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Abstract

In this paper, we derive a joint central limit theorem for random vector whose com-
ponents are function of random sesquilinear forms. This result is a natural extension
of the existing central limit theory on random quadratic forms. We also provide ap-
plications in random matrix theory related to large-dimensional spiked population
models. For the first application, we find the joint distribution of grouped extreme
sample eigenvalues correspond to the spikes. And for the second application, under
the assumption that the population covariance matrix is diagonal with k (fixed) simple
spikes, we derive the asymptotic joint distribution of the extreme sample eigenvalue
and its corresponding sample eigenvector projection.
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1 Introduction

The aim of this paper is to derive the joint central limit theorem of a new type of
random vector whose components are made with several groups of random sesquilinear
forms. To be more specific, we consider a sequence

{
(xi, yi)i∈N

}
of iid. complex-valued,

zero-mean random vector belonging to CK × CK (K fixed) with a finite moment of
fourth-order. For positive integer n ≥ 1, write

xi = (x1i, · · · , xKi)T , X(l) = (xl1, · · · , xln)T (1 ≤ l ≤ K) , (1.1)
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Joint CLT for random sesquilinear forms

with a similar definition for the vectors {yi} and {Y (l)}1≤l≤K . The covariance between
xl1 and yl1 is denoted as ρ(l) = E[xl1yl1], 1 ≤ l ≤ K. Let

{
An = [aij(n)]

}
n

and
{
Bn =

[bij(n)]
}
n

be two sequences of n× n Hermitian matrices, and define

U(l) :=
1√
n

[
X(l)∗AnY (l)− ρ(l)trAn

]
, (1.2)

V (l) :=
1√
n

[
X(l)∗BnY (l)− ρ(l)trBn

]
.

We are studying the joint central limit theorem of the 2K-dimensional complex-valued
random vector: (

U(1), · · · , U(K), V (1), · · · , V (K)
)T

.

If we use only one sequence of Hermitian matrix, say {An} and consider one form
(K = 1), then the problem reduces to the central limit theorem of a simple random
sesquilinear form:

U(1) :=
1√
n

[
X(1)∗AnY (1)− ρ(1)trAn

]
.

If we further impose Y ≡ X, we obtain a classical random quadratic form

U∗(1) :=
1√
n

[
X(1)∗AnX(1)− ρ(1)trAn

]
with independent random variables.

There exists an extensive literature on the asymptotic distribution of quadratic form
U∗(1). The pioneering work in this area dates back to [23], who deals principally with
the case when the variables X have normal distribution. This CLT is extended to ar-
bitrary iid. components in X by [24], with additional conditions on the matrix A: in
particular, A has a zero diagonal (i.e quadratic form: Ũ(1) := 1√

n
X(1)∗AnX(1)). Later

extensions deal with other types of limiting theorem (functional CLT, law of iterated
logarithm) or dependent random variables in X, see: [21], [9], [10], [17] and [12] for
reference.

In a different area, [18] and [11] established the asymptotic behavior of quadratic
form and bilinear form, where A = Sn is a sample covariance matrix and A = (Mn −
zI)−1 is the resolvent of some large dimensional random matrix Mn, respectively. Such
CLT can be used in the areas of wireless communications and electrical engineering.

In the paper of [2], the authors derived the central limit theorem for U(l) in (1.2)
(i.e with one group of sesquilinear forms) in their Appendix as a tool for establishing
the central limit theory for the extreme sample eigenvalues when the population has a
spiked covariance structure.

In this paper, we follow the lines and strategy that was put forward in [2], and ex-
tend this CLT to arbitrary number of groups of random sesquilinear forms, which is
presented in Section 2. Indeed, this extension has been motivated by applications in
the field of random matrix theory related to the spiked population model. When the
population has a spiked covariance structure, we establish the asymptotic joint distri-
bution of any two groups of extreme sample eigenvalues that correspond to the spikes.
Besides, when the population covariance matrix is diagonal with k (fixed) simple spikes,
we find the joint distribution of the extreme sample eigenvalue and its corresponding
sample eigenvector projection using our main result. All these applications are devel-
oped in Section 3. Section 4 and the last Section contain proofs and some additional
technical lemmas.
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2 Main result: central limit theorem for random sesquilinear
forms

Theorem 2.1. Let
{
An = [aij(n)]

}
n

and
{
Bn = [bij(n)]

}
n

be two sequences of n × n
Hermitian matrices and the vector {X(l), Y (l)}1≤l≤K be defined as in (1.1). Assume
that the following limits exist:

w1 = lim
n→∞

1

n
tr[An ◦An], w2 = lim

n→∞

1

n
tr[Bn ◦Bn], w3 = lim

n→∞

1

n
tr[An ◦Bn],

θ1 = lim
n→∞

1

n
tr[AnA

∗
n], θ2 = lim

n→∞

1

n
tr[BnB

∗
n], θ3 = lim

n→∞

1

n
tr[AnB

∗
n],

τ1 = lim
n→∞

1

n
tr[A2

n], τ2 = lim
n→∞

1

n
tr[B2

n], τ3 = lim
n→∞

1

n
tr[AnBn],

where A ◦ B denotes the Hadamard product of two matrices A and B, i.e. (A ◦ B)ij =

Aij ·Bij . Define two groups of sesquilinear forms:

U(l) =
1√
n

[
X(l)∗AnY (l)− ρ(l)trAn

]
, V (l) =

1√
n

[
X(l)∗BnY (l)− ρ(l)trBn

]
.

Then, the 2K-dimensional complex-valued random vector:(
U(1), · · · , U(K), V (1), · · · , V (K)

)T
converges weakly to a zero-mean complex-valued vector W whose real and imaginary
parts are Gaussian. Moreover, the Laplace transform of W is given by

E exp

((
c

d

)T
W

)
= exp

[
1

2

(
c

d

)T
B
(
c d

) ]
, c, d ∈ CK ,

with

B =

(
B11 B12

B12 B22

)
2K×2K

.

Each block within B is a K ×K matrix, having the structure (l, l
′

= 1, · · · ,K):

B11(l, l
′
) = Cov (U(l), U(l

′
)) = w1A1 + (τ1 − w1)A2 + (θ1 − w1)A3 ,

B22(l, l
′
) = Cov (V (l), V (l

′
)) = w2A1 + (τ2 − w2)A2 + (θ2 − w2)A3 ,

B12(l, l
′
) = Cov (U(l), V (l

′
)) = w3A1 + (τ3 − w3)A2 + (θ3 − w3)A3 ,

where A1, A2 and A3 are given by

A1 = E(xl1yl1xl′1yl′1)− ρ(l)ρ(l
′
) , (2.1)

A2 = E(xl1xl′1)E(yl1yl′1) , (2.2)

A3 = E(xl1yl′1)E(xl′1yl1) . (2.3)

Proof. (proof of Theorem 2.1) It is sufficient to establish the CLT for the linear combi-
nations of random Hermitian sesquilinear forms:

K∑
l=1

[clX(l)∗AnY (l) + dlX(l)∗BnY (l)] ,

where the coefficients (cl), (dl) ∈ CK × CK are arbitrary. Also, it holds that

E[X(l)∗AnY (l)] = ρ(l)trAn , E[X(l)∗BnY (l)] = ρ(l)trBn .
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We use the moment method as in [2]. Consider the linear combination of the two
sesquilinear forms

ηn =
1√
n

K∑
l=1

{
cl[X(l)∗AnY (l)− ρ(l)trAn] + dl[X(l)∗BnY (l)− ρ(l)trBn]

}
,

which can be expanded as follows:

ηn =
1√
n

K∑
l=1

{
cl
[ n∑
u=1

(X(l)∗uY (l)u − ρ(l))auu +
∑
u 6=v

X(l)∗uY (l)vauv
]

+dl
[ n∑
u=1

(X(l)∗uY (l)u − ρ(l))buu +
∑
u6=v

X(l)∗uY (l)vbuv
]}

=
1√
n

∑
e=(u,v)

{ K∑
l=1

[
(clxluylu − clρ(l))auu + clxluylvauv

]
+

K∑
l=1

[
(dlxluylu − dlρ(l))buu + dlxluylvbuv

]}
=

1√
n

∑
e

(aeψe + beϕe) ,

where e is an edge associated with vertex u and v, i.e. e = (u, v) ∈ {1, · · · , n}2; and

ψe ,

{ ∑K
l=1 cl(xluylu − ρ(l)) , u = v ,∑K

l=1 clxluylv , u 6= v ,
(2.4)

ϕe ,

{ ∑K
l=1 dl(xluylu − ρ(l)) , u = v ,∑K

l=1 dlxluylv , u 6= v .
(2.5)

Then

n
K
2 ηKn =

∑
e1···eK

(ae1ψe1 + be1ϕe1) · · · (aeKψeK + beKϕeK ) (2.6)

=
∑

G1
⋃
G2

aG1ψG1bG2ϕG2 ,

where

aG1
=
∏
e∈G1

ae , ψG1
=
∏
e∈G1

ψe , bG2
=
∏
e∈G2

be , ϕG2
=
∏
e∈G2

ϕe .

To each sum in equation (2.6), we associate a directed graph G by drawing an arrow
u → v for each factor ej = (u, v). We denote G1 as a subgraph of G corresponding
to the coefficients being aψ, and G2 the remaining: G2 = G\G1. Besides, to a loop
u→ u corresponds the product auuψuu = auu

∑K
l=1 cl(xluylu−ρ(l)) and to an edge u→ v

(u 6= v) corresponds the product auvψuv = auv
∑K
l=1 clxluylv. The same holds for buuϕuu

and buvϕuv.
In the paper of [2] (proof of Theorem 7.1), they show that only three types of com-

ponents in the graph G contribute to a non-negligible term (see Figure 1):
Because G1 and G2 are subgraphs of G, and by the definition in equation (2.4) and

(2.5), ψe differs from ϕe only through the coefficient cl or dl in front. So the difference
between ψe and ϕe is at most O(1), which means that for the components in the graph
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U 

U V U V 

Figure 1: three major components in the graph G

G that have o(1) contribution to EnK/2ξKn (see [2] for detail of ξn) should still have o(1)

contribution to EnK/2ηKn . Based on this fact, we get this time that only the influence of
the following nine components (in Figure 2) counts. The numbers k1, · · · , k9 in Figure 2
stand for the multiplicity of each component, so by degree of each vertex, we also have
the restriction that 4(k1 + · · · + k9) = 2K, which means K should be an even number,
denoted as 2p for convenience.

From the combinatorics, we have this time

EnK/2ηKn = E
∑

G1
⋃
G2

aG1ψG1bG2ϕG2

=
∑

2(k1+···+k9)=K

(
K

2

)(
K − 2

2

)
· · ·
(
2

2

)
· 2k3+k6+k9

k1! · · · k9!
×D1D2 · · ·D9 + o(nK/2)

=
∑

k1+···+k9=p

(2p)! · 2k3+k6+k9
2p · k1! · · · k9!

×D1D2 · · ·D9 + o(nK/2) . (2.7)

The coefficients in front of D1D2 · · ·D9 is due to the fact that by observing the nine
components in Figure 2, we find that each component is made of two edges; first we
combine two edges in a group in the total of K edges, that is

(
K

2

) (
K − 2

2

)
· · ·
(
2

2

)
; second,

the first k1 (also the following k2, · · · , k9) groups should be the same, we must exclude
the k1! · · · k9! possibilities from the total of

(
K

2

) (
K − 2

2

)
· · ·
(
2

2

)
; and last, for the three com-

ponents in the last column of Figure 2, the two edges in each component belong to
different subgraphs (one edge in G1 and the other in G2), so there should be an addi-
tional perturbation 2k3+k6+k9 added, and combine all these facts leads to the result.

Then we specify the terms of D1, D2, · · · , D9 in the following:

D1 =

k1∏
j=1

E
[
a2ujuj

{ K∑
l=1

cl
(
xluj

yluj
− ρ(l)

)}2]

=

k1∏
j=1

a2ujuj

∑
l,l′

clcl′
[
E(xl1yl1xl′1yl′1)− ρ(l)ρ(l

′
)
]

=

k1∏
j=1

a2ujuj

∑
l,l′

clcl′A1

,
k1∏
j=1

a2ujuj
α1 .
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G1 

G1 

G2 

G2 

G1 

G2 

G1 

G1 

G2 

G2 G2 

G2 

G2 G2 

G1 

G1 

G1 

G1 

U 

U U U 

U U U 

U U 

V 

V V V 

V V 

k1 

k9 k8 k7 

k6 k5 k4 

k3 k2 

Figure 2: nine major components in the graph G1

⋃
G2

Similarly, we have:

D2 =

k2∏
j=1

E
[
b2ujuj

{ K∑
l=1

dl
(
xlujyluj − ρ(l)

)}2]

,
k2∏
j=1

b2ujuj
β1 ,

D3 =

k3∏
j=1

E
[
aujuj bujuj

K∑
l=1

cl
(
xlujyluj − ρ(l)

) K∑
l=1

dl
(
xlujyluj − ρ(l)

)]

,
k3∏
j=1

aujuj bujujγ1 ,

D4 =

k4∏
j=1

E
[
a2ujvj

( K∑
l=1

clxluj
ylvj
)2]

=

k4∏
j=1

a2ujvj

∑
l,l′

clcl′E
(
xl1xl′1

)
E
(
yl1yl′1

)
=

k4∏
j=1

a2ujvj

∑
l,l′

clcl′A2

,
k4∏
j=1

a2ujvjα2 ,
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D5 =

k5∏
j=1

E
[
b2ujvj

( K∑
l=1

dlxluj
ylvj
)2]

,
k5∏
j=1

b2ujvjβ2 ,

D6 =

k6∏
j=1

E
[
aujvj bujvj

( K∑
l=1

clxluj
ylvj
)( K∑

l=1

dlxluj
ylvj
)]

,
k6∏
j=1

aujvj bujvjγ2 ,

D7 =

k7∏
j=1

E
[
|aujvj |2

( K∑
l=1

clxluj
ylvj
)( K∑

l=1

clxlvjyluj

)]

=

k7∏
j=1

|aujvj |2
∑
l,l′

clcl′E
(
xl1yl′1

)
E
(
xl′1yl1

)
=

k7∏
j=1

|aujvj |2
∑
l,l′

clcl′A3

,
k7∏
j=1

|aujvj |2α3 ,

D8 =

k8∏
j=1

E
[
|bujvj |2

( K∑
l=1

dlxlujylvj
)( K∑

l=1

dlxlvjyluj

)]

,
k8∏
j=1

|bujvj |2β3 ,

D9 =

k9∏
j=1

E
[
aujvj bvjuj

( K∑
l=1

clxluj
ylvj
)( K∑

l=1

dlxlvjyluj

)]

,
k9∏
j=1

aujvj bvjuj
γ3 .

Combine these nine terms with equation (2.7), we have

Eη2pn = n−p
∑

k1+···+k9=p

(2p)! · 2k3+k6+k9
2p · k1! · · · k9!

(k1···k9)∏
(j1···j9)=(1···1)

a2uj1
uj1
αk11 b

2
uj2

uj2

×βk21 auj3
uj3
buj3

uj3
γk31 a2uj4

vj4
αk42 b

2
uj5

vj5
βk52 auj6

vj6
buj6

vj6
γk62

×|auj7vj7
|2αk73 |buj8vj8

|2βk83 auj9vj9
bvj9uj9

γk93 + o(1)

=
(2p− 1)!!

np
(
α1

n∑
u=1

a2uu + β1

n∑
u=1

b2uu + 2γ1

n∑
u=1

auubuu + α2

∑
u 6=v

a2uv

+β2
∑
u 6=v

b2uv + 2γ2
∑
u 6=v

auvbuv + α3

∑
u 6=v

|auv|2 + β3
∑
u6=v

|buv|2

+2γ3
∑
u 6=v

auvbvu
)p

+ o(1) ,
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which means that ηn =⇒ N (0, σ2) by the moment method, with

σ2 = lim
n→∞

1

n

[
α1

n∑
u=1

a2uu + β1

n∑
u=1

b2uu + 2γ1

n∑
u=1

auubuu + α2

∑
u 6=v

a2uv + β2
∑
u6=v

b2uv

+2γ2
∑
u6=v

auvbuv + α3

∑
u6=v

|auv|2 + β3
∑
u 6=v

|buv|2 + 2γ3
∑
u 6=v

auvbvu

]
= α1w1 + β1w2 + 2γ1w3 + α2(τ1 − w1) + β2(τ2 − w2) + 2γ2(τ3 − w3)

+α3(θ1 − w1) + β3(θ2 − w2) + 2γ3(θ3 − w3)

=
∑
l,l′

clcl′A1w1 +
∑
l,l′

dldl′A1w2 + 2
∑
l,l′

cldl′A1w3 +
∑
l,l′

clcl′A2(τ1 − w1)

+
∑
l,l′

dldl′A2(τ2 − w2) + 2
∑
l,l′

cldl′A2(τ3 − w3) +
∑
l,l′

clcl′A3(θ1 − w1)

+
∑
l,l′

dldl′A3(θ2 − w2) + 2
∑
l,l′

cldl′A3(θ3 − w3)

=
∑
l,l′

clcl′
(
A1w1 +A2(τ1 − w1) +A3(θ1 − w1)

)
+
∑
l,l′

dldl′
(
A1w2 +A2(τ2 − w2) +A3(θ2 − w2)

)
+2
∑
l,l′

cldl′
(
A1w3 +A2(τ3 − w3) +A3(θ3 − w3)

)
.

The proof of Theorem 2.1 is complete.

Corollary 2.2. Under the same conditions as in Theorem 2.1, but with real random
vectors {(xi, yi)i∈N}, symmetric matrices {An = [aij(n)]}n and {Bn = [bij(n)]}n, the
2K-dimensional real-valued random vector:(

U(1), · · · , U(K), V (1), · · · , V (K)
)T

converges weakly to a zero-mean 2K-dimensional Gaussian vector with covariance ma-
trix B.

Theorem 2.1 can be generalized to the joint distribution of several sesquilinear
forms. We present this generalization in the following theorem. Recall that in the
proof of Theorem 2.1, we use the moment method and find the nine major components
presented in Figure 2, which all contain two edges. Therefore, if now we consider the
k sesquilinear forms as a whole, there should be 3

2k(1 + k) major components that will
lead to a nonnegligible contribution. And each component still has two edges, from the
same subgraph (both from Gi (i = 1, · · · , k) or from two different subgraphs (one from
Gi and the other from Gj (i 6= j)). This means that the k sesquilinear forms packed
together only has pairwise covariance function. The proof for other steps is similar and
omitted.

Theorem 2.3. Let
{
Am = [a

(m)
ij (n)]

}
n
m = (1, · · · , k) be k sequences of n × n Hermi-

tian matrices and the vector {X(l), Y (l)}1≤l≤K are defined as (1.1). Assume that the
following limits exists (m,m

′
= (1, · · · , k) and m 6= m

′
):

wm = lim
n→∞

1

n
tr[Am ◦Am] , wmm′ = lim

n→∞

1

n
tr[Am ◦Am′ ] ,

θm = lim
n→∞

1

n
tr[AmA

∗
m] , θmm′ = lim

n→∞

1

n
tr[AmA

∗
m′

] ,

τm = lim
n→∞

1

n
tr[A2

m] , τmm′ = lim
n→∞

1

n
tr[AmAm′ ] .
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Denote the sesquilinear forms:

U (m)(l) =
1√
n

[
X(l)∗AmY (l)− ρ(l)trAm

]
,m = 1, · · · , k,

then the (K · k)-dimensional complex-valued random vector:(
U (1)(1), · · · , U (1)(K), U (2)(1), · · · , U (2)(K), U (k)(1), · · · , U (k)(K)

)T
converges weakly to a zero-mean complex-valued vector W whose real and imaginary
parts are Gaussian. Moreover, the Laplace transform of W is given by

E exp


c1...
ck


T

W

 = exp

1

2

c1...
ck


T

B
(
c1 · · · ck

) , ci ∈ CK ,

where B could be written as

B =


B11 B12 · · · B1k

B21 B22 · · · B2k

...
...

. . .
...

Bk1 Bk2 · · · Bkk


(K·k)×(K·k)

,

each block is a K ×K matrices with entries (for l, l
′

= 1, · · · ,K):

Bii(l, l
′
) = Cov (U i(l), U i(l

′
)) = wiA1 + (τi − wi)A2 + (θi − wi)A3 , (2.8)

Bij(l, l
′
) = Cov (U i(l), U j(l

′
)) = wijA1 + (τij − wij)A2 + (θij − wij)A3 ,

(2.9)

and A1 A2 and A3 are the same as (2.3).

Here we give an application related to the existing literature on large-dimensional
covariance matrices. In [18], they establish the central limit theorem of the random
quadratic forms sT1 (SST )is1, where S = (s1, · · · , sk), si = 1√

n
(vi1 · · · vin)T , {vij} are i.i.d.

with Ev11 = 0 ,Ev211 = 1, Ev411 = ν4 < ∞. This sT1 (SST )is1 can be written as a linear
combination of a series of random quadratic forms whose random matrices involved
are independent of the random vector. Their Lemma 3.2 states such joint distribution
of these random quadratic forms, which can be restated and proved using our Theorem
2.3.

Proposition 2.4. [[18]] Let S1 = (s2 · · · sk), independent of s1. Then the random vector

√
n

2


sT1 (S1S

T
1 )s1 − yn

∫
xdGyn(x)

...
sT1 (S1S

T
1 )is1 − yin

∫
xidGyn(x)

sT1 s1 − 1


is asymptotically normal with mean 0 and covariance matrix

B11 · · · B1i B1 i+1

...
. . .

...
...

Bi1 · · · Bii Bi i+1

Bi+1 1 · · · Bi+1 i Bi+1 i+1


(i+1)×(i+1)

,
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where

Bmm =

{
ν4−1

2 · f2(m) + f(2m)− f2(m) , 1 ≤ m ≤ i ,
ν4−1

2 , m = i+ 1 ,
(2.10)

Bml =

{
ν4−1

2 · f(m)f(l) + f(m+ l)− f(m)f(l) , 1 ≤ m, l ≤ i ,
ν4−1

2 · f(m) , 1 ≤ m ≤ i, l = i+ 1 ,
(2.11)

here yn = k/n, y = lim yn, f(m) := ym
∫
xmdGy(x), and Gy(x) is the limiting spectral

distribution of n
kS1S

T
1 .

The proof of this Proposition is in Section 4.1.

3 Two applications in spiked population models

It is well known that the empirical spectral distribution of a large-dimensional sam-
ple covariance matrix tends to the Marčenko-Pastur distribution Fy(dx):

Fy(dx) =
1

2πxy

√
(x− ay)(by − x)dx, ay ≤ x ≤ by ,

where y = lim p/n, ay = (1−√y)2 and by = (1+
√
y)2 under fairly general conditions, see

[16]. Moreover, under a fourth moment assumption, the smallest and largest sample
eigenvalues converge almost surely to the end points ay and by, respectively.

While in recent empirical data analysis, there is often the case that some eigenvalues
are well separated from the bulk, in order to explain such phenomenon, [13] proposed
a spiked population model, where all the population eigenvalues equal to 1 except some
fixed number of them (spikes). Clearly, the spiked population model can be considered
as a finite-rank perturbation of the null case where all the population eigenvalues equal
to 1. Then there raises the question that what’s the influence of these spikes on the
individual sample eigenvalues. [3] first unveiled the phase transition phenomenon in
the case of complex Gaussian variables, stating that when the population spikes are
above (or under) a certain threshold 1 +

√
y (or 1 − √y), the corresponding extreme

sample eigenvalues will jump out of the bulk (become outliers). [4] consider more
general random variable: complex or real and not necessarily Gaussian and they found
the same transition phenomenon. As for the central limit theorem, [3] proposed the
result for the largest sample eigenvalue in the Gaussian complex case. [19] found the
Gaussian limiting distribution when the population vector is real Gaussian and all the
spikes of the population covariance matrix are simple. [2] established the central limit
theorem for the largest as well as for the smallest sample eigenvalues under general
population variables.

Beyond the sample covariance matrix, there exist many recent and related results
concerning the almost sure limit as well as the central limit theorem of the extreme
eigenvalue of the Wigner matrix or general Hermitian matrix perturbed by a low rank
matrix. Interested reader is referred to [7], [5], [6], [8], [14], [22] and [20], for a
selection of such results.

In this section, we establish two new central limit theorems for the extreme sample
eigenvalues as well as sample eigenvector projections. First, Section 3.1 gives intro-
ductions on the model and some preliminary results. In Section 3.2, a joint central limit
theorem is proposed for groups of packed sample eigenvalues corresponding to the
spikes (primary CLT in [2] concerns only one such group). Next in Section 3.3, assum-
ing the simple spiked case, we derive a joint CLT for the extreme sample eigenvalue and
its corresponding sample eigenvector projection. Such CLT is a new result; indeed, we
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do not know any CLT related to spike eigenvectors from the literature. Finally, both ap-
plications are based on the general CLT for random sesquilinear forms in our Theorem
2.1.

3.1 Some notation and preliminary results

Suppose the zero-mean complex-valued random vector x = (ξT , ηT )T , where ξ =

(ξ(1), · · · , ξ(M))T , η = (η(1), · · · , η(p))T are independent, of dimension M (fixed) and p

(p → ∞), respectively. And denote xi = (ξTi , η
T
i )T (i = 1, · · · , n) the n i.i.d. copies of

x. Moreover, assume that E||x||4 < ∞ and the coordinates of η are independent and
identically distributed with unit variance.

The population covariance matrix of the vector x is then

V = Cov(x) =

(
Σ 0

0 Ip

)
. (3.1)

Assume Σ has the spectral decomposition:

Σ = U diag(a1, · · · , a1︸ ︷︷ ︸
n1

, · · · , ak, · · · , ak︸ ︷︷ ︸
nk

) U∗, (3.2)

where U is an unitary matrix, the ai’s are positive and different from 1, and the ni’s
satisfy n1 + · · · + nk = M . Besides, let Ma be the number of j′s such that aj < 1 − √y
(here, y is the limit of dimension to sample size ratio: y = lim p/n ∈ (0, 1)), and let Mb

be the number of j′s such that aj > 1 +
√
y. More specifically, if we arrange the a′is in

decreasing order, then Σ could be diagonalized as

diag(a1, · · · , a1︸ ︷︷ ︸
n1

, · · · , aMb
, · · · , aMb︸ ︷︷ ︸
nMb︸ ︷︷ ︸

>1+
√
y

, · · · , ak−Ma+1, · · · , ak−Ma+1︸ ︷︷ ︸
nk−Ma+1

, · · · , ak, · · · , ak︸ ︷︷ ︸
nk︸ ︷︷ ︸

<1−√y

) .

The sample covariance matrix of x is

Sn =
1

n

n∑
i=1

xix
∗
i ,

which can be partitioned as

Sn =

(
S11 S12

S21 S22

)
=

(
X1X

∗
1 X1X

∗
2

X2X
∗
1 X2X

∗
2

)
=

1

n

(∑
ξiξ
∗
i

∑
ξiη
∗
i∑

ηiξ
∗
i

∑
ηiη
∗
i

)
,

with

X1 =
1√
n

(ξ1, · · · , ξn)M×n :=
1√
n
ξ1:n ,

X2 =
1√
n

(η1, · · · , ηn)p×n :=
1√
n
η1:n .

Since M is fixed and p → ∞, n → ∞ such that p/n → y ∈ (0, 1), the empirical spec-
tral distribution of the eigenvalues of Sn, as well as the one of S22, converges to the
Marčenko-Pastur distribution Fy(dx). For real constant λ /∈ [ay, by], we define the fol-
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lowing integrals with respect to Fy(dx):

m0(λ) :=

∫
1

λ− x
Fy(dx) , m1(λ) :=

∫
x

λ− x
Fy(dx) ,

m2(λ) :=

∫
x2

(λ− x)2
Fy(dx) , m3(λ) :=

∫
x

(λ− x)2
Fy(dx) ,

m4(λ) :=

∫
1

(λ− x)2
Fy(dx) , m5(λ) :=

∫
x

(λ− x)3
Fy(dx) ,

m6(λ) :=

∫
x2

(λ− x)4
Fy(dx) , m7(λ) :=

∫
x2

(λ− x)3
Fy(dx) . (3.3)

Let l1 ≥ l2 ≥ · · · ≥ lp be the eigenvalues of Sn. Let sj = n1 + · · ·+ nj for 1 ≤ j ≤ Mb

or k − Ma + 1 ≤ j ≤ k. [4] derive the almost sure limit of those extreme sample
eigenvalues. They have proven that for each m ∈ {1, · · · ,Mb} or m ∈ {k−Ma+1, · · · , k}
and sm−1 < i ≤ sm,

li → λm = φ(am) := am +
yam
am − 1

almost surely. In other words, if a spike eigenvalue am lies outside the interval [1 −√
y, 1 +

√
y], then the nm-packed sample eigenvalues {li, i ∈ Jm} (associated to am)

converge to the limit λm, which is outside the support of the M-P distribution [ay, by]

(here, we denote Jm = (sm−1, sm] when m ∈ {1, · · · ,Mb} or m ∈ {k −Ma + 1, · · · , k}).
Recently [2] derives the CLT for those extreme sample eigenvalues. More specifi-

cally, let δn,i :=
√
n(li − λm), where m ∈ {1, · · · ,Mb} or m ∈ {k −Ma + 1, · · · , k}, i ∈ Jm,

and λm = φ(am) /∈ [ay, by] as defined before. They have proven that δn,i tends to the
solution v of the following equation:∣∣∣− [U∗Rn(λm)U

]
mm

+ v
(
1 + ym3(λm)am

)
Inm

+ on(1)
∣∣∣ = 0 , (3.4)

here |·| stands for determinant,
[
U∗Rn(λm)U

]
mm

is them-th diagonal block of U∗Rn(λm)U

corresponding to the index {u, v ∈ Jm}, and

Rn(λ) =
1√
n

{
ξ1:n

(
I +An(λ)

)
ξ∗1:n − Σtr

(
I +An(λ)

)}
,

An(λ) = X∗2 (λI −X2X
∗
2 )−1X2 .

Let R(λ) denote the M ×M matrix limit of Rn(λ), and R̃(λ) := U∗R(λ)U . According to
(3.4), it says that δn,i tends to an eigenvalue of the matrix (1+ym3(λm)am)−1[R̃(λm)]mm.
Besides, since the index i is arbitrary over Jm, all the Jm random variables

√
n{li −

λm, i ∈ Jm} converge almost surely to the set of eigenvalues of this matrix. The fol-
lowing theorem in [2] identifies the covariance of the elements within the limit matrix
R(λ). For simplicity, we only consider the real case in all the following unless otherwise
noted.

Proposition 3.1. [[2]] Assume that the variables ξ and η are real, then the random
matrix R = Rij is symmetric, with zero-mean Gaussian entries, having the following
covariance function: for 1 ≤ i ≤ j ≤M and 1 ≤ i′ ≤ j′ ≤M

Cov (R(i, j), R(i
′
, j
′
))

= w
{
E[ξ(i)ξ(j)ξ(i

′
)ξ(j

′
)]− ΣijΣi′ j′

}
+
(
θ − w

)
Σij′Σi′ j

+
(
θ − w

)
Σii′Σjj′ ,
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where the constants θ and w are defined as follows:

θ = 1 + 2ym1(λ) + ym2(λ) ,

w = 1 + 2ym1(λ) +

(
y(1 +m1(λ))

λ− y(1 +m1(λ))

)2

.

3.2 Application 1: Asymptotic joint distribution of two groups of extreme sam-
ple eigenvalues in the spiked population model

In this subsection, we consider the asymptotic joint distribution of two groups of
extreme sample eigenvalues, say, {li, i ∈ Jm} and {li′ , i

′ ∈ Jm′} (m 6= m
′
) when Σ has

the structure (3.2), namely the random vector(
{
√
n(li − λm), i ∈ Jm}

{
√
n(li′ − λm′ ), i

′ ∈ Jm′}

)
.

Following the work of [2], we know that this nm + nm′ dimensional random vector
converges to the eigenvalues of the symmetric (nm + nm′ )× (nm + nm′ ) random matrix [R̃(λm)]mm

1+ym3(λm)am
0

0
[R̃(λ

m
′ )]

m
′
m
′

1+ym3(λm
′ )a

m
′

 . (3.5)

Here, this random matrix (3.5) has two diagonal blocks with dimension nm and nm′ ,
respectively. The covariance function of the elements within each block has been fully
identified by [2], see Proposition 3.1. But if we consider them as a whole, there’s still
need to explore the covariance between the elements from the different two blocks
[R̃(λm)]mm and [R̃(λm′ )]m′m′ .

We establish such a covariance function in Theorem 3.2 when the observation vector
x is real with the help of our Corollary 2.2. However, it can also be generalized to the
complex case by considering the real and imaginary parts as two independent real
random variables with the help of our Theorem 2.1, readers who are interested in this
can refer to [2] (see the proof of their Proposition 3.2).

3.2.1 Main result

Theorem 3.2. Assume that the variables ξ and η are real, then the two diagonal blocks
of the 2M × 2M random matrix (

R(λm) 0

0 R(λm′ )

)
(3.6)

are symmetric, having zero-mean Gaussian entries, with the following covariance func-
tion between each other: for 1 ≤ i ≤ j ≤M and 1 ≤ i′ ≤ j′ ≤M , we have

Cov (R(λm)(i, j), R(λm′ )(i
′
, j
′
))

= w(m,m
′
)
{
E[ξ(i)ξ(j)ξ(i

′
)ξ(j

′
)]− ΣijΣi′ j′

}
+
(
θ(m,m

′
)− w(m,m

′
)
)
Σij′Σi′ j

+
(
θ(m,m

′
)− w(m,m

′
)
)
Σii′Σjj′ , (3.7)

where

θ(m,m
′
) = 1 + ym1(λm) + ym1(λm′ ) + y

(
λm′

λm − λm′
m1(λm′ ) +

λm
λm′ − λm

m1(λm)

)
,
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w(m,m
′
) = 1 + ym1(λm) + ym1(λm′ ) +

y2(1 +m1(λm))(1 +m1(λm′ ))

(λm − y(1 +m1(λm)))(λm′ − y(1 +m1(λm′ )))
.

Remark 3.3. If we restrict the index (i, j) to the region Jm×Jm and (i
′
, j
′
) to Jm′ ×Jm′ ,

we can get the covariance function between the two blocks of (3.5). And it should be
noticed that the two regions Jm × Jm and Jm′ × Jm′ do not intersect with each other.

Remark 3.4. In general, the covariance of the elements from two blocks are not inde-
pendent asymptotically, that is Cov (R(λm)(i, j), R(λm′ )(i

′
, j
′
)) 6= 0. Notice that same

phenomenon also exists in the Wigner case, for example, see Theorem 2.11 in [14].

Remark 3.5. If the coordinates {ξ(i)} of ξ are independent (thus, Σ is diagonal and
U = IM ), [2] has already proved that the covariance matrix within each diagonal block
in (3.6) is diagonal; in other words, the Gaussian matrix R(λm) and R(λm′ ) are both
made with independent entries. And by noting that the regions Jm × Jm and Jm′ × Jm′
are disjoint, the only covariance function that may exist between the two blocks is
Cov(R(λm)(i, i), R(λm′ )(i

′
, i
′
)) (i ∈ Jm, i

′ ∈ Jm′ ). Using (3.7) and the fact that {ξ(i)} are
independent, we have

Cov (R(λm)(i, i), R(λm′ )(i
′
, i
′
))

= w(m,m
′
)
{
E[ξ(i)2ξ(i

′
)2]− ΣiiΣi′ i′

}
+ 2
(
θ(m,m

′
)− w(m,m

′
)
)(

Σii′
)2

= w(m,m
′
)
{

ΣiiΣi′ i′ − ΣiiΣi′ i′
}

+ 2
(
θ(m,m

′
)− w(m,m

′
)
)(

Σii′
)2

= 0 ,

which means that the two diagonal blocks in (3.5) are independent. Besides, [2] have
already pointed out the variances within each block:

V ar(R(i, j)) = θΣiiΣjj , i < j (3.8)

V ar(R(i, i)) = w(Eξ(i)4 − 3Σ2
ii) + 2θΣ2

ii . (3.9)

Therefore, if {ξ(i)} are independent, then any two groups of packed extreme sam-
ple eigenvalues {

√
n(li − λm), i ∈ Jm} and {

√
n(li′ − λm′ ), i

′ ∈ Jm′} are asymptot-
ically independent, converging to the eigenvalues of the Gaussian random matrices

1
1+ym3(λm)am

[R(λm)]mm and 1
1+ym3(λm

′ )a
m
′
[R(λm′ )]m′m′ , respectively. And both the Gaus-

sian random matrices are made with independent entries, with a fully identified vari-
ance function given by (3.8) and (3.9). Moveover, if the observations are Gaussian, (3.9)
reduces to V ar(R(i, i)) = 2θΣ2

ii.

3.2.2 Conditions that two groups of packed extreme sample eigenvalues are
pairwise independent

An interesting question in the asymptotical analysis of spiked eigenvalues is to know
whether two groups of packed extreme sample eigenvalues are asymptotically pairwise
independent. In Remark 3.5, we have seen that when {ξ(i)} are independent, {

√
n(li −

λm), i ∈ Jm} and {
√
n(li′ − λm′ ), i

′ ∈ Jm′} are asymptotically independent.
We aim to relax the independent restriction of {ξ(i)} under the condition that all the

eigenvalues of Σ are simple, that is, Σ has the spectral decomposition:

Σ = U


a1 0 · · · 0

0 a2 · · · 0
...

...
...

...
0 0 · · · aM

U∗ ,
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where the a′is are arranged in decreasing order. We discuss the condition that when the
extreme sample eigenvalues are pairwise independent, asymptotically.

Let li, lj denote the extreme sample eigenvalues correspond to two different spikes
ai and aj , where ai, aj /∈ [1−√y, 1 +

√
y]. Then, the two-dimensional random vector(

δn,i

δn,j

)
=

(√
n
(
li − λi

)
√
n
(
lj − λj

))

converges to the eigenvalues of the following random matrix:(
1

1+ym3(λi)ai
[R̃(λi)]ii 0

0 1
1+ym3(λj)aj

[R̃(λj)]jj

)
.

Since all the eigenvalues of Σ are simple, the multiplicity numbers ni and nj both equal

to 1. Therefore, [R̃(λi)]ii and [R̃(λj)]jj are now two Gaussian random variables (actually,

they are the (i, i)-th and (j, j)-th elements of theM×M Gaussian random matrices R̃(λi)

and R̃(λj), respectively, denoted as R̃(λi)(i, i) and R̃(λj)(j, j)). As a result,

(
δn,i δn,j

)T
actually converges to the Gaussian random vector(

1
1+ym3(λi)ai

R̃(λi)(i, i)
1

1+ym3(λj)aj
R̃(λj)(j, j)

)

with

V ar
(
R(λi)(i, i)

)
= w(i)

{
E
[
ξ(i)4

]
− Σ2

ii

}
+ 2
(
θ(i)− w(i)

)
Σ2
ii , (3.10)

V ar
(
R(λj)(j, j)

)
= w(j)

{
E
[
ξ(j)4

]
− Σ2

jj

}
+ 2
(
θ(j)− w(j)

)
Σ2
jj , (3.11)

Cov
(
R(λi)(i, i), R(λj)(j, j)

)
= w(i, j)

{
E
[
ξ(i)2ξ(j)2

]
− ΣiiΣjj

}
+ 2
(
θ(i, j)− w(i, j)

)
Σ2
ij , (3.12)

where

θ(i) = 1 + 2ym1(λi) + ym2(λi) ,

w(i) = 1 + 2ym1(λi) +

(
y(1 +m1(λi))

λi − y(1 +m1(λi))

)2

are given in [2]. From the definitions of w(i, j) and θ(i, j) in Theorem 3.2, taking the
fact that m1(λi) = 1/(ai − 1) (see Lemma 5.1) into consideration, we have,

w(i, j) = 1 + ym1(λi) + ym1(λj)

+
y2
(
1 +m1(λi)

)(
1 +m1(λj)

)(
λi − y(1 +m1(λi))

)(
λj − y(1 +m1(λj))

)
= 1 +

y

ai − 1
+

y

aj − 1
+

y2

(ai − 1)(aj − 1)

=
(y + ai − 1)(y + aj − 1)

(ai − 1)(aj − 1)
,
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θ(i, j)− w(i, j) = y

(
λj

λi − λj
m1(λj) +

λi
λj − λi

m1(λi)

)

− y2

(ai − 1)(aj − 1)

= y · (y + ai − 1)(y + aj − 1)

(ai − 1)(aj − 1)
[
(ai − 1)(aj − 1)− y

] .
The values of w(i, j) will always be positive whenever ai, aj /∈ [1 − √y, 1 +

√
y], while

θ(i, j)−w(i, j) will be negative if ai > 1 +
√
y and 0 < aj < 1−√y (corresponding to one

extreme large and one extreme small sample eigenvalues), and positive if ai, aj > 1+
√
y

or 0 < ai, aj < 1−√y (corresponding to two extreme large or two extreme small sample
eigenvalues).

Therefore, if any two extreme large (or small) sample eigenvalues are mutually in-
dependent (equivalent to the condition that Cov(R(λi)(i, i), R(λj)(j, j)) = 0), a sufficient
and necessary condition is

E
[
ξ(i)2ξ(j)2

]
− ΣiiΣjj = 0 ,

and
E[ξ(i)ξ(j)] = 0 (= Eξ(i)Eξ(j)) ;

another way of saying this is

(∗)
{

Cov
(
ξ(i), ξ(j)

)
= 0 (Σ is diagonal or U = IM ) , and

Cov
(
ξ(i)2, ξ(j)2

)
= 0

.

Obviously, when {ξ(i)} are independent, the condition (∗) is satisfied.
We consider a special case that the observations are Gaussian, with a diagonal pop-

ulation covariance matrix. This model satisfies condition (∗). It is due to the fact that
when the observations are Gaussian, uncorrelation between ξ(i) and ξ(j) implies in-
dependence, which further implies ξ(i)2 and ξ(j)2 are uncorrelated. Therefore, if the
observations are Gaussian and the population covariance matrix is diagonal, then any
two extreme large (or small) sample eigenvalues are mutually independent. Further-
more, we can derive explicitly the joint distribution of δn,i and δn,j . According to (3.10),
(3.11) and (3.12), we have a much more simplified form due to the Gaussian assumption:

V ar
(
R(λi)(i, i)

)
= 2θ(i)a2i ,

V ar
(
R(λj)(j, j)

)
= 2θ(j)a2j ,

Cov
(
R(λi)(i, i), R(λj)(j, j)

)
= 0 , (3.13)

where θ(i) = (ai−1+y)2
(ai−1)2−y and θ(j) =

(aj−1+y)2
(aj−1)2−y by definition. And using the expression

m3(λ) = 1
(a−1)2−y (see Lemma 5.1), we finally derive the asymptotic joint distribution:(√

n
(
li − λi

)
√
n
(
lj − λj

)) =⇒ N

(0

0

)
,

 2a2i [(ai−1)
2−y]

(ai−1)2 0

0
2a2j [(aj−1)

2−y]
(aj−1)2

 .

But, if we only assume Σ is diagonal, and no Gaussian assumptions are made, things
are different. One such example is that ξ(i) and ξ(j) come from the uniform distribution
inside the ellipse:

ξ(i)2

16
+
ξ(j)2

36
≤ 1,

EJP 19 (2014), paper 103.
Page 16/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3339
http://ejp.ejpecp.org/


Joint CLT for random sesquilinear forms

one can check that Eξ(i)ξ(j) = Eξ(i) · Eξ(j) = 0, but Eξ(i)2 = 4, Eξ(j)2 = 9 and
Eξ(i)2ξ(j)2 = 24, that is Eξ(i)2ξ(j)2 6= Eξ(i)2 · Eξ(j)2, therefore, condition (∗) is not
satisfied. From this example, we see there could happen that although ξ(i) and ξ(j)

are uncorrelated, ξ(i)2 and ξ(j)2 are correlated. And in such a case, even though the
population covariance matrix is diagonal, the two extreme large (or small) eigenvalues
of the sample covariance matrix may actually have correlation between each other.

A small simulation is conducted below to check this covariance formula according to
the two cases mentioned above. The dimension p is fixed to be 200 and the sample size
n is fixed to be 300. We choose two spikes a1 = 9 and a2 = 4, which are both larger than
the critical value 1 +

√
y (= 1 +

√
2/3). We repeat 10000 times to calculate the empirical

covariance value between the largest (l1) and the second largest (l2) sample eigenval-
ues. The first case is the two-dimensional multivariate Gaussian vector (ξ(1), ξ(2))T ,
which has a joint distribution

N
((

0

0

)
,

(
9 0

0 4

))
.

According to (3.13), the theoretical covariance value between l1 and l2 should be 0,
and the empirical covariance value from the 10000 sample simulated turns out to be
0.0019. The second case is the aforementioned uniform distribution inside the ellipse:
ξ(1)2/36 + ξ(2)2/16 ≤ 1. This time, the theoretical covariance value between l1 and l2
could be calculated as −0.0366 according to (3.12), and the empirical covariance value
from the 10000 sample simulated turns out to be −0.0371. The two errors are both
smaller than the order O(1/

√
10000) under both cases.

3.3 Application 2: Asymptotic joint distribution of the largest sample eigen-
value and its corresponding sample eigenvector projection

In this subsection, we consider the joint central limit theorem of extreme sample
eigenvalue and its corresponding sample eigenvector projection, which may find appli-
cations in principal component scores, where both the eigenvalue and its eigenvector
are involved, see [15].

Let the population covariance matrix be diagonal with k simple spikes:

V = diag(a1, · · · , ak︸ ︷︷ ︸
k

, 1, · · · , 1︸ ︷︷ ︸
p

) ,

where now the Σ in (3.1) reduces to a diagonal matrix diag(a1, · · · , ak) with all the
diagonal elements ai larger than the critical value 1 +

√
y. The sample covariance

matrix Sn is also partitioned as before:

Sn =

(
S11 S12

S21 S22

)
=

(
X1X

∗
1 X1X

∗
2

X2X
∗
1 X2X

∗
2

)
=

1

n

(∑
ξiξ
∗
i

∑
ξiη
∗
i∑

ηiξ
∗
i

∑
ηiη
∗
i

)
,

with

X1 =
1√
n

(ξ1, · · · , ξn)k×n :=
1√
n
ξ1:n ,

X2 =
1√
n

(η1, · · · , ηn)p×n :=
1√
n
η1:n ,

which are mutually independent. And we denote ν4(i) = Eξ(i)4/a2i − 3 for i = 1, · · · , k
as the kurtosis coefficient of the i-th coordinate of ξ.

Now suppose li is an extreme eigenvalue of Sn, converging to the value λi = φ(ai) =

ai+yai/(ai−1) and let (ui, vi)
T be the corresponding sample eigenvector with ui its first

k components and vi the remaining p components. We derive the following central limit
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theorem that establishes the asymptotic joint distribution of the extreme sample eigen-
value li and its corresponding sample eigenvector projection ui(i)

2 (here ui(i) stands
for the i-th element of the k × 1 vector ui). Notice that the population eigenvector cor-
responding to the spike ai is simply ei = (0, · · · , 1, · · · , 0)T , the i-th standard canonical
basis vector. Therefore, ui(i) represents the inner product between the sample eigen-
vector (ui, vi)

T and the population one ei.

Theorem 3.6.√n(ui(i)2 − (ai−1)2−y
(ai−1)(ai−1+y)

)
√
n(li − λi)

 =⇒ N

((
0

0

)
,

(
v11 v12

v12 v22

))
,

where

v11 =
a2i y

2(a2i + y − 1)2

(ai − 1)4(ai − 1 + y)4
ν4(i) +

2a2i y((ai + y − 1)2 + ya2i )

((ai − 1)2 − y)(ai − 1 + y)4
,

v12 =
ya2i (a

2
i − 1 + y)((ai − 1)2 − y)

(ai − 1)6(ai − 1 + y)4
ν4(i) +

2a3i y

(ai − 1)(ai − 1 + y)2
,

v22 =
a2i ((ai − 1)2 − y)2

(ai − 1)4
ν4(i) +

2a2i ((ai − 1)2 − y)

(ai − 1)2
.

Remark 3.7. If the observations are Gaussian (ν4(i) = 0 for i = 1, · · · , k), then the three
values above are simplified to be:

v11 =
2a2i y((ai + y − 1)2 + ya2i )

((ai − 1)2 − y)(ai − 1 + y)4
,

v12 =
2a3i y

(ai − 1)(ai − 1 + y)2
,

v22 =
2a2i ((ai − 1)2 − y)

(ai − 1)2
.

Remark 3.8. Trivially, the following central limit theorem of the eigenvector projection
holds

√
n

(
ui(i)

2 − (ai − 1)2 − y
(ai − 1)(ai − 1 + y)

)
−→ N (0, v11) .

In particular,

ui(i)
2 p−→ (ai − 1)2 − y

(ai − 1)(ai − 1 + y)
.

Observe that this limit ∈ (0, 1). In particular, the sample eigenvector does not converge
to the population eigenvector; only their angle tends to a limit. Notice that the limit of
the angle has already been established by [19] for the Gaussian case and [6] on some-
what different but closely related random matrix models with a finite-rank perturbation.

4 Proof of Proposition 2.4, Theorem 3.2 and 3.6

4.1 Proof of Proposition 2.4

Proof. We give a short proof of Proposition 2.4 using our Theorem 2.3. Let

U (m) =
1√
n

[
sT1 (S1S

T
1 )ms1 −

1

n
tr(S1S

T
1 )m

]
, 1 ≤ m ≤ i ,

U (i+1) =
1√
n

[
sT1 s1 − 1

]
,
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so we have

k = i+ 1 ,

X(1) = s1 :=
1√
n

(v11, · · · , v1n)T = Y (1) , (K = 1) ,

ρ(l) = Ex11y11 =
1

n
,

A1 =
1

n2
(ν4 − 1), A2 = A3 =

1

n2
,

and the matrix

A(m) :=

{
(S1S

T
1 )m , 1 ≤ m ≤ i

In , m = i+ 1
.

Then,

τm = θm = lim
n→∞

1

n
tr[A(m)]2 =

{
lim
n→∞

1
n tr(S1S

T
1 )2m , 1 ≤ m ≤ i

1 , m = i+ 1

=

{
y2m

∫
x2mdGy(x) , 1 ≤ m ≤ i

1 , m = i+ 1
,

τmm′ = θmm′ =

 lim
n→∞

1
n tr

[
(S1S

T
1 )m(S1S

T
1 )m

′ ]
, 1 ≤ m,m′ ≤ i ,

lim
n→∞

1
n tr(S1S

T
1 )m

′

, m = i+ 1, 1 ≤ m′ ≤ i ,

=

{
ym+m

′ ∫
xm+m

′

dGy(x) , 1 ≤ m,m′ ≤ i ,
ym
′ ∫

xm
′

dGy(x) , m = i+ 1, 1 ≤ m′ ≤ i ,

wm = lim
n→∞

1

n
tr[A(m) ◦A(m)] =

{
( lim
n→∞

1
n tr(S1S

T
1 )m)2 , 1 ≤ m ≤ i ,

( lim
n→∞

1
n tr In)2 , m = i+ 1 ,

=

{
y2m(

∫
xmdGy(x))2 , 1 ≤ m ≤ i ,

1 , m = i+ 1 ,

wmm′ = lim
n→∞

1

n
tr[A(m) ◦A(m

′
)]

=

 lim
n→∞

1
n tr(S1S

T
1 )m · limn→∞

1
n tr(S1S

T
1 )m

′

, 1 ≤ m,m′ ≤ i ,
lim
n→∞

1
n tr(S1S

T
1 )m , m

′
= i+ 1 , 1 ≤ m ≤ i ,

=

{
ym
∫
xmdGy(x) · ym

′ ∫
xm
′

dGy(x) , 1 ≤ m,m′ ≤ i ,
ym
∫
xmdGy(x) , m

′
= i+ 1, 1 ≤ m ≤ i ,

Combine all that above with (2.8) and (2.9) leads to the result.

4.2 Proof of Theorem 3.2

Proof. We prove this result with the help of Corollary 2.2. Consider(
1√
n
u(i)(I +An(λm))u(j)T

1√
n
u(i
′
)(I +An(λm′ ))u(j

′
)T

)
1≤i≤j≤M, 1≤i′≤j′≤M

,

EJP 19 (2014), paper 103.
Page 19/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3339
http://ejp.ejpecp.org/


Joint CLT for random sesquilinear forms

with u(i) =
(
ξ1(i), · · · , ξn(i)

)
. Moreover, we define X(l) = u(i)T , Y (l) = u(j)T , X(l

′
) =

u(i
′
)T , Y (l

′
) = u(j

′
)T , with l = (i, j), l

′
= (i

′
, j
′
), where l and l

′
both have K = M(M+1)

2

options. Recall the definition of Rn, we have:

Rn(λm) =
1√
n

{
ξ1:n(I +An(λm))ξ∗1:n − Σ tr(I +An(λm))

}
,

Rn(λm′ ) =
1√
n

{
ξ1:n(I +An(λm′ ))ξ

∗
1:n − Σ tr(I +An(λm′ ))

}
.

By applying Corollary 2.2, we have

Cov(R(λm)(i, j), R(λm′ )(i
′
, j
′
)) = w3A1 + (τ3 − w3)A2 + (θ3 − w3)A3 .

We specify these values in the following:

w3 = lim
n→∞

1

n

n∑
u=1

(I +An(λm))uu(I +An(λm′ ))uu

= 1 + lim
n→∞

1

n

n∑
u=1

(
An(λm)uu +An(λm′ )uu +An(λm)uuAn(λm′ )uu

)
= 1 + ym1(λm) + ym1(λm′ ) +

y2
(
1 +m1(λm)

)(
1 +m1(λm′ )

)(
λm − y(1 +m1(λm))

)(
λm′ − y(1 +m1(λm′ ))

) ,
= w(m,m

′
) ,

τ3 = θ3 = lim
n→∞

1

n

n∑
u,v=1

(I +An(λm))uv(I +An(λm′ ))vu

= lim
n→∞

1

n
tr
(
I +An(λm))(I +An(λm′ )

)
= 1 + ym1(λm) + ym1(λm′ ) + y

∫
x2

(λm′ − x)(λm − x)
Fy(dx)

= 1 + ym1(λm) + ym1(λm′ ) + y

(
λm′

λm − λm′
m1(λm′ ) +

λm
λm′ − λm

m1(λm)

)
,

= θ(m,m,) ,

where we have used Lemma 6.1. in [2]; and

A1 = E(xl1yl1xl′1yl′1)− ρ(l)ρ(l
′
) = E[ξ(i)ξ(j)ξ(i

′
)ξ(j

′
)]− ΣijΣi′ j′ ,

A2 = E(xl1xl′1)E(yl1yl′1) = E[ξ(i)ξ(i
′
)]E[ξ(j)ξ(j

′
)] ,

A3 = E(xl1yl′1)E(xl′1yl1) = E[ξ(i)ξ(j
′
)]E[ξ(j)ξ(i

′
)] .

Combine all these, we have

Cov(R(λm)(i, j), R(λm′ )(i
′
, j
′
)

= w(m,m
′
)
{
E[ξ(i)ξ(j)ξ(i

′
)ξ(j

′
)]− ΣijΣi′ j′

}
+
(
θ(m,m

′
)− w(m,m

′
)
)
E[ξ(i)ξ(j

′
)]E[ξ(i

′
)ξ(j)]

+
(
θ(m,m

′
)− w(m,m

′
)
)
E[ξ(i)ξ(i

′
)]E[ξ(j)ξ(j

′
)] .

The proof of Theorem 3.2 is complete.
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4.3 Proof of Theorem 3.6

Proof. Since li is the extreme eigenvalue of Sn and (ui, vi)
T its corresponding eigenvec-

tor, we have (
liIk −X1X

∗
1 −X1X

∗
2

−X2X
∗
1 liIp −X2X

∗
2

)(
ui
vi

)
= 0 ,

where ui is the first k components, and vi the remaining p components, and this leads
to {

(liIk −X1X
∗
1 )ui −X1X

∗
2vi = 0

−X2X
∗
1ui + (liIp −X2X

∗
2 )vi = 0 .

Consequently,

vi = (liIp −X2X
∗
2 )−1X2X

∗
1ui , (4.1)

(liIk −X1

(
In +X∗2 (liIp −X2X

∗
2 )−1X2

)
X∗1 )ui = 0 . (4.2)

(4.2) is equivalent toliIk + lis(li)

a1 · · · 0
...

. . .
...

0 · · · ak

+ o(1)

ui = 0 , (4.3)

where

s(li) =

∫
1

li − x
dF y(x),

F y(x) is the LSD of X∗2X2. Since s(li) = −1/ai, we have (4.3) equivalent to1− a1
ai
· · · 0

...
. . .

...
0 · · · 1− ak

ai


ui(1)

...
ui(k)

 = 0 ,

and that leads to

ui(1) = · · · = ui(i− 1) = ui(i+ 1) = · · · = ui(k) = 0 . (4.4)

Moreover, combining (4.1) with the fact that

(
u∗i v∗i

)(ui
vi

)
= 1

leads to
u∗i (Ik +X1X

∗
2 (liIp −X2X

∗
2 )−2X2X

∗
1 )ui = 1 ,

which is also equivalent to

u2i (i)[Ik +X1X
∗
2 (liIp −X2X

∗
2 )−2X2X

∗
1 ](i, i) = 1 (4.5)

if take (4.4) into consideration. Therefore, we have

u2i (i) =
1

1 + [X1X∗2 (liIp −X2X∗2 )−2X2X∗1 ](i, i)

=
1

1 + E[X1X∗2 (λiIp −X2X∗2 )−2X2X∗1 ](i, i)
+ C

=
1

1 + aiym3(λi)
+ C + o(

1√
n

) ,
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where

C =
1

1 + [X1X∗2 (liIp −X2X∗2 )−2X2X∗1 ](i, i)
− 1

1 + E[X1X∗2 (λiIp −X2X∗2 )−2X2X∗1 ](i, i)

=
1

1 + [X1X∗2 (liIp −X2X∗2 )−2X2X∗1 ](i, i)
− 1

1 + [X1X∗2 (λiIp −X2X∗2 )−2X2X∗1 ](i, i)

+
1

1 + [X1X∗2 (λiIp −X2X∗2 )−2X2X∗1 ](i, i)
− 1

1 + E[X1X∗2 (λiIp −X2X∗2 )−2X2X∗1 ](i, i)

:= C1 + C2 .

Next, we simplify the values of C1 and C2.

C1 =
1

1 + [X1X∗2 (liIp −X2X∗2 )−2X2X∗1 ](i, i)
− 1

1 + [X1X∗2 (λiIp −X2X∗2 )−2X2X∗1 ](i, i)

=
X1X

∗
2

[
(λiIp −X2X

∗
2 )−2 − (liIp −X2X

∗
2 )−2

]
X2X

∗
1 (i, i)

[1 +X1X∗2 (liIp −X2X∗2 )−2X2X∗1 (i, i)] · [1 +X1X∗2 (λiIp −X2X∗2 )−2X2X∗1 (i, i)]
.

First, consider the part in the above numerator:

(λiIp −X2X
∗
2 )−2 − (liIp −X2X

∗
2 )−2

=
[
(λiIp −X2X

∗
2 )−1 − (liIp −X2X

∗
2 )−1

]
·
[
(λiIp −X2X

∗
2 )−1 + (liIp −X2X

∗
2 )−1

]
= (li − λi)(λiIp −X2X

∗
2 )−1(liIp −X2X

∗
2 )−1 ·

[
(λiIp −X2X

∗
2 )−1 + (liIp −X2X

∗
2 )−1

]
.

(4.6)

Since
√
n(li − λi) has a central limit theorem with the following expression using our

notation (see [2]):

(li − λi)(1 + aiym3(λi) + o(1))

= X1(I +X∗2 (λiIp −X2X
∗
2 )−1X2)X∗1 (i, i)− EX1(I +X∗2 (λiIp −X2X

∗
2 )−1X2)X∗1 (i, i) ,

(4.7)

which implies that (4.6) tends to

2(li − λi)(λiIp −X2X
∗
2 )−3 + o(1/

√
n) .

So

C1 = 2(li − λi)
X1X

∗
2 (λiIp −X2X

∗
2 )−3X2X

∗
1 (i, i)

[1 +X1X∗2 (λiIp −X2X∗2 )−2X2X∗1 (i, i)]2
+ o(1/

√
n)

=
2aiym5(λi)

(1 + aiym3(λi))2
· (li − λi) + o(1/

√
n) . (4.8)

And

C2 =
1

1 +X1X∗2 (λiIp −X2X∗2 )−2X2X∗1 (i, i)
− 1

1 + EX1X∗2 (λiIp −X2X∗2 )−2X2X∗1 (i, i)

= − X1X
∗
2 (λiIp −X2X

∗
2 )−2X2X

∗
1 (i, i)− E[X1X

∗
2 (λiIp −X2X

∗
2 )−2X2X

∗
1 ](i, i)

(1 +X1X∗2 (λiIp −X2X∗2 )−2X2X∗1 (i, i))(1 + EX1X∗2 (λiIp −X2X∗2 )−2X2X∗1 (i, i))

= −X1X
∗
2 (λiIp −X2X

∗
2 )−2X2X

∗
1 (i, i)− E[X1X

∗
2 (λiIp −X2X

∗
2 )−2X2X

∗
1 ](i, i)

(1 + aiym3(λi))2

+ o(1/
√
n) . (4.9)
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Let

A(λ) := In +X∗2 (λiIp −X2X
∗
2 )−1X2 , (4.10)

B(λ) := X∗2 (λiIp −X2X
∗
2 )−2X2 , (4.11)

combining with (4.7), (4.8) and (4.9) leads to

C =
2aiym5(λi)

(1 + aiym3(λi))3
·X1[A− EA]X∗1 (i, i)− X1[B − EB]X∗1 (i, i)

(1 + aiym3(λi))2
+ o(1/

√
n)

=
2aiym5(λi)

(1 + aiym3(λi))3
· ξ1:n[A− EA]ξ∗1:n(i, i)

n
− ξ1:n[B − EB]ξ∗1:n(i, i)

n(1 + aiym3(λi))2
+ o(1/

√
n) . (4.12)

Therefore,

√
n ·
(
u2i (i)−

1

1 + aiym3(λi)

)
=

2aiym5(λi)

(1 + aiym3(λi))3
· ξ1:n[A− EA]ξ∗1:n(i, i)√

n
− ξ1:n[B − EB]ξ∗1:n(i, i)√

n(1 + aiym3(λi))2
+ o(1) ,

which leads to the fact that√n(u2i (i)− 1
1+aiym3(λi)

)
√
n(li − λi)

 =

 2aiym5(λi)
(1+aiym3(λi))3

−1
(1+aiym3(λi))2

1
1+aiym3(λi)

0

 ·( 1√
n
ξ1:n[A− EA]ξ∗1:n(i, i)

1√
n
ξ1:n[B − EB]ξ∗1:n(i, i)

)
+ o(1) .

If we denote

D :=

 2aiym5(λi)
(1+aiym3(λi))3

−1
(1+aiym3(λi))2

1
1+aiym3(λi)

0

 ,

and combining with Lemma 5.2, we have got that√n(u2i (i)− 1
1+aiym3(λi)

)
√
n(li − λi)


is asymptotically Gaussian with mean 0 and covariance matrix

DBDT =

(
v11 v12
v12 v22

)
,

where

v11 =
(2aiym5)2

(1 + aiym3)6
B11 −

4aiym5

(1 + aiym3)5
B12 +

1

(1 + aiym3)4
B22

=
a2i y

2(a2i + y − 1)2

(ai − 1)4(ai − 1 + y)4
ν4(i) +

2a2i y((ai + y − 1)2 + ya2i )

((ai − 1)2 − y)(ai − 1 + y)4

v12 =
2aiym5

(1 + aiym3)4
B11 −

1

(1 + aiym3)3
B12

=
ya2i (a

2
i − 1 + y)((ai − 1)2 − y)

(ai − 1)4(ai − 1 + y)2
ν4(i) +

2a3i y

(ai − 1)(ai − 1 + y)2

v22 =
1

(1 + aiym3)2
B11

=
a2i ((ai − 1)2 − y)2

(ai − 1)4
ν4(i) +

2a2i ((ai − 1)2 − y)

(ai − 1)2
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5 Appendix

Lemma 5.1. For a /∈ [1 −√y, 1 +
√
y] and φ(a) = a + ya/(a − 1) /∈ [ay, by], we have the

following relationship:

m0 ◦ φ(a) =
1

a− 1 + y
,

m1 ◦ φ(a) =
1

a− 1
,

m2 ◦ φ(a) =
(a− 1) + y(a+ 1)

(a− 1)[(a− 1)2 − y]
,

m3 ◦ φ(a) =
1

(a− 1)2 − y
,

m4 ◦ φ(a) =
(a− 1)2

((a− 1)2 − y)(a− 1 + y)2
,

m5 ◦ φ(a) =
(a− 1)3

((a− 1)2 − y)3
,

m6 ◦ φ(a) =
(a− 1)4[(a− 1 + y)2 + a2y]

((a− 1)2 − y)5
,

m3 ◦ φ(a) +m7 ◦ φ(a) =
a(a− 1 + y)(a− 1)2

((a− 1)2 − y)3
.

Proof. (Sketch of the proof) Recall the definitions of these functions in (3.3), which can
all be related to the combinations of the Stieltjes transform:

m(λ) =

∫
1

x− λ
dF (x)

and it’s derivatives. Besides, m(λ) (definition and properties can be found in [1]) satis-
fies:

λ = − 1

m(λ)
+

y

1 +m(λ)
,

by taking derivatives on both sides with respect to λ and combing with the relationship
between m(λ) and m(λ):

m(λ) = ym(λ)− 1

λ
(1− y)

will lead to the result. Details of the calculations are omitted.

Lemma 5.2. With the matrices A and B defined in (4.10) and (4.11), we have( 1√
n
ξ1:n[A− EA]ξ∗1:n(i, i)

1√
n
ξ1:n[B − EB]ξ∗1:n(i, i)

)
=⇒ N

((
0

0

)
,

(
B11 B12

B12 B22

))
,

where

B11 = a2iw1ν4(i) + 2τ1a
2
i , B22 = a2iw2ν4(i) + 2τ2a

2
i , B12 = a2iw3ν4(i) + 2τ3a

2
i ,

and

w1 =
(ai − 1 + y)2

(ai − 1)2
, w2 =

y2

((ai − 1)2 − y)2
, w3 =

y(y + ai − 1)

(ai − 1) · ((ai − 1)2 − y)

τ1 =
(ai − 1 + y)2

(ai − 1)2 − y
, τ2 =

y(ai − 1)4((ai − 1 + y)2 + a2i y)

((ai − 1)2 − y)5
, τ3 =

aiy(ai − 1 + y)(ai − 1)2

((ai − 1)2 − y)3
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Proof. Using Corollary 2.2, and let X(1)∗ = Y (1)∗ = (ξi1, · · · , ξin) (i-th row of ξ1:n),
l = l

′
= 1 and K = 1, we have

A1 = Eξ4i − (Eξ2i )2 = a2i (3 + ν4(i))− a2i ,
A2 = Eξ2iEξ

2
i = a2i ,

A3 = Eξ2iEξ
2
i = a2i .

We only have to calculate these values of wi and τi.
First,

w1 = lim
n→∞

1

n

n∑
i=1

(
1 +X∗2 (λIp −X2X

∗
2 )−1X2(i, i)

)2
= 1 +

(
y(1 +m1(λ))

λ− y(1 +m1(λ))

)2

+ 2ym1(λ)

=

(
ai + y − 1

ai − 1

)2

,

and

θ1 = τ1 = lim
n→∞

1

n
tr
(
In +X∗2 (λIp −X2X

∗
2 )−1X2

)2
= 1 + 2ym1(λ) + ym2(λ)

=
(ai − 1 + y)2

(ai − 1)2 − y

has been proven in [2].
Next,

w2 = lim
n→∞

1

n

n∑
i=1

[B(λ)(i, i)]2 = lim
n→∞

1

n

n∑
i=1

[
X∗2 (λIp −X2X

∗
2 )−2X2(i, i)

]2
.

Since

X∗2 (λIp −X2X
∗
2 )−2X2(i, i) = e∗iX

∗
2 (λIp −X2X

∗
2 )−2X2ei , (5.1)

where ei is the column vector with its i-th coordinate being 1. Recall that

X2 =
1√
n

(η1, · · · , ηn)p×n :=
1√
n
η1:n .

then (5.1) reduces to

1

n
η∗i (λIp −X2X

∗
2 )−2ηi . (5.2)

Denote X2i as the matrix that removing the i-th column of X2:

X2i =
1√
n

(η1, · · · , ηi−1, ηi+1, · · · , ηn) ,

then

X2X
∗
2 = X2iX

∗
2i +

1

n
ηiη
∗
i .

Using the matrix identity that

(λIp −X2X
∗
2 )−1 − (λIp −X2iX

∗
2i)
−1 = (λIp −X2X

∗
2 )−1

1

n
ηiη
∗
i (λIp −X2iX

∗
2i)
−1 ,
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we have

(λIp −X2X
∗
2 )−1 =

1

1− 1
nη
∗
i (λIp −X2iX∗2i)

−1ηi
· (λIp −X2iX

∗
2i)
−1 ,

which leads to

(λIp −X2X
∗
2 )−2 =

1

(1− 1
nη
∗
i (λIp −X2iX∗2i)

−1ηi)
2 · (λIp −X2iX

∗
2i)
−2 ,

and (5.2) equals to
1
nη
∗
i (λIp −X2iX

∗
2i)
−2ηi

(1− 1
nη
∗
i (λIp −X2iX∗2i)

−1ηi)
2 ,

which tends to the limit:

y
∫

1
(λ−x)2 dF (x)

(1− y
∫

1
λ−xdF (x))2

=
ym4(λ)

(1− ym0(λ))2
.

Therefore,

w2 =
(ym4(λ))2

(1− ym0(λ))2
=

y2

((ai − 1)2 − y)2
.

w3 = lim
n→∞

1

n

n∑
i=1

A(λ)(i, i)B(λ)(i, i)

= lim
n→∞

1

n

n∑
i=1

(
1 +X∗2 (λIp −X2X

∗
2 )−1X2(i, i)

)
·X∗2 (λIp −X2X

∗
2 )−2X2(i, i)

= lim
n→∞

1

n

n∑
i=1

X∗2 (λIp −X2X
∗
2 )−1X2(i, i) ·X∗2 (λIp −X2X

∗
2 )−2X2(i, i)

+ lim
n→∞

1

n
tr
[
X∗2 (λIp −X2X

∗
2 )−2X2

]
=

y(1 +m1(λ))

λ− y(1 +m1(λ))
· ym4(λ)

(1− ym0(λ))2
+ ym3(λ)

=
y(y + ai − 1)

(ai − 1)((ai − 1)2 − y)

θ2 = τ2 = lim
n→∞

1

n

n∑
i,j=1

(
X∗2 (λIp −X2X

∗
2 )−2X2(i, j)

)2
= lim
n→∞

1

n
tr
[
X∗2 (λIp −X2X

∗
2 )−2X2

]2
= y

∫
x2

(λ− x)4
dF (x)

= ym6(λ)

=
y(ai − 1)4

(
(ai − 1 + y)2 + a2i y

)
((ai − 1)2 − y)5
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θ3 = τ3 = lim
n→∞

1

n
tr[A(λ)B(λ)]

= lim
n→∞

1

n
tr
{(
In +X∗2 (λIp −X2X

∗
2 )−1X2

)
X∗2 (λIp −X2X

∗
2 )−2X2

}
= y

∫
x

(λ− x)2
dF (x) + y

∫
x2

(λ− x)3
dF (x)

= y(m3(λ) +m7(λ))

=
aiy(ai − 1 + y)(ai − 1)2

((ai − 1)2 − y)3

The proof of Lemma 5.2 is complete.
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