0 and a
new segment `1; and iterate.

The above process eventually ends, because with each iter-
ation, the size of the active set decreases. This construction
yields monotonicity of Xi and the minimality property.

The above construction yields a specific sequence of qi ∈
p−1(νi) ∩ [qi−1 + K(Xi−1)]. We show in Appendix H of
the full version that actually qi ∈ p−1(νi) ∩ (q0 + X⊥i−1)
and that the construction of L is independent of the choice
of q1, q2, . . . , qk−1.

Part 2: Budget additivity for points on L. Let ν, ν′ ∈

imL such that ν � ν′. Let q ∈ Q̂(ν; q0) and q′ ∈ Q̂(ν′; q)
such that q ∈ Q̂(B; q0) and q′ ∈ Q̂(B′; q). In this part we
show that q′ ∈ Q̂(B +B′; q0).

First, consider the case that ν′ = µ. To see that q′ ∈
Q̂(B + B′; q0), first note that the constraints of Convex
Program (2.1) hold, because U(q′, ω; q0) = U(q′, ω; q) +
U(q, ω; q0) ≥ −B′ − B for all ω by path independence of
the utility function. As noted in the introduction, in the ab-
sence of constraints, the utility U(q̄, µ; q0) is maximized at
any q̄ with p(q̄) = µ. Thus, q′ is a global maximizer of the
utility and satisfies the constraints, so q′ ∈ Q̂(B +B′; q0).
If ν = µ, we must also have ν′ = µ and the statement holds
by previous reasoning.

In the remainder, we only analyze the case ν � ν′ ≺
µ. This means that ν ∈ (im `i)\{νi+1} and ν′ ∈
(im `j)\{νj+1} for i ≤ j. By Theorem 3.4, we therefore
must have q ∈ [q0 + K(Xi)] and q′ ∈ [q + K(Xj)]. By
anti-monotonicity of witness cones, K(Xj) ⊇ K(Xi) and
hence, q′ ∈ [q0 +K(Xj)], yielding q′ ∈ Q̂(ν′; q0).

We now argue that the budgets add up. Let x ∈ Xj ⊆ Xi.
By Lemma 3.1, we obtain that q ∈ Q̂(B; q0) for B =
−U(q, x; q0), and q′ ∈ Q̂(B′; q) for B′ = −U(q′, x; q),
and finally q′ ∈ Q̂(B̄; q0) for B̄ = −U(q′, x; q0). How-
ever, by path independence of the utility function

B̄ = −U(q′, x; q0) = −U(q′, x; q)−U(q, x; q0) = B′+B.

Part 3: L as the locus of all solutions. See Appendix H
of the full version for the proof that

Q̂(q0) =
⋃
ν∈imL Q̂(ν; q0) .

Part 3’: L as the locus of solutions starting at a mid-
point. Let ν ∈ imL and q ∈ Q̂(ν; q0). Since Q̂(ν; q0) ⊆
p−1(ν) ∩ (q0 + X⊥ν ), Part 1’ (Appendix H of the full ver-
sion) yields that the solution path L′ for q coincides with
the portion of L starting at ν. Applying the proof of Part 3
to L′, we obtain

Q̂(q) =
⋃
ν′∈imL:ν′�ν Q̂(ν′; q) .

Part 4: Proof of the theorem. Let B,B′ ≥ 0 and q ∈
Q̂(B; q0) and q′ ∈ Q̂(B′; q). From Parts 3 and 3’, we know
that q ∈ Q̂(ν; q0) and q′ ∈ Q̂(ν′; q) for some ν, ν′ ∈ imL
such that ν � ν′. By Part 2, we therefore obtain that q′ ∈
Q̂(B +B′; q0), proving the theorem.
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