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1 Introduction

In recent years, there is a great deal of attention paid to the development
of high dimensional classification methods. Many independence rules are pro-
posed to deal with the situations where the correlations between variables
are weak. Tibshirani et al. (2002) proposed the nearest shrunken centroid
(NSC) classifier. Fan and Fan (2008) proposed the features annealed inde-
pendence rule (FAIR). Moreover, Bickel and Levina (2004) showed that the
independence rule, naive Bayes (NB) performs better than the naive Fisher
discriminant (NFR) where the variables are correlated. When the correlations
are significant, NFR is about the same as random guess. They also showed
that a classification procedure using a subset of well selected features is better
than that using all the features, which typically accumulates much noise in
estimating population centroids in high dimensional space.

In addition, methods integrating the covariance structure have been pro-
posed in the literature, such as support vector machines (Vapnik 1995), shrunken
centroids regularized discriminant analysis (SCRDA) (Guo et al. 2005), sparse
linear discriminant analysis (Shao et al. 2011) and DDα−procedure (Lange
et al. 2014). A recent work Fan et al. (2012) proposed a new method that
involves correlation information, called regularized optimal affine discriminant
(ROAD). Interestingly enough, the classification error of the ROAD decreases
as the correlation coefficient increases. Two variants are screening-based rules,
named S-ROAD1 and S-ROAD2, which select only 10 features and 20 fea-
tures, respectively. In the simulation study, under the “large p-small n” and
equal correlation setting, the ROAD method outperforms the available classi-
fiers mentioned above. S-ROAD2 also performs well, while S-ROAD1 fails for
highly correlated variables. Notice that the ROAD and its variants have to se-
lect variables in the procedure of classification. Although variable selection has
been extensively developed in last decades, their practical implementation still
faces several difficult issues such as the choice of turning parameter or thresh-
olding values. In this paper, we investigate whether there are straightforward
methods that can have competitive performances without preliminary vari-
able selection. In addition, existing methods mainly focus on “large p-small n”
case and the localized mean vector scenario (see follows for exact definition).
However, the case of “large p-large n” with comparable magnitude and the
delocalized scenario are common issues in high dimensional classification. The
classification rules proposed in the paper will help to handle these situations.

Saranadasa (1993) proposes the determinant-based (D-) and trace-based
(T-) criteria. Their asymptotic misclassification probabilities are established
for normal populations. In this paper, we focus on the performance of these
two criteria in the delocalized scenario without the normal assumption. Specif-
ically, consider two p-dimensional multivariate populations Π1 and Π2 with
respective mean vectors µ1, µ2 and common covariance matrix Σ. The param-
eters µ1, µ2 and Σ are unknown and thus estimated using training samples
X = (x1,x2, . . . ,xn1

)T from Π1 and Y = (y1,y2, . . . ,yn2
)T from Π2 with re-

spective sample size n1 and n2. A new observation vector, z = (z1, z2, . . . , zp)
T
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is known to belong to Π1 or Π2 and the aim is to find exactly its origin popula-
tion. More complicated sample setting can refer to Leung (2001), which consid-
ers mixed continuous and discrete variables in each group. Cheng (2004) stud-
ies the situation where the two populations have different covariance matrices.
Krzyśko and Skorzybut (2009) considers the multivariate repeated measures
data with Kronecker product covariance structures.

Let (x̄), (ȳ) be the two training sample mean vectors where

x̄l =
1

n1

n1∑
i=1

xil and ȳl =
1

n2

n2∑
j=1

yjl, l = 1, 2, . . . , p.

If the vector z is classified to the population Π1, then the overall within group
sum of squares and cross products matrix is

A1 =

n1∑
i=1

(xi − x̄)(xi − x̄)′ +

n2∑
j=1

(yj − ȳ)(yj − ȳ)′ +
n1

n1 + 1
(z− x̄)(z− x̄)′.

While, if z is classified to Π2, then the sum is

A2 =

n1∑
i=1

(xi − x̄)(xi − x̄)′ +

n2∑
j=1

(yj − ȳ)(yj − ȳ)′ +
n2

n2 + 1
(z− ȳ)(z− ȳ)′.

Intuitively, one would decide z ∈ Π1 when A1 is in some sense “smaller” than
A2. The D-criterion defines this smallness to be

det(A1) < det(A2), (1)

and the T-criterion defines it to be

tr(A1) < tr(A2). (2)

Two scenarios of mean difference δ = µ2 − µ1 are defined as follows:

1. Localized scenario: the difference δ is concentrated on a small number
of variables. We set µ1 = 0 and µ2 equals to a sparse vector: µ2 =
(1′n0

,0′p−n0
), where n0 is the sparsity size. Notice that the location of the

n0 non-zero components does not influence the performance of various clas-
sifiers.

2. Delocalized scenario: the difference δ is dispersed in most of the variables.
To ease the comparison with the localized scenario, we choose the parame-
ters such that the averaged Mahalanobis distances are the same under these
two scenarios. This is motivated by the fact that following Fisher (1936),
the difficulty of classification mainly depends on the Mahalanobis distance
∆2 = δ′Σ−1δ between two populations. More precisely, we set µ1 = 0 and
the elements of µ2 are randomly drawn from the uniform distribution(

e

2
,

3e

2

)
, e =

∆L

β
,
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where

∆2
L = (1′n0

,0′p−n0
)Σ−1(1′n0

,0′p−n0
)′

is the Mahalanobis distance under the localized scenario, and β is a pa-
rameter chosen to fulfill the requirement

E∆2
D = Eµ′2Σ

−1µ2 = ∆2
L,

where ∆2
D is the Mahalanobis distance under the delocalized scenario. Di-

rect calculations lead to

β2 =
p(pρ− 14ρ+ 13)

12(1− ρ+ pρ)(1− ρ)
,

for an equal correlation structure, Σl,l′ = ρ for l 6= l′ and Σll = 1. For an

autoregressive correlation structure, Σl,l′ = ρ|l−l
′|, we find

β2 =
p(24ρ− 13ρ2 − 13)− 24ρ+ 26ρ2

12(ρ2 − 1)
.

By focusing on the delocalized scenario, simulation study is conducted to dis-
play the performances of proposed procedures.

As the main contribution of this paper, we generalize the D- and T- criteria
from normality to general populations and establish their asymptotic misclas-
sification probabilities. As it will be proven, the misclassification probability of
the D-criterion will depend on the Mahalanobis distance between the two pop-
ulations, and the misclassification probability of the T-criterion will depend
on the difference of two group mean vectors and the skewness and kurtosis
coefficients of the two populations Π1 and Π2.

The rest of the paper is organized as follows. In Section 2, the asymptotic
misclassification probability of the D-criterion under general populations is de-
rived and Monte Carlo experiments are conducted to compare the performance
with that of several existing classification rules. In Section 3, the asymptotic
misclassification probability of the T-criterion under general populations is
derived. And a real data is used to present the competitive performance of the
T-criterion. The conclusion is made at the end of the paper. Technical proofs
are relegated to the appendix.

2 The D-criterion

2.1 Data generation model

Unlike the normal populations assumed in Saranadasa (1993), we assume that
the populations Π1 and Π2 have the general form as introduced in Bai and
Saranadasa (1996), i.e.

(a) The population X ∼ Π1 has the form X = ΓX∗ + µ1, where Γ is
a p × p mixing or loading matrix, and X∗ = (x∗l )1≤l≤p has p independent
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and identically distributed, centered and standardized components. Moreover,
γx = E (|x∗1|4) <∞ and we set θx = E (x∗31 ).

(b) Similarly, the population Y ∼ Π2 has the form Y = ΓY∗ + µ2, where
Y∗ = (y∗l )1≤l≤p has p independent and identically distributed, centered and
standardized components. We set γy = E (|y∗1 |4) <∞ and θy = E (y∗31 ).

In consequence, the new observation z = Γz∗ + µz where z∗ = x∗i in
distribution and µz = µ1 if z ∈ Π1. Throughout the paper, we set µ̃ =
Γ−1δ = (µ̃)1≤l≤p, α1 = n1/(n1 + 1) and α2 = n2/(n2 + 1).

Notice that the data-generation model (a)–(b) are quite general meaning
that the population are linear combinations of some unobservable indepen-
dent component. They are also adopted in overall recent studies on high-
dimensional statistics, see Chen et al. (2010), Li and Chen (2012), Srivastava
et al. (2011) and etc.

2.2 Asymptotic misclassification probability

The D-criterion (1) is easily seen equivalent to classifying z into Π1 when

α1(z− x̄)′A−1(z− x̄) < α2(z− ȳ)′A−1(z− ȳ), (3)

where

A =

n1∑
i=1

(xi − x̄)(xi − x̄)′ +

n2∑
j=1

(yj − ȳ)(yj − ȳ)′, (4)

involves correlation information between variables. This criterion has a straight-
forward form and does not need a preliminarily selected subset of features or
any thresholding parameter.

The associated error of misclassifying z ∈ Π1 into Π2 is

P (2|1) = P
{
α1(z− x̄)′A−1(z− x̄)− α2(z− ȳ)′A−1(z− ȳ) > 0

∣∣z ∈ Π1

}
.(5)

Under the data-generation models (a) and (b), since xi = Γx∗i + µ1,yi =
Γy∗i + µ2, we have A = Γ ÃΓ , or ΓA−1Γ = Ã−1, where

Ã =

n1∑
i=1

(x∗i − x̄∗)(x∗i − x̄∗)′ +

n2∑
j=1

(y∗j − ȳ∗)(y∗j − ȳ∗)′. (6)

The misclassification probability (5) is rewritten as

P (2|1) = P
{
α1(z∗ − x̄∗)′ΓA−1Γ (z∗ − x̄∗)

−α2(z∗ − ȳ∗ − Γ−1δ)′ΓA−1Γ (z∗ − ȳ∗ − Γ−1δ) > 0
∣∣z ∈ Π1

}
= P

{
α1(z∗ − x̄∗)′Ã−1(z∗ − x̄∗)

−α2(z∗ − ȳ∗ − µ̃)′Ã−1(z∗ − ȳ∗ − µ̃) > 0
∣∣z ∈ Π1

}
. (7)

Here is the first main result of this paper.



6 Zhaoyuan Li, Jianfeng Yao

Theorem 1 Under the data-generation models (a) and (b), assume that the
following hold:

1. p/n→ y ∈ (0, 1) and n1/n→ λ ∈ (0, 1), where n = n1 + n2 − 2;
2. E |x∗1|4+b

′
<∞ and E |y∗1 |4+b

′
<∞ for some constant b′ > 0.

Then as p, n → ∞, the misclassification probability (7) for the D-criterion
satisfies

lim {P (2|1)− Φ(ϑ1)} = 0, (8)

where

ϑ1 = − ∆2

2
√

y
λ(1−λ) +∆2

√
1− y, ∆2 = ||µ̃||2 = δ′Σ−1δ,

is the Mahalanobis distance between the two populations Π1 and Π2.

The proof of the theorem is given in Appendix 1. The significance of the
result is as follows. The asymptotic value of P (2|1) depends on the values of
y, λ and ∆2, and is independent of other characteristics of the distributions
Π1 and Π2. Firstly, this asymptotic value is symmetric about λ, so the value
remains unchanged under a switch of the populations Π1 and Π2. Secondly,
if n1 and n2 do not have large difference, i.e. λ→ 0 or λ→ 1, the asymptotic
value of P (2|1) mainly depends on ∆ when y is fixed. In other words, the
classification task becomes easier for the D-criterion when the Mahalanobis
distance between two populations increases as expected. However, when y → 1,
the number of features is very close to the sample size, the classification task
becomes harder for the D-criterion due to the instability of the inverse A−1,
a phenomenon well-noticed in high-dimensional statistical literature.

Under normal assumption, Saranadasa (1993) derived another asymptotic
value for P (2|1)

lim {P (2|1)− Φ(ϑ2)) = 0, ϑ2 = −1

2
∆
√

1− y.

Notice that ϑ1 = τ · ϑ2, with

τ =
1√
y

λ(1−λ)∆2 + 1
.

Let us comment on the difference between Φ(ϑ1) and Φ(ϑ2). The value of
λ does not influence on the difference significantly. Without loss of generality,
let λ = 1/2. The factor τ is 1/2 when y and ∆2 satisfy y/∆2 = 3/4. Under this
setting, Figure 1 shows the asymptotic values Φ(ϑ1), Φ(ϑ2) and compares them
to empirical values from simulations, as y ranges from 0.1 to 0.9 with step 0.1.
Obviously, the difference between the two values are non-negligible ranging
from 3.5% to 5.5%. Moreover, Φ(ϑ1) is much closer to the empirical values
than Φ(ϑ2). So our asymptotic result is more accurate. Other experiments
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Fig. 1 Comparison between Φ(ϑ1) (solid), Φ(ϑ2) (dashes) and empirical values (dots) with
10,000 replications under normal samples. n1 = n2 = 500 and p ranges from 50 to 450 with
step 50.
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(b)

Fig. 2 Φ(ϑ1) (solid) comparison of with empirical values (dashes) under different scenarios
and with 10,000 replications for normal samples. Sample size n = 500, and n1 = n2 = n/2
for the left, and n1 = n/4, n2 = 3n/4 for the right.

have shown that only when the ratio of y and ∆2 reaches some small values
as of order 10−2, the difference between them can be negligible.

Additional experiments are conducted to check the accuracy of the asymp-
totic value Φ(ϑ1). Figure 2 compares the values of Φ(ϑ1) to empirical values
from simulations for normal samples. The empirical misclassification proba-
bilities are very close to the theoretical values of Φ(ϑ1). It’s the same for both
n1 = n2 and n1/n2 = 1/4 situations.
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Table 1 Comparison of the D-criterion with existing classifiers under the equal correlation
setting for normal samples: median of test classification error (with their standard errors in
parentheses)

ρ D-Criterion ROAD S-ROAD1 S-ROAD2 NB Oracle T-Criterion

0 9.6(1.55) 9.4(2.91) 11.4(3.54) 9.6(3.24) 6.6(1.23) 5.6(1.13) 6.2(1.18)
0.1 9.2(1.52) 8.4(2.50) 8.6(2.58) 8.4(2.50) 12.4(1.57) 5.4(1.12) 12.4(1.57)
0.2 8.0(1.49) 7.2(2.39) 7.4(2.42) 7.2(2.39) 16.8(1.77) 4.4(1.06) 16.8(1.76)
0.3 6.4(1.37) 6.0(1.87) 6.0(1.86) 6.0(1.87) 20.2(1.88) 3.4(0.96) 20.2(1.87)
0.4 5.0(1.24) 4.6(1.55) 4.6(1.55) 4.6(1.55) 22.6(1.94) 2.4(0.82) 22.6(1.94)
0.5 3.4(1.04) 3.2(1.02) 3.2(1.02) 3.2(1.02) 24.6(2.00) 1.6(0.65) 24.6(1.99)
0.6 2.0(0.79) 1.8(0.73) 1.8(0.74) 1.8(0.73) 26.2(2.04) 0.8(0.46) 26.2(2.03)
0.7 0.8(0.51) 0.8(0.47) 0.8(0.47) 0.8(0.47) 27.4(2.06) 0.2(0.26) 27.4(2.05)
0.8 0.2(0.22) 0.2(0.20) 0.2(0.20) 0.2(0.20) 28.6(2.08) 0.0(0.09) 28.6(2.07)
0.9 0.0(0.02) 0.0(0.02) 0.0(0.02) 0.0(0.02) 29.6(2.10) 0.0(0.00) 29.6(2.10)

2.3 Monte Carlo experiments

We conduct extensive tests to compare the D-criterion with several existing
classification methods for high-dimensional data, the ROAD method and its
variants S-ROAD1 andS-ROAD2, SCRDA, and the NB method, as well as the
oracle. The oracle is defined following Fan et al. (2012) as the Fisher’s LDA
with true mean and true covariance matrix.

In all simulation studies, the number of variables is p = 125, and the sample
sizes of the training and testing data in two groups are n1 = n2 = 250. The
sparsity size is set to be n0 = 10. A similar setting is used in Fan et al. (2012).
Delocalized scenario is considered.

2.3.1 Equal correlation setting

In this part, the covariance Σ is set to be an equal correlation matrix and
correlation coefficient ρ ranges from 0 to 0.9 with step 0.1.

Simulation results for normal samples are shown in Table 1 and a graphical
summary is given in Figure 3 including the median classification errors and
standard errors. The D-criterion performs similarly to the ROAD in terms of
classification errors and is more robust than ROAD when ρ is smaller than
0.5. The NB and the T-criterion lose efficiency when correlation exists in this
setting. Notice that the results of SCRDA calculated using the R package
provided by Guo et al. (2005) are not included. The package turns out to fail
in some of our settings and report “NA” value. The percentage of failures in
the simulations can reach 58%. Therefore, it is unreliable to include SCRDA
for comparison.

Simulation results for Student’s t (degree of freedom is set to be 7) sam-
ples are shown in Table 2. All classifiers have slightly higher misclassification
rates for Student’s t samples. S-ROAD1 and S-ROAD2 have larger standard
errors. And S-ROAD1, NB and T-criterion lose efficiency when correlation is
significant. The D-criterion outperforms the others except ROAD in term of
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(a) Median classification errors
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(b) Standard errors

Fig. 3 The median classification errors and standard errors for various methods under equal
correlation structure and delocalization: D-criterion (solid); ROAD (dash); S-ROAD2 (dot);
Oracle (cross).

Table 2 Comparison of the D-criterion with existing classifiers under the equal correlation
setting for Student’s t samples: median of test classification error (with their standard errors
in parentheses)

ρ D-Criterion ROAD S-ROAD1 S-ROAD2 NB Oracle T-Criterion

0 12.0(1.55) 9.0(2.76) 9.0(2.80) 9.0(3.24) 9.1(1.29) 7.8(1.29) 8.6(1.24)
0.1 11.6(1.56) 9.8(3.11) 15.2(6.32) 11.6(3.61) 15.2(4.17) 7.6(1.27) 14.8(3.40)
0.2 10.4(1.48) 8.6(2.81) 19.6(6.76) 11.4(3.44) 19.2(7.00) 6.6(1.23) 19.0(5.79)
0.3 9.0(1.38) 7.4(2.36) 24.0(7.26) 10.6(3.00) 22.4(8.83) 5.6(1.16) 22.0(7.58)
0.4 7.6(1.27) 6.0(1.50) 27.6(8.06) 9.2(2.73) 24.8(10.15) 4.6(1.06) 24.2(8.99)
0.5 6.0(1.13) 4.8(1.00) 28.9(9.35) 7.8(2.26) 27.0(11.11) 3.4(0.91) 26.2(10.11)
0.6 4.4(0.97) 3.4(0.84) 29.2(10.83) 6.0(1.73) 29.0(11.90) 2.4(0.75) 27.6(11.02)
0.7 2.8(0.78) 2.0(0.65) 29.2(12.32) 4.0(1.26) 30.6(12.51) 1.4(0.57) 29.0(11.79)
0.8 1.2(0.53) 0.8(0.43) 28.8(13.74) 2.0(0.90) 32.0(13.01) 0.6(0.36) 30.2(12.44)
0.9 0.2(0.23) 0.2(0.20) 28.6(15.06) 0.4(0.39) 33.4(13.35) 0.0(0.14) 31.2(12.96)

classification error. But the D-criterion has the smallest standard error which
is close to that of Oracle.

2.3.2 Autoregressive correlation setting

In this part, the covariance Σ is set to be an autoregressive correlation matrix
and ρ ranges from 0 to 0.9 with step 0.1. Previous the results have shown that
NB is not a good rule when significant correlation exists. Therefore, NB is
no more included in comparison. Since the comparison results are similar in
normal samples and Student’t t samples, we only use normal samples in this
part.

Simulation results are shown in Table 3 and a graphical summary is given
in Figure 4. The T-criterion is only suitable for independent case ρ = 0, and
loses efficiency when ρ > 0. The D-criterion has the same performance with
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Table 3 Comparison of the D-criterion with existing classifiers under the autoregressive
correlation setting: median of test classification error (with their standard errors in paren-
theses)

ρ D-Criterion ROAD S-ROAD1 S-ROAD2 Oracle T-Criterion

0 9.6 (1.55) 9.4 (2.91) 11.6 (3.54) 9.6 (3.24) 5.6(1.13) 6.2(1.18)
0.1 11.8(1.68) 11.4(3.42) 12.8(3.67) 11.6(3.61) 0.0(0.09) 8.0(1.31)
0.2 14.2(1.80) 13.4(4.27) 14.4(4.02) 13.6(4.39) 0.0(0.15) 10.0(1.44)
0.3 16.4(1.89) 15.4(5.48) 16.0(4.61) 15.6(5.55) 0.4(0.33) 12.2(1.57)
0.4 18.6(1.99) 17.4(6.78) 17.8(5.95) 17.6(6.73) 1.8(0.64) 14.8(1.70)
0.5 20.8(2.07) 19.6(7.54) 20.0(7.29) 19.8(7.52) 4.6(1.02) 17.8(1.81)
0.6 22.6(2.16) 22.0(7.53) 22.6(7.34) 22.2(7.46) 8.6(1.38) 21.4(1.92)
0.7 23.6(2.26) 23.8(7.71) 26.0(7.54) 24.0(7.64) 12.6(1.71) 25.0(2.03)
0.8 22.8(2.38) 23.2(8.14) 30.6(7.67) 23.8(8.19) 14.6(1.94) 31.0(2.12)
0.9 17.0(2.39) 17.0(7.31) 33.4(9.13) 18.0 (8.26) 11.4(1.93) 37.0(2.19)
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(a) Median classification errors
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(b) Standard errors

Fig. 4 The median classification errors and standard errors for various methods under au-
toregressive correlation structure: D-criterion (solid); ROAD (dash); S-ROAD2 (dot); Oracle
(cross).

ROAD and S-ROAD2 in terms of classification error. Moreover, the D-criterion
is much more robust and has a standard error close to that of the oracle.

In conclusion, compared to these existing methods, the D-criterion is com-
petitive for “large p-large n” situation specifically under delocalized scenario
and autoregressive correlation structure. In such a scenario, the D-criterion has
a classification error comparable to that of the Road-family classifiers while
being the most robust with a much smaller standard error close to that of the
oracle.

3 The T-criterion

Notice that one limitation of the D-criterion is that the dimension p must be
smaller than the sample size n. In addition, when the ratio p/n is close to 1,
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the performance of this criterion becomes bad due to the matrix A is close to
singular. The T-criterion in contrast does not have such a limitation.

3.1 Asymptotic misclassification probability

The T-criterion (2) is easily seen equivalent to

α1(z− x̄)′(z− x̄) < α2(z− ȳ)′(z− ȳ). (9)

Obviously, the T-criterion has a very simple form only involving the group
mean vectors. In particular, it does not require to select a subset of features
or to choose a threshold parameter.

When z ∈ Π1, the error of misclassifying z into Π2 is

P (2|1) = P
{
α1(z− x̄)′(z− x̄)− α2(z− ȳ)′(z− ȳ) > 0

∣∣z ∈ Π1

}
. (10)

Here is the second main result of this paper. Throughout the paper, 1d is a
length d vector with all entries 1, 0d is a length d vector with all entries 0.

Theorem 2 Under the data-generation models (a) and (b), assume that the
following hold:

1. γ4+b′,x = E |x∗1|4+b
′
< ∞ and γ4+b′,y = E |y∗1 |4+b

′
< ∞ for some constant

b′ > 0;
2. the covariance matrix Σ is diagonal, i.e. Σ = diag(σll)1≤l≤p;
3. supp≥1

{
|δl|, σllδ2l , l = 1, . . . , p

}
<∞; and

4.

∑p
l=1 σ

2+b
ll +

∑p
l=1 δ

4+2b
l

(
∑p
l=1 σllδ

2
l )

1+ b
2

→ 0 as p→∞, where b = b′/2.

Then we have as p→∞ and n∗ = min(n1, n2)→∞,

lim

{
P (2|1)− Φ

(
−α2||δ||2

Bp

)}
= 0, (11)

where

B2
p = 4

(
1

n1
+

1

n2

)
tr(Σ2) + 4θx

(
1

n2
− 1

n1

)
1′pΓ

3δ

+4

(
1− 1

n2

)
δ′Σδ +O

(
p

n2∗

)
.

The proof of the theorem is given in Appendix 2. Assumption 1 is needed for
dealing with non-normal populations. Assumption 3 is a weak and technical
condition without any practical limitation. Assumption 4 is satisfied for most
applications where typically

∑p
l=1 σ

2+b
ll ,

∑p
l=1 σllδ

2
l and

∑p
l=1 δ

4+2b
l are all of

order p. The main term of B2
p is,

B2
p ≈ 4δ′Σδ,
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since it has the order O(p) and other terms are O(p/n∗). In order to get more
accurate result in finite sample case, these O(p/n∗) terms are kept in the
Theorem.

Notice that the main term of the approximation of P (2|1) depends on the
ratio (δ′δ)/(2

√
δ′Σδ). If the components δl of δ satisfy |δl| ≥ c > 0, and

0 < d1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ d2 for positive constants c, d1, d2, then when
p→∞,

δ′Σδ ≥ pd1c2 →∞,

and

δ′δ

2
√
δ′Σδ

≥ 1

2
√
d2
·
√
δ′Σδ →∞, i.e. P (2|1)→ 0.

In other words, the classification task becomes easier when the dimension
grows. In other scenarios, this misclassification probability is not guaranteed
to vanish. For example, under a localized scenario, δ1 = · · · = δn0 = c 6= 0,
δl = 0 for l > n0 and n0 is fixed and independent of p, then

c

2

√
n0
d2
≤ δ′δ

2
√
δ′Σδ

≤ c

2

√
n0
d1
, i.e. lim inf P (2|1) ≥ Φ

(
− c

2

√
n0
d1

)
to0.

Next, we provide below some simulation results to demonstrate the impor-
tance of keeping the O(p/n∗) terms in B2

p . The experiments use p = 500 and
various combinations of sample sizes (n1, n2) with normal samples and gamma
samples, respectively. Empirical classification errors are compared in Figure 5
to the following three approximations of the variance B2

p :

– B2
p(1) = 4

(
1
n1

+ 1
n2

)
tr(Σ2) + 4θx

(
1
n2
− 1

n1

)
1′pΓ

3δ + 4
(

1− 1
n2

)
δ′Σδ;

– B2
p(2) = 4

(
1
n1

+ 1
n2

)
tr(Σ2) + 4

(
1− 1

n2

)
δ′Σδ;

– B2
p(3) = 4δ′Σδ.

Among the three, the proposed approximation B2
p(1) matches very well the

empirical values, while B2
p(3) is by far the worst in all tested cases. As for

B2
p(1) and B2

p(2), they are by definition the same for normal samples (since
θx = 0). For gamma samples, they remain close each other particularly when
the relative difference of sample sizes (1/n2 − 1/n1) become small, and B2

p(1)
has an overall slightly better performance than B2

p(2) (in these tested cases).
Notice that the gamma standardized variables are x∗i = (ui − 1) where ui is
gamma distributed with unit shape and scale parameters so that θx = −2.

Under normal assumption, the expectation of
∑p
l=1 kl (defined in Ap-

pendix) is the same with (17), and the variance simplifies to

B2
p = 4

(
1

n1
+

1

n2

)
tr(Σ2) + 4

(
1− 1

n2

)
δ′Σδ +O

(
p

n2∗

)
,

which coincides with the result established in Saranadasa (1993).
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(a) Normal samples
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(b) Gamma samples

Fig. 5 The empirical values (solid) are compared to asymptotic values: dots (B2
p(1)), dashes

(B2
p(2)) and dash-dots(B2

p(3)), with 10,000 replications for normal samples and gamma
samples. p = 500, n1 range from 50 to 500 with step 50 and n2 = n1 + 100.

Table 4 The T-criterion under delocalization setting: median of test classification errors
(with standard errors in parentheses)

p > n p < n

n1 = n2 100 150 200 250 300 350 400 450 500

median 13.00 11.00 9.75 9.00 8.50 8.14 7.88 7.56 7.40
s.e. (2.52) (1.90) (1.57) (1.35) (1.20) (1.11) (1.01) (0.95) (0.89)

3.2 Monte Carlo experiments

We conduct simulations to show the performances of the T-criterion for normal
distributions under delocalized scenario. In the simulation studies, the number
of variables is p = 500. Without loss of generality, the sample sizes of the
training and testing data in two groups are equal and range from 100 to 500
with step 50. The covariance Σ is set to be an identity matrix Ip and the
sparsity size is n0 = 10.

Simulation results are shown in Table 4. The classification error decreases
as sample size increases. Meanwhile, small standard errors indicate that the T-
criterion is robust with respect to the delocalization nature of mean differences.
Notice that the T-criterion is an independence rule. It’s suitable for case where
variables are independent or the correlations between variables are weak. As
shown in Tables 1-3, the T-criterion has very high misclassification rate when
variables have significant correlations.
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Table 5 Classification error and number of used genes for the leukemia data

Method Training error Testing error Number of genes used

T-criterion 0 2 7129
ROAD 0 1 40
SCRDA 1 2 264

FAIR 1 1 11
NSC 1 3 24
NB 0 5 7129

3.3 A real data analysis

In this part, we analyze a popular gene expression data: ‘leukemia’ (Golub et
al. 1999). The leukemia data set contains p = 7129 genes for n1 = 27 acute
lymphoblastic leukemia and n2 = 11 acute myeloid leukemia vectors in the
training set. The testing set includes 20 acute lymphoblastic leukaemia and
14 acute myeloid leukemia vectors. Obviously, this data set is a “large p-small
n” case. The classification results for the T-criterion, ROAD, SCRDA, FALR,
NSC and NB methods are shown in Table 5. (The results for ROAD, SCRDA,
FAIR, NSC and NB are found in Fan et al. (2012).) The T-criterion is as
good as ROAD and NB in terms of training error. ROAD and FAIR perform
better than T-criterion in terms of testing error. Both of NB and T-criterion
make use of all genes, but T-criterion outperforms NB. Meanwhile, T-criterion
performs better than NSC. Overall, on this data set, T-criterion outperforms
SCRDA, NSC and NB, equally well as FIRE, and is beaten only by ROAD (2
v.s. 1 errors). It’s quite surprising that a “simple-minded” rule like T-criterion
has a performance comparable to a sophisticated rule like ROAD.

4 Conclusion

We have proposed two new classification rules for high-dimensional data,
namely the D-criterion and the T-criterion. Both methods consider the overall
within group sum of squares and cross products matrices. The D-criterion com-
pares the determinants of these matrices and integrates correlation information
between variables. The D-criterion performs well when correlations between
variables become significant. When the correlation coefficient increases, the
classification error of the D-criterion drops. The incorporation of covariance
structure therefore strengthens the effectiveness in high dimensional classifica-
tion. The T-criterion, on the other hand, compares the traces of these matrices
and involves only group mean vectors. The implementation of these two cri-
teria is straightforward and it does not suffer from challenging issues such as
variable selection, thresholding or control of the sparsity size that are required
in the existing methods. We found D-criterion is particularly competitive in
delocalized scenario. When p > n, the T-criterion is quite effective as proven
by the real data analysis.
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Moreover, using the explicit forms of the criteria and recent results from
random matrix theory, we are able to derive asymptotic approximations for the
misclassification probability of both criteria. Notice that such asymptotic ap-
proximations are unknown for most of the existing high-dimensional classifiers
in the literature. Simulation results have shown that the proposed approxima-
tions are quite accurate for both normal and non-normal populations.

A Appendix Technical proofs

A.1 Proof of Theorem 1

We first recall two known results on the Marčenko-Pastur distribution, which can be found
in Theorem 3.10 in Bai and Silverstein (2010) and Lemma 3.1 in Bai et al. (2009).

Lemma 1 Assume p/n → y ∈ (0, 1) as n → ∞, for the sample covariance matrix S̃ =
Ã/n, we have the following results

(1)

1

p
tr(S̃−1)

a.s.−→ a1,
1

p
tr(S̃−2)

a.s.−→ a2,

where a1 = 1
1−y and a2 = 1

(1−y)3 ;

(2) Moreover,

x̄∗′S̃−ix̄∗
a.s.−→ ai, ȳ∗′S̃−iȳ∗

a.s.−→ ai, i = 1, 2.

Under the data-generation models (a) and (b), let Ω = (Ã, x̄∗, ȳ∗). Conditioned on Ω,
the misclassification probability (7) can be rewritten as

PΩ(2|1) = P
(
K > 0

∣∣Ω) = PΩ (K > 0) ,

where

K = α1(z∗ − x̄∗)′Ã−1(z∗ − x̄∗)− α2(z∗ − ȳ∗ − µ̃)′Ã−1(z∗ − ȳ∗ − µ̃).

Therefore, PΩ(2|1) = PΩ (K > 0) where z ∈ Π1 is assumed implicitly.
We evaluate the first two conditional moments of K.

Lemma 2 Let Ã−1 = (bll′ )l,l′=1,...,p. We have

(1)

Mp = E(K|Ω)

= (α1 − α2)tr(Ã−1) + α1x̄∗′Ã−1x̄∗

−α2(ȳ∗ + µ̃)′Ã−1(ȳ∗ + µ̃); (12)

(2)

B2
p = V ar(K|Ω)

= (α1 − α2)2(γx − 3)
∑
l

b2ll + 2(α1 − α2)2tr(Ã−2) + 4α2
1x̄∗′Ã−2x̄∗

+4α2
2(ȳ∗ + µ̃)′Ã−2(ȳ∗ + µ̃) + (4α1α2 − 4α2

2)θx

∑
l

bll(Ã
−1(ȳ∗ + µ̃))l

−8α1α2

∑
ll′

x̄∗l bll′ (Ã
−2(ȳ∗ + µ̃))l + (4α1α2 − 4α2

1)θx

∑
l

bll(Ã
−1x̄∗)l.

(13)
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Proof of Lemma 2. It is easy to obtain the conditional expectation (12). For the condi-
tional variance of K, we first calculate the conditional second moment

E(K2|Ω) = EΩ

{
α2
1[z∗′Ã−1z∗ − 2x̄∗′Ã−1z∗ + x̄∗′Ã−1x̄∗]2

+α2
2[z∗′Ã−1z∗ − 2(ȳ∗ + µ̃)′Ã−1z∗ + (ȳ∗ + µ̃)′Ã−1(ȳ∗ + µ̃)]2

−2α1α2[z∗′Ã−1z∗ − 2x̄∗′Ã−1z∗ + x̄∗′Ã−1x̄∗]

×[z∗′Ã−1z∗ − 2(ȳ∗ + µ̃)′Ã−1z∗ + (ȳ∗ + µ̃)′Ã−1(ȳ∗ + µ̃)]

}
.

Since

EΩ
[
z∗′Ã−1z∗

]2
= (γx − 3)

∑
l

b2ll +
(
trÃ−1

)2
+ 2tr(Ã−2);

EΩ
[
z∗′Ã−1z∗ · x̄∗′Ã−1z∗

]
= θx

∑
l

bll
(
Ã−1x̄∗

)
l
;

EΩ
[
z∗′Ã−1z∗ · (ȳ∗ + µ̃)′Ã−1z∗

]
= θx

∑
l

bll
(
Ã−1(ȳ∗ + µ̃)

)
l
;

EΩ
[
x̄∗′Ã−1z∗ · z∗′Ã−1x̄∗

]
= x̄∗′Ã−2x∗;

EΩ
[
(ȳ∗ + µ̃)′Ã−1z∗ · z∗′Ã−1(ȳ∗ + µ̃)

]
= (ȳ∗ + µ̃)′Ã−2(ȳ∗ + µ̃),

we obtain

E(K2|Ω) = (α1 − α2)2(γx − 3)
∑
l

b2ll + (α1 − α2)2
(
tr(Ã−1)

)2
+ 2(α1 − α2)2tr(Ã−2)

+4α2
1x̄∗′Ã−2x̄∗ + 4α2

2(ȳ∗ + µ̃)′Ã−2(ȳ∗ + µ̃)− 8α1α2x̄∗′Ã−2(ȳ∗ + µ̃)

+2α1(α1 − α2)tr(Ã−1)(x̄∗′Ã−1x̄∗) + 2α2(α2 − α1)tr(Ã−1)(ȳ∗ + µ̃)′Ã−1(ȳ∗ + µ̃)

+4α1(α2 − α1)θx

∑
l

bll
(
Ã−1x̄∗

)
l

+ 4α2(α1 − α2)θx

∑
l

bll
(
Ã−1(ȳ∗ + µ̃)

)
l

+
(
α1x̄∗′Ã−1x̄∗ − α2(ȳ∗ + µ̃)′Ã−1(ȳ∗ + µ̃)

)2
.

Finally, by

V ar(K|Ω) = E(K2|Ω)− E2(K|Ω),

equation (13) follows. The Lemma 2 is proved.
The first step of the proof of Theorem 1 is similar to the one of the proof of Theorem 2

where we ensure that K −E(K) satisfies the Lyapounov condition. The details are referred
to (13). Therefore, conditioned on Ω, as n → ∞, the misclassification probability for the
D-criterion satisfies

lim

{
PΩ(2|1)− Φ

(
Mp

Bp

)}
→ 0.

Next, we look for main terms in Mp and B2
p, respectively, using Lemma 2. For Mp, we find

the following equivalents for the three terms

1.

(α1 − α2)tr(Ã−1) =
p

n
(α1 − α2) ·

1

p
tr(S̃−1)

=
a1

n
·
{
p

(
1

n2 + 1
−

1

n1 + 1

)}
+ o(

1

n
);
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2.

α1x̄∗′Ã−1x̄∗ =
α1

n

∣∣∣∣x̄∗∣∣∣∣2 ·( x̄∗∣∣∣∣x̄∗∣∣∣∣
)′

S̃−1

(
x̄∗∣∣∣∣x̄∗∣∣∣∣

)
=
a1

n
· α1

∣∣∣∣x̄∗∣∣∣∣2 + o(
1

n
);

3.

α2(ȳ∗ + µ̃)′Ã−1(ȳ∗ + µ̃) =
a1

n
· α2

∣∣∣∣ȳ∗ + µ̃
∣∣∣∣2 + o(

1

n
).

Finally,

Mp =
a1

n
·
{
p

(
1

n2 + 1
−

1

n1 + 1

)
+ α1

∣∣∣∣x̄∗∣∣∣∣2 + α2

∣∣∣∣ȳ∗ + µ̃
∣∣∣∣2}+ o(

1

n
). (14)

As for B2
p, we find the following equivalents for the seven terms

1. ∣∣∣∣∣(α1 − α2)2(γx − 3)
∑
l

b2ll

∣∣∣∣∣
≤

1

n2

(
1

n2 + 1
−

1

n1 + 1

)2 ∣∣γx − 3
∣∣ · tr(S̃−2)

=
ya2

n3

∣∣γx − 3
∣∣+ o(

1

n3
) = O(

1

n3
);

2.

2(α1 − α2)2tr(Ã−2)

=
2

n2

(
1

n2 + 1
−

1

n1 + 1

)2

· tr(S̃−2)

=
2ya2

n3
+ o(

1

n3
) = O(

1

n3
);

3.

4α2
1x̄∗′Ã−2x̄∗ = 4α2

1

a2||x̄∗||2

n2
+ o(

1

n2
);

4.

4α2
2(ȳ∗ + µ̃)′Ã−2(ȳ∗ + µ̃) = 4α2

2

a2
∣∣∣∣ȳ∗ + µ̃

∣∣∣∣2
n2

+ o(
1

n2
);

5.

4α2

∣∣α1 − α2

∣∣θx∑
l

bll(Ã
−1(ȳ∗ + µ̃))l

=
4α2

n2

∣∣∣ 1

n2 + 1
−

1

n1 + 1

∣∣∣∑
l

cll(S̃
−1(ȳ∗ + µ̃))l

≤
4α2

n2

∣∣∣ 1

n2 + 1
−

1

n1 + 1

∣∣∣(∑
l

c2ll

) 1
2

·

(∑
l

(
S̃−1(ȳ∗ + µ̃)

)2
l

) 1
2

≤
4α2

n3

√
p ·
∣∣∣∣ȳ∗ + µ̃

∣∣∣∣√a2 + o(
1

n2
√
n

);
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6.

8α1α2

∑
ll′

x̄∗l bll′ (Ã
−2(ȳ∗ + µ̃))l ≤

8α1α2

n3

√
p ·
∣∣∣∣ȳ∗ + µ̃

∣∣∣∣√a2 + o(
1

n2
√
n

);

7.

(4α1α2 − α2
1)θx

∑
l

bll(Ã
−1x̄∗)l ≤

4α1

n3

√
p · ||x̄∗||

√
a2 + o(

1

n2
√
n

).

It can be proved that almost surely,

||x̄∗||2 −
p

n1
→ 0,∣∣∣∣ȳ∗ + µ̃

∣∣∣∣2 − ( p

n2
+∆2

)
→ 0,∣∣∣∣ȳ∗ + µ̃

∣∣∣∣−√ p

n2
+∆2 → 0.

Then the terms 2 and 3 are of order O( 1
n2 ) and 5-7 are of order o( 1

n2 ). Finally,

B2
p = 4α2

1

a2||x̄∗||2

n2
+ 4α2

2

a2
∣∣∣∣ȳ∗ + µ̃

∣∣∣∣2
n2

+ o(
1

n2
). (15)

Since n1/n→ λ, we have

n1 → nλ, n2 → n(1− λ).

Finally, it holds almost surely,

lim

{
Φ

(
Mp

Bp

)
− Φ

(
−

∆2√
y

λ(1−λ) +∆2

√
1− y

)}
→ 0.

This ends the proof of Theorem 1.

A.2 Proof of Theorem 2

By the assumption 2 in Theorem 2, the covariance matrix is Σ = diag(σll)1≤l≤p. Under the
data-generation models (a) and (b), the misclassification probability (10) can be rewritten
as

P (2|1) = P
{
α1(z∗ − x̄∗)′Σ(z∗ − x̄∗)− α2(z∗ − ȳ∗ − µ̃)′Σ(z∗ − ȳ∗ − µ̃) > 0

∣∣z ∈ Π1

}
= P

(
p∑
l=1

kl > 0

∣∣∣z ∈ Π1

)
, (16)

where

kl = α1(z∗l − x̄
∗
l )2σll − α2(z∗l − ȳ

∗
l − µ̃l)

2σll.

We firstly evaluate the first two moments of
∑p

l=1
kl.

Lemma 3 Under the data-generation models (a) and (b), we have
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(1)

E(kl) = −α2σllµ̃
2
l ,

and

Mp =

p∑
l=1

E(kl) = −α2||δ||2; (17)

(2)

V ar(kl) = σ2
ll

{
β0 + β1(γ) + β2(θ)µ̃l + 4α2µ̃

2
l

}
,

and

B2
p =

p∑
l=1

V ar(kl) = [β0 + β1(γ)] tr(Σ2) + β2(θ)I′Γ 3δ + 4α2δ
′Σδ, (18)

where

β0 = α2
1

6n2
1 + 3n1 − 3

n3
1

+ α2
2

6n2
2 + 3n2 − 3

n3
2

+ 2(α1α2 − 1),

β1(γ) = γx

(
α2
1

n3
1

+ (α1 − α2)2

)
+
α2
2

n3
2

γy ,

β2(θ) = 4α2(α1 − α2)θx +
4

n2
2

θy .

If removing the small terms with order O(p/n2
∗), then the formula of B2

p in Theorem 2
is obtained.

Proof of Lemma 3. Since z∗, (x∗l ) and (y∗l ) are independent, the variables (kl)l=1,...,p

are also independent. For the expectation of kl, we have

E(kl) = α1σll · E(z∗l − x̄
∗
l )2 − α2σll · E(z∗l − ȳ

∗
l − µ̃l)

2

= α1σll · α−1
1 − α2σll · (α−1

2 + µ̃2l )

= −α2σllµ̃
2
l .

Equation (17) follows.
For the variance, we have

V ar(kl) = E [kl − E(kl)]
2

= σ2
ll · E

{
α1(z∗l − x̄

∗
l )2 − α2(z∗l − ȳ

∗
l − µ̃l)

2 + α2µ̃
2
l

}2

= σ2
ll ·
{
α2
1E(z∗l − x̄

∗
l )4 + α2

2E(z∗l − ȳ
∗
l )4 + 4α2

2µ̃
2
l E(z∗l − ȳ

∗
l )2

−2α1α2E
[
(z∗l − x̄

∗
l )2(z∗l − ȳ

∗
l )2
]
− 4α2

2µ̃lE(z∗l − ȳ
∗
l )3

+4α1α2µ̃lE [(z∗l − x̄
∗
l )2(z∗l − ȳ

∗
l )]
}
.

Moreover,

E [z∗l − x̄
∗
l ]4 = γx

(
1 +

1

n3
1

)
+

6n2
1 + 3n1 − 3

n3
1

,
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E [z∗l − ȳ
∗
l ]4 = γx +

γy

n3
2

+
6n2

2 + 3n2 − 3

n3
2

,

E [z∗l − ȳ
∗
l ]2 = α−1

2 ,

E [z∗l − ȳ
∗
l ]3 = θx −

θy

n2
2

,

E
{

[z∗l − x̄
∗
l ]2[z∗l − ȳ

∗
l ]2
}

= γx +
1

α1α2
− 1,

and

E
{

(z∗l − x̄
∗
l )2(z∗l − ȳ

∗
l )
}

= θx.

Finally, we obtain

V ar(kl) = σ2
ll

{
α2
1

[
γx

(
1 +

1

n3
1

)
+

6n2
1 + 3n1 − 3

n3
1

]
+ α2

2

[
γx +

γy

n3
2

+
6n2

2 + 3n2 − 3

n3
2

]

+4α2
2µ̃

2
l α
−1
2 − 2α1α2

[
γx +

1

α1α2
− 1

]
+ 4α1α2µ̃lθx − 4α2

2µ̃l

[
θx −

θy

n2
2

]}

= σ2
ll

{
γx

(
α2
1 +

α2
1

n3
1

+ α2
2 − 2α1α2

)
+
α2
2γy

n3
2

+ α2
1

6n2
1 + 3n1 − 3

n3
1

+α2
2

6n2
2 + 3n2 − 3

n3
2

− 2 + 4α2µ̃
2
l + 2α1α2 + 4α2(α1 − α2)µ̃lθx +

4µ̃l

n2
2

θy

}
= σ2

ll

{
β0 + β1(γ) + β2(θ)µ̃l + 4α2µ̃

2
l

}
.

Equation (18) follows. Then B2
p can be rewritten as

B2
p =

[
6n1 + 3

(n1 + 1)2
+

6n2 + 3

(n2 + 1)2
−

2

n1 + 1
−

2

n2 + 1
+

2

(n1 + 1)(n2 + 1)
−

3

n1(n1 + 1)2
−

3

n2(n2 + 1)2

+
γx

(n1 + 1)2
+

γy

(n2 + 1)2
−

2γx

(n1 + 1)(n2 + 1)
+

γx

n1(n1 + 1)2
+

γx

n2(n2 + 1)2

]
tr(Σ2)

+

[
4

n2

n2 + 1

(
1

n2 + 1
−

1

n1 + 1

)
θx +

4

n2
2

θy

]
1′pΓ

3δ

+4
n2

n2 + 1
δ′Σδ

≈
[

4

n1
+

4

n2
+

3

n2
1

+
3

n2
2

+
2

n1n2
−

3

n3
1

−
3

n3
2

+
γx

n2
1

+
γy

n2
2

−
2γx

n1n2
+
γx

n3
1

−
γy

n3
2

]
tr(Σ2)

+

[
4

(
1

n2
−

1

n1

)
θx +

4

n2
2

θy

]
1′pΓ

3δ

+4

(
1−

1

n2

)
δ′Σδ.

Only keep the terms with order O(p) and O(p/n∗) we can get the formula of B2
p in Theo-

rem 2. The Lemma 3 is proved.
We know that [kl − E(kl)]1≤l≤p are independent variables with zero mean. We use the

Lyapounov criterion to establish a CLT for
∑

l
[kl − E(kl)], that is, there is a constant b > 0
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such that

lim
p→∞

B
−(2+b)
p

p∑
l=1

E

[∣∣kl − E(kl)
∣∣2+b]→ 0.

Since ∣∣kl − E(kl)
∣∣ = σll

∣∣α1(z∗l − x̄
∗
l )2 − α2(z∗l − ȳ

∗
l )2 + 2α2µ̃l(z

∗
l − ȳ

∗
l )
∣∣

≤ σll

{∣∣z∗l − x̄∗l ∣∣2 +
∣∣z∗l − ȳ∗l ∣∣2 + 2

∣∣µ̃l∣∣∣∣z∗l − ȳ∗l ∣∣}
≤ σll

{∣∣z∗l − x̄∗l ∣∣2 + 2
∣∣z∗l − ȳ∗l ∣∣2 +

∣∣µ̃l∣∣2}
≤ σll

{
2

(∣∣z∗l ∣∣2 +
∣∣x̄∗l ∣∣2)+ 4

(∣∣z∗l ∣∣2 +
∣∣ȳ∗l ∣∣2)+

∣∣µ̃l∣∣2}
≤ σll

{
6

(∣∣z∗l ∣∣2 +
∣∣x̄∗l ∣∣2 +

∣∣ȳ∗l ∣∣2)+
∣∣µ̃l∣∣2} ,

the (2 + b)−norm of [kl − E(kl)] is

||kl − E(kl)||2+b ≤ σll

{
6

[∣∣∣∣∣∣|z∗l |2∣∣∣∣∣∣
2+b

+

∣∣∣∣∣∣|x̄∗l |2∣∣∣∣∣∣
2+b

+

∣∣∣∣∣∣|ȳ∗l |2∣∣∣∣∣∣
2+b

]
+
∣∣µ̃l∣∣2}

= σll

{
6

[(
E
∣∣z∗l ∣∣4+b′) 1

4+b′
+

(
E
∣∣x̄∗l ∣∣4+b′) 1

4+b′
+

(
E
∣∣ȳ∗l ∣∣4+b′) 1

4+b′
]

+
∣∣µ̃l∣∣2}

≤ σll

{
6

[
2γ

1/(4+b′)
4+b′,x + γ

1/(4+b′)
4+b′,y

]
+
∣∣µ̃l∣∣2} .

Then

E [kl − E(kl)]
2+b ≤ cbσ2+b

ll
·
{

1 +
∣∣µ̃l∣∣4+b′} ,

where cd is some constant depending on b. Therefore, as B2
p ≈ 4δ′Σδ = 4

∑p

l=1
µ̃2l σ

2
ll,

B
−(2+b)
p

p∑
l=1

E [kl − E(kl)]
2+b ≤ cb ·

∑
l
σ2+b
ll

+
∑

l
σ2+b
ll
|µ̃l|4+2b(∑

l
σllδ

2
l

)1+b/2
= cb ·

∑
l
σ2+b
ll

+
∑

l
δ4+2b
l

(
∑

l
σllδ

2
l
)1+b/2

→ 0,

by the assumption 4 in Theorem 2. Finally, we have

B−1
p

p∑
l=1

[kl − E(kl)]⇒ N(0, 1), as p→∞, n∗ →∞.

This ends of the proof of Theorem 2.
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