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Abstract: The prevalence of obesity has increased dramatically in recent decades. It is an 

important public health issue as it causes many other chronic health conditions, such as 

hypertension, cardiovascular diseases, and type II diabetics. Obesity affects life expectancy 

and even the quality of lives. Eventually, it increases social costs in many ways due to 

increasing costs of health care and workplace absenteeism. Using the spatial patterns of 

obesity prevalence as an example; we show how different geographic units can reveal 

different degrees of detail in results of analysis. We used both census tracts and census 

block groups as units of geographic analysis. In addition; to reveal how different 

geographic scales may impact on the analytic results; we applied geographically weighted 

regression to model the relationships between obesity rates (dependent variable) and three 

independent variables; including education attainment; unemployment rates; and median 
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family income. Though not including an exhaustive list of explanatory variables; this 

regression model provides an example for revealing the impacts of geographic scales on 

analysis of health data. With obesity data based on reported heights and weights on driver’s 

licenses in Summit County, Ohio, we demonstrated that geographically weighted 

regression reveals varying spatial trends between dependent and independent variables that 

conventional regression models such as ordinary least squares regression cannot. Most 

importantly, analyses carried out with different geographic scales do show very different 

results. With these findings, we suggest that, while possible, smaller geographic units be 

used to allow better understanding of the studies phenomena. 

Keywords: obesity prevalence; geographic scales; geographically weighted regression 

 

1. Introduction and Problem Statements 

Geospatial analyses of health data are often carried out using census tracts as the geographic unit of 

analysis. This may have been largely due to two reasons. First, health data used to be released only at 

aggregated levels because of the confidentiality of patient data. Second, socioeconomic data from 

governmental sources are not available at more detail level than census tracts such as census blocks. 

Consequently, census tracts seem to have become the de facto unit of analysis for most studies in 

geography of health.  

With the proliferation of the Internet, health data have become more accessible and are now being 

generated in larger volumes than before. This leads to a need to assess if analyzing health data at the 

scale of census tracts is sufficient and if such unit of analysis fails to reveal geographic details that we 

should have noticed. To that end, we report in this paper our analysis of obesity prevalence in Summit 

County, Ohio, using both census tracts and census block groups as the units of analysis. We show that 

there is often too much generalization when census tracts are used and census block groups would 

have been a better choice for examining geographic disparities in obesity prevalence. 

As an example for examining the impacts of different geographic scales on health studies, we chose 

to study the issue of geographic disparity of obesity prevalence. Geographically weighted regression 

models were built by using obesity prevalence as the dependent variable. Racial composition, income, 

education, and employment were included as explanatory variables. The list of explanatory variables 

was determined from the obesity literature and is by no means an exhaustive list.  

The obesity prevalence data are derived from calculating body mass index (BMI kg/m2) that 

incorporated the self-reported heights and weights on all driver license data obtained from the Ohio 

Bureau of Motor Vehicles for years from 2008 to 2012. It should be noted that self-reported heights 

and weights on driver licenses tend to become obsolete as time went on. Most license holders would 

simply renew their licenses without updating their heights and weights. For this reason, we chose to 

include only data for the license holders who were between ages of 16 to 21 when they first had their 

licenses issued.  

Data for the explanatory variables were taken from American Community Survey 2011 from the 

US Census Bureau. We acknowledge that these may not be the best data to use but for the purpose of 
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comparing analytic outcomes between those from using census tracts and those using census block 

groups, they should serve the purpose well. We use the regression models to explore the relationships 

between socio-economic characteristics of small geographic units and the geographic disparities in 

obesity prevalence. Again, this method is used to facilitate the comparison between using census tracts 

and using census block groups as units of analysis and is not suggested as the best model for 

explaining the variations in obesity prevalence. Finally, as relationships between dependent and 

independent variables may vary using data at different geographic scales, analyses may be subject to 

what is known as the modifiable areal unit problem (MAUP) as discussed in Wong [1] In similar way, 

issues of using pre-aggregated data for analysis of health geography have been discussed in Cockings 

and Martin [2]. 

It should be noted that, while Summit County, Ohio, is used here as a case study. The results from the 

comparisons are likely applicable to many other locations in the US because the demographic profile and 

the socio-economic profile in the study area are very close to those of the national averages. 

The prevalence of obesity among adults and children in the United States has increased dramatically 

in recent decades (e.g., [3–8]). Obesity is a public health issue as it often causes many other chronic 

health conditions, such as, hypertension, cardiovascular disease, and type II diabetes (e.g., [4,9–13]). 

Obesity affects life expectancy, quality of lives, and, eventually, it increases social costs in many ways 

due to increasing costs of health care, and workplace absenteeism, or presenteeism. 

The basic cause of obesity is the imbalance between the amount of energy taken through eating and 

drinking, and the amount of energy expended through metabolism and physical activity [14–19]. To offset 

excessive energy intake, increased physical activity is encouraged as a way to keep energy in balance. 

However, energy imbalances appear to be facilitated by the characteristics of physical, social, and 

economic environments. 

As reviewed in Sobal and Stunkard [20], a strong inverse relationship between the geography of 

socioeconomic status and the distribution of obesity exists, though slight variation was observed 

between developing and developed societies. This trend was confirmed by Zhang and Wang [21] from 

their study of the trends in the association between obesity and socioeconomic status in US adults from 

1971 to 2000. McLaren [22] also concluded from reviewing 333 published studies that obesity was 

found to be related to most widely used SES variables, such as education, occupation, and income.  

2. Data 

In order to examine how the distribution of obese population may be related to area-specific  

socio-economic characteristics, we assembled our database from a number of sources: 

a. Derived BMI data—data from a five-year cycle of all holders of driver’s licenses in Summit 

County, Ohio was obtained from Ohio Bureau of Motor Vehicles (OBMV) for 2008–2012 for 

public health purposes. Drivers in Ohio need to renew their licenses once every five years. By 

including data (age, height, weight, and home address) of all adults (16 years and older) in a 

five-year cycle, we basically captured everyone who had a driver’s license in the county during 

the study period. It should be noted that this data set does not include derived BMI for 

population age 15 and below or those who do not hold driver’s licenses. Over 480,000 

addresses and associated data were geocoded to latitude/longitude coordinates. BMI was 
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calculated for each record. Those records with BMI equal to and over 30 are selected and 

included in the dataset of obese population as this study focuses only on the distribution of 

obese population. Since self-reported heights are typically biased upward (≈1 inch) while  

self-reported weights are biased downward (≈10 lbs) in large surveys such as those reported by 

Ossiander et al. [23], the BMI’s from the OBMV data may underestimate the true prevalence of 

obesity in Summit County. However, we have no reason to expect that the bias is large or 

strongly associated with socio-economic status (SES). For this reason, we included in this study 

only records of license holders who were between 16 and 21 of age at the time when their 

licenses were first issued. This, of course, still assumes that the self-reported weights and 

heights are still subject to the same potential bias as stated earlier. 

b. Socio-economic Data—we extracted the five-year data (2007–2011) from the American 

Community Survey to form a data set that contains both census tract and census block group 

data, including population counts, population counts with college or higher education 

attainment, median family income, unemployment, and percentages of white population. 

c. Census tract and census block group boundary files from the 2010 TIGER/Line files by the US 

Census Bureau. 

3. Analysis and Results 

3.1. Spatial Distribution of Obese Population and Geographic Scales 

After residential addresses of obese adult population were geocoded (i.e., BMI ≥ 30), they were 

used to calculate obesity rates, defined as the number of obese people per 1000 population, by census 

block groups and by census tracts. The two maps in Figure 1 provide an overview of the geography of 

obesity in Summit County, Ohio. Overall patterns from both maps show that higher obesity prevalence 

levels are observed in and around the City of Akron, the most highly urbanized portion of the county 

in the central part of the county. However, it should be noted that the spatial distribution of obesity 

ratios by census block groups provides a much higher level of geographical detail and differences in 

the results between the two geographical scale levels are clearly recognizable.  

As shown in Figure 1a,b, in numerous parts of the county, block groups with very different obesity 

prevalence levels were generalized when adjacent block groups were aggregated into tracts. For 

example, in the northern most part of the county, it is clear that greater details of different levels of 

obesity prevalence are shown by block groups but generalized into a less detailed pattern by tracts. 

Similar generalization can be observed in other parts of the county. 

Both scales are consistent in showing that the city center has very low rates. The low rates at both 

scales are attributable to the fact that the city center has the youngest population. The center was 

surrounded by areas with relatively high obesity rates, particularly to its east and west, and to a lesser 

extent to the south. Although many block groups had relatively high rates, they did not fill the areas 

surrounding the center continuously to form contiguous patches, and some high rate block groups were 

relatively spread outside, including some to the southwestern corner of the county. However, at the 

tract level, tracts with high rates were relatively contiguous, mainly because the block group rates were 

averaged or smoothed over larger areas (tracts). Thus, spikes of high values for block groups were 
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lumped with neighboring units of lower levels, generating a smoother value surface over the region, 

and thus values are more similar over space (i.e., larger positive spatial autocorrelation). This spatial 

smoothing process was explained in great detail in Wong [1].  

Figure 1. Obesity rates in Summit County, Ohio. (a) Census Tracts; (b) Census Block Groups. 

 
(a)  (b) 

3.2. Spatial Relationships between Obese Population and SES Attributes 

To examine the socio-economic and geographical disparities of the obese population, we analyzed 

the spatial relationships between obesity ratios and a set of carefully selected socio-economic (SES) 

attributes, using both census tracts and census block groups. As suggested in Geographies of  

Obesity [24], the socio-economic attributes that may influence obesity ratio include population density, 

racial composition, educational attainment, income level, employment level, and other factors. Based 

on these, we have assembled data from the 2011 American Community Survey (US Census Bureau) 

for both census tracts and census block groups with the following variables for our analysis: 

• Population density (POPDEN) 

• Percent white population (RWHITE) 

• Median family income (MEDINC) 

• Percent with bachelor degree or higher (RGEBA) 

• Percent unemployed (RUNEMP) 

Using these areal attributes as explanatory (or independent) variables and obesity rates as the 

dependent variable, we first explored to what degrees the variations in obesity rates at both block 

groups (BGs) and tracts (TRs) levels can be explained by each of the independent variables. The 

results showed that only three variables are statistically significant in explaining the variation of 

obesity rates at both geographical levels. These variables are education (RGEBA), income (MEDINC), 
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and unemployment (RUNEMP), as shown in Table 1. Lower educational attainment, lower income 

level, and higher unemployment ratios appear to be important in influencing the geographic patterns of 

obesity prevalence. It is also worth noting that the race variable was not significant. The adjusted-R2 

values listed in Table 1 indicate that these regression models are relatively weak. However, it appears 

that these SES variables can explain the variation in obesity rates better at the tract level than at the 

block group level. 

Table 1. Regression models with the highest adjusted-R2 values. 

Adj-R2 Regression Model

Bgroups 0.40 −RGEBA 
0.41 −MEDINC 
0.36 +RUNEMP 

Tracts 0.66 −RGEBA 
0.65 −MEDINC 
0.62 +RUNEMP 

Higher correlation coefficients are expected for larger areal units (TRs vs. BGs), as this is part of 

the scale effect under the MAUP, and has been well documented and explained [25]. In short, more 

aggregated data have less variation and smaller variance (and standard deviation). Lower in variance 

(and standard deviation) will partly raise the correlation. Even at the TRs level, the R2 values are not 

strong. One possible reason for low explanatory power of a regression model is the presence of spatial 

heterogeneity. While the model may have captured the pertinent variables to explain the outcomes, the 

relationships between the outcome and explanatory variables may vary across different observations. 

Such variation often follows certain geographical patterns. To address this issue, we used 

geographically weighted regression (GWR) [26,27] with the three explanatory variables at both the 

block groups and tracts levels. The results are listed in Table 2, together with results from models of 

ordinary least squares regression (OLS) with the same dependent and independent variables. We used  

ArcGIS 10.1 [28] to perform the calculations for GWR models. 

Table 2. Summary output from geographically weighted regression (GWR) and ordinary 

least squares regression (OLS). 

Obesity_Ratio = Function ( RGEBA, MEDINC, RUNEMP) 

GWR R2 Adjusted-R2 AICc 
Block Groups 0.4937 0.4650 5101.32 

Tracts 0.7301 0.7070 1395.61 
OLS R2 Adjusted-R2 AICc 

Block Groups 0.4415 0.4378 5114.80 
Tracts 0.6968 0.6899 1400.02 

From Table 2, it can be seen that the overall adjusted-R2 value is higher at tracts level than at block 

groups level (1.9 fold). Again, the larger R2 value at the tract level is expected due to scale effect as in 

the case of ordinary regressions. In addition, AICc values are lower at the tracts level than at the block 

groups level. This is true for both GWR and OLS, with only minor differences in adjusted-R2 and in 
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AICc. The performance statistics of these two models suggest that the OLS model is reasonably 

competent as compared to the local model using GWR because the AICc values of the OLS model are 

smaller than that of the GWR model. However, we will demonstrate below that despite the guidance of 

these model statistics favors the global OLS model, the local model has tremendous values in revealing 

pertinent relationships that OLS models do not reveal. 

GWR essentially uses a pre-defined function to determine the level of influence that neighboring 

units have on each geographic unit in the regression model. For example, for census block group, bi, 

a pre-defined function may be based on the distance decay concept so that block groups located farther 

away from bi are weighted less in the regression outcomes than the immediate neighboring block 

groups of bi. The pre-defined function can be adjusted to reflect particular phenomena based on their 

spatial patterns. 

Normally, the pre-defined function is applied to all geographical units. When this is the case, it is 

said to be using a fixed kernel. An option in using GWR to analyze spatial relationships is to vary the 

pre-defined function according to the density of data points locally. In areas where the data are 

spatially denser, the distance decay can be structured to reflect that in areas where the data are spatially 

less dense. When using the varying distance functions, it is said to be using adaptive kernels. In this 

study, we used adaptive kernel approach in our GWR models to reflect the uneven geographic 

distribution of the model variables.  

Below in Figure 2, the distribution of residuals, i.e., the differences between actual obesity rates and 

the predicted obesity rates by the GWR models, shows no spatial autocorrelation in either TRs or BGs. 

Global Moran’s Index values, a widely used index for measuring spatial autocorrelation, is −0.016  

(Z-score = −0.3737, Prob = 0.7086) for TRs and is 0.004 (Z-score = −0.1667, Prob = 0.8675) for BGs, 

both are not statistically significant at α = 0.025 level. The map by census tracts shows a more 

generalized pattern than that by census block groups. On the map by block groups, we can easily 

identify areas where such residuals are larger or smaller with much detail. The different levels of 

details as displayed by tracts and block groups suggest that smaller geographic units may be better for 

modeling SES and area disparities in health. Some small areas of concern may be hidden at the tract 

level, but are exposed at the block group level. 

From the geographically weighted regression model, it is possible to observe how a particular 

explanatory variable influences obesity rates more or less across the study area. This is done by 

mapping the regression coefficients of the explanatory variables. Figure 3 shows the distribution of 

coefficient values for unemployment ratios in the model. It appears that the northern parts of the 

county experienced increased obesity rates with increased unemployment ratios where the southern 

and southeastern parts of the county shows the opposite trends. Again, results from using block groups 

do show more spatial details than what tracts reveal. However, an important aspect of these results is 

that unemployment and obesity levels have opposite relationships in different parts of the region (the 

coefficient ranges from −0.2 to 0.4), a situation that is difficult to explain, but cannot be revealed by 

the global regression model. 

Also showing the spatial patterns of coefficient values, Figure 4 suggests that educational 

attainment (percent of population with bachelor degrees or higher) has a stronger impact on lowering 

obesity rates in the northern parts than other parts of the county. This trend is better described with 
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block groups than with census tracts because it is much generalized in the tracts. In the City of Akron, 

educational attainment makes less impact on obesity rates than in the northern part of the county. 

Figure 2. Spatial patterns of residuals from geographically weighted regression  

models, ObRates = function (RGEBA, MEDINC, RUNEMP). (a) Census Tracts,  

(b) Census Block Groups. 

 
(a)  (b) 

Figure 3. Spatial patterns of regression coefficients for unemployment ratios. (a) Census 

Tracts; (b) Census Block Groups. 

 
(a)  (b) 
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Figure 4. Spatial patterns of regression coefficients for educational attainment. (a) Census 

Tracts; (b) Census Block Groups. 

 
(a)  (b) 

Again in Figure 5, which shows regression coefficients for median family income in the GWR 

model, tracts also generalize the spatial pattern of how median family income influences obesity rates 

in Summit County. With block groups, the different levels of impacts on obesity rates by median 

family income are shown by circular rings that center at the City of Akron—from a positive influence 

of increasing median family income causing slight increases of obesity rates to a negative influence of 

increasing median family income causing reductions in obesity rates. Comparing what are shown by 

tracts and by block groups, the influences by median family income on obesity rates do show 

significantly different patterns on the western parts of the county. In addition, similar to the 

unemployment variable, the coefficient value ranges from −0.2 to 0.1, indicating that the direction of 

the relationship is not uniform across the region. In other words, lower income level is related to lower 

obesity rate in some areas (center and the east), but is related to higher obesity rate in other areas 

(north and west). 

Overall, our analysis showed that obesity rates are indeed affected by education attainment, income 

level, and unemployment level. While such relationships are all statistically significant for the three 

SES variables included in GWR models, it is important to explore in more spatial details to appreciate 

where inside the county we can expect such relationships to be stronger or weaker. Thus, when making 

policies on how to promote health and how to allocate funding to different areas in the county, for 

example, at neighborhood level, geographic disparities in health can be incorporated for more  

effective outcomes. 
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Figure 5. Spatial patterns of regression coefficients for median family income ($1000’s). 

(a) Census Tracts; (b) Census Block Groups 

 

Med Fam Income 

(a)  (b) 

4. Discussion and Concluding Remarks 

We have presented in this paper our analysis of obesity rates in terms of their spatial patterns and 

their relationships to a set of selected socio-economic variables. Similar analytical procedures were 

repeated for census tracts and census block groups to show that geographic resolutions do indeed 

matter in such analysis. 

While individual records for adults age 16 and 21 in Summit County, Ohio, as obtained from Ohio 

Bureau of Motor Vehicles, were used in our study, it should be noted that this is not a 100% coverage 

of all adult population in Summit County—this data set does not include those who chose not to 

acquire driver’s licenses and those who failed to renew licenses. Furthermore, it is possible that heights 

and weights obtained from self-reporting through driver’s license registrations are not accurate. For 

example, a person’s height and weight at age 16 when first acquiring his/her driver’s license may be 

lower than his/her height and weight by age 20 before having to renew the license. This is a  

well-documented phenomenon (for example, see [23]). However, BMI data as derived from heights 

and weights reported to the Bureau of Motor Vehicles are probably the best and the most complete 

data we can obtain. If more precise analysis is in order, adjustments should be made to correct such 

under-reported bias.  

Geographic resolutions do make a difference. In general, the higher the resolution, the more details 

are revealed in the results of analysis. Analysis with data at lower geographic resolution may run into 

the risk of obscuring potentially meaningful and informative processes operational only at the finer 

scale. To that end, please see Lam [29] for a discussion on different types of scale and their effects on 

geographic studies. As a general rule of thumb, higher resolution analyses are preferred. 

Unfortunately, the geographic resolution of analysis is often dictated by the availability of supporting 
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data. Although, in this study, data at the block group level were available and used, and these data are 

of higher resolution than the corresponding census tract data, we need to also take into account the 

quality of data in addition to the desirable levels of scale or resolution. If data at different geographic 

resolution are of similar quality, it would be preferred to use those with more geographic details. It 

should also be noted here that, as more micro data (e.g., individual addresses or GPS coordinates, etc.) 

are increasingly available, we argue that analyses should be performed at the highest geographic 

resolution whenever possible and when the supporting data allow. 

In our specific case, and probably our situation is also applicable to many studies in social sciences 

and public health, we have to used ACS data, the only major source of data in the U.S. after 2000 

census in order to obtain SES information of the social environment in which the subjects resided. An 

important aspect of ACS data is the survey nature such that estimates, especially for smaller 

geographical units, tend to be unreliable, often with relatively large margin of error [30]. 

As we prefer to conduct analysis with data of higher geographic resolution, and therefore using 

block group data is preferable to reveal detailed geographical patterns, ACS data at block group level 

have substantially larger error than their corresponding tract level data. Just take the median family 

income variable as an example, the minimum, maximum, and average coefficient of variation (CV) of 

the variable are reported in Table 3 below. Clearly, the ACS estimates at the tract level are much more 

reliable than those at the block group level. In fact, some of the estimates at the block group level have 

their 90% margin of errors larger than the estimates. On the other hand, the quality of tract level 

estimates is not ideal. Nonetheless, these tract estimates are more reliable. Thus, from the data quality 

perspective, the tract level analysis we conducted and reported here probably offer results with a 

higher level of confidence. This higher confidence level, unfortunately, has to be trade-off with a lower 

geographical resolution in the analysis results. 

Table 3. Summary of statistics of the coefficient of variation (CV) for the variable median 

family income from ACS at the census block groups and tracts levels. 

Statistics for CV Block Group Level Tract Level

Minimum 0.0137 0.0250 
Maximum 2.2572 0.8192 
Average 0.2703 0.1305 

Many obesity studies adopted census tracts as the de facto geographic unit of analysis. This may be 

due to the obvious reasons of data availability and limits to computational resources. We argue that 

census tracts may generalize spatial patterns too much and that census block groups or smaller 

geographic units should be used whenever possible. Assuming equal in data quality, analyzing 

geographies of obesity at a finer geographic scale enables better decisions when formulating policies to 

promote health for areas with health disparities. 

The use of GWR also reveals new details in terms of spatial trends of how independent variables 

are associated with dependent variables. These spatial trends cannot be uncovered by conventional 

global regression models, such as ordinary least squares regression that provides only global trends of 

the relationships between dependent and independent variables. For example, the varying spatial trends 
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of how unemployment ratios impact obesity prevalence as shown in Figure 3 would never be 

discovered using only conventional regression modeling approaches. 
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