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Abstract

In this article, we study two broad classes of convex order related optimal insurance

decision problems, in which the objective function or the premium valuation is a

general functional of the expectation, Value-at-Risk and Average Value-at-Risk of

the loss variables. These two classes of problems include many existing and contem-

porary optimal insurance problems as interesting examples being prevalent in the

literature. To solve these problems, we apply the Karlin-Novikoff-Stoyan-Taylor

multiple-crossing conditions, which is a useful sufficient criterion in the theory of

convex ordering, to replace an arbitrary insurance indemnity by a more favorable

one in convex order sense. The convex ordering established provide a unifying ap-

proach to solve the special cases of the problem classes. We show that the optimal

indemnities for these problems in general take the double layer form.
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1 Introduction

Optimal insurance decision problem has long been one of the most popular research topics

in the insurance context due to its immediate practical consequence. The optimality of

the deductible contracts for policyholders subject to the classical expected value premium

principle was first proven by Borch (1960) for the minimization of the variance of the

retained loss, and by Arrow (1974) for the maximization of the expected utility (EU) of

the terminal wealth. Since then, intense effort has been observed in the literature to solve

similar problems under various model settings with different objective functions as well as

imposing various constraints that lead to a variety of optimality results. For example, see

Asimit et al. (2013a,b), Balbás et al. (2009), Bernard and Tian (2009), Cai et al. (2008),

Centeno and Guerra (2010), Cheung et al. (2013, 2014, 2015), Kaluszka and Okolewski

(2008), Sung et al. (2011), Tan et al. (2011), and the references therein.

The notion of stochastic ordering, in particular convex ordering, have been well developed

and they are essential for comparing risky alternatives in decision analysis based on

different criteria. For example, convex ordering arranges risks by their variations with

respect to the value of same means, and consequently allows the decision maker to choose

the “least risky” alternative. Convex ordering has been thoroughly applied for solving

various problems in economics, finance and actuarial science, which demonstrates its

usefulness and importance. For instance, it can be applied to compare the aggregate risk

of a portfolio, in which the comonotonicity structure among the risks attains the upper

bound of the convex order. For comprehensive studies and other applications in convex

ordering, see Denuit et al. (2005), Denuit and Dhaene (2012), Dhaene et al. (2002, 2006,

2012), Kaas et al. (1994, 2008), Müller and Stoyan (2002), Rüschendorf (2013), Shaked

and Shanthikumar (2007), and the references therein.

The convex ordering approach to solve the optimal insurance decision problem was first

adopted by Ohlin (1969) of minimizing a measure of the dispersion of the retained and

ceded losses. The crucial mathematical tool employed by Ohlin (1969) is the ‘Karlin-

Novikoff once-crossing criterion’ by Karlin and Novikoff (1963) for (increasing) convex

ordering. Later, Gollier and Schlesinger (1996) used the same approach to extend the re-

sult of Arrow (1974) through maximizing an increasing convex order preserving objective

functional of the terminal wealth. More recently, this approach was re-exploited to solve

various optimal insurance decision problems. For instance, Cai and Wei (2012) solved

the multivariate risk minimizing problems in which the risks are positively dependent.

Chi and Tan (2013) considered the optimal insurance problems under which the premium

principle is a certain convex order preserving functional.
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In this paper, we study two broad classes of convex order related optimal insurance

decision problems:

(I) maximizing a concave order preserving functional of the terminal wealth of the in-

sured with the premium principle specified by a general function of the expectation,

Value-at-Risk (V@R), and Average Value-at-Risk (AV@R) of the indemnity; and,

(II) minimizing another general function of expectation, V@R and AV@R of the ter-

minal loss of the insured with the premium valuated by a general function of the

expectation and a convex order preserving functional of the ceded loss.

Both classes include many existing and contemporary optimal insurance problems as

interesting examples as we shall show in later sections.

Since the problem settings involve the convex order preserving functionals, it is natural

to apply the convex ordering approach on solving for these two problem classes. In-

stead of using the ‘Karlin-Novikoff once-crossing criterion’ by Karlin and Novikoff (1963),

we adopt the ‘Karlin-Novikoff-Stoyan-Taylor crossing conditions’, developed by Stoyan

(1983) and Taylor (1983) and named by Hürlimann (1998, 2008a,b), which is a general-

ization of the once-crossing condition. By exploiting this multiple-crossing criterion, we

are able to

(i) rank the insurance indemnities in terms of their convex orders together with a

greater flexibility than that through the once-crossing condition; and,

(ii) provide a unifying approach to solve for two classes of optimal insurance decision

problems (I) and (II) by using the convex ordering obtained in (i).

The organization of our paper is as follows. In Section 2, two classes of optimal insurance

problems with the corresponding optimality criterion and constraint are formulated. The

main theorem using the multiple-crossing conditions to establish the convex ordering of

the insurance indemnities are presented in Section 3. Resolutions of the special cases

of two classes of problems formulated in Section 2 are illustrated as the corollaries in

Sections 4 and 5.
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2 Preliminaries and Problem Formulation

2.1 Preliminaries

We first recall the definitions and results of several stochastic orderings. For a compre-

hensive review of the theory and applications, see the references in the first paragraph in

Introduction. In this section, Y and Z are random variables with cumulative distribution

functions FY and FZ .

Definition 2.1. Y is said to be smaller than Z in the convex (concave, increasing convex,

increasing concave, resp.) order if for all convex (concave, increasing convex, increasing

concave, resp.) functions ϕ : R→ R, E[ϕ(Y )] ≤ E[ϕ(Z)], provided that the expectations

exist. The convex (concave, increasing convex, increasing concave, resp.) ordering is

denoted as Y ≤cx Z (Y ≤cv Z, Y ≤icx Z, Y ≤icv Z, resp.).

Since Y ≤cx Z is equivalent to Z ≤cv Y , and Y ≤icx Z is equivalent to −Y ≥icv −Z,

and we shall only make use of the results in convex and increasing convex order in

this article, we only present the following summary of useful results for the convex and

increasing convex order. The counterpart results for the concave and increasing concave

order are similar. In what follows, all stated moments are assumed to be finite.

Proposition 2.1.

(i) If Y ≤cx Z , then E[Y ] = E[Z] and Var(Y ) ≤ Var(Z). Also, if Y ≤icx Z, then

E[Y ] ≤ E[Z].

(ii) Define πY (t)
M
= E[(Y − t)+] as the stop-loss transform of Y . Then, Y ≤icx Z if, and

only if, πY (t) ≤ πZ(t) for any real numbers t. Furthermore, if E[Y ] = E[Z], then

Y ≤cx Z if, and only if, πY (t) ≤ πZ(t).

Notice that the results of convex order and increasing convex order are analogous to each

other; indeed, we have the following equivalence of these two orders provided that the

means of Y and Z are equal.

Proposition 2.2. Y ≤cx Z if, and only if, Y ≤icx Z and E[Y ] = E[Z].

To facilitate further use of convex and increasing convex orderings, Karlin and Novikoff

(1963) provided sufficient conditions in terms of the cumulative distribution functions,

known as ‘Karlin-Novikoff once-crossing criterion’.

Definition 2.2. The distribution functions FY and FZ are said to be crossing r ≥ 1
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times if there exist

ξ0,2 < ξ1,1 ≤ ξ1,2 < ξ2,1 ≤ ξ2,2 < · · · < ξr,1 ≤ ξr,2 < ξr+1,1,

where ξ0,2
M
= inf{x : FY (x) 6= FZ(x)} and ξr+1,1

M
= sup{x : FY (x) 6= FZ(x)}, such that, for

each i = 1, 2, . . . , r,

(i) for any x ∈ (ξi−1,2, ξi,1) and y ∈ (ξi,2, ξi+1,1),

(FY (x)− FZ(x)) (FY (y)− FZ(y)) < 0; and

(ii) if ξi,1 < ξi,2, FY (z) = FZ(z) for any ξi,1 ≤ z < ξi,2.

Theorem 2.3. Assume that E[Y ] = E[Z] (resp. E[Y ] ≤ E[Z]). If FY and FZ cross once,

and FY (x)− FZ(x) < 0 for ξ0,2 < x < ξ1,1, then Y ≤cx Z (resp. Y ≤icx Z).

In addition, in this paper we shall make use of the following generalization by Stoyan

(1983) and Taylor (1983), coined as ‘Karlin-Novikoff-Stoyan-Taylor crossing conditions’

by Hürlimann (1998, 2008a,b).

Theorem 2.4. Assume that FY and FZ cross n ≥ 1 times. Then Y ≤icx Z if, and only

if, one of the following two cases is satisfied:

Case 1

(i) There is an even number of crossings n = 2m for some m = 1, 2, . . . ;

(ii) FY (x)− FZ(x) > 0 for ξ0,2 < x < ξ1,1; and

(iii) for any j = 1, 2, . . . ,m, πY (ξ2j−1,2) ≤ πZ(ξ2j−1,2).

Case 2

(i) E[Y ] ≤ E[Z];

(ii) there is an odd number of crossings n = 2m− 1 where m = 1, 2, . . . ;

(iii) FY (x)− FZ(x) < 0 for ξ0,2 < x < ξ1,1; and

(iv) if m ≥ 2, for any j = 1, 2, . . . ,m− 1, πY (ξ2j,2) ≤ πZ(ξ2j,2).

Applying Proposition 2.2 yields an analogous theorem for the convex order by noting

that when E[Y ] = E[Z], Case 1 in Theorem 2.4 cannot be valid as before.
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Theorem 2.5. Assume that FY and FZ cross n ≥ 1 times. Then Y ≤cx Z if, and only

if,

(i) E[Y ] = E[Z];

(ii) there is an odd number of crossings n = 2m− 1 where m = 1, 2, . . . ;

(iii) FY (x)− FZ(x) < 0 for ξ0,2 < x < ξ1,1; and

(iv) if m ≥ 2, for any j = 1, 2, . . . ,m− 1, πY (ξ2j,2) ≤ πZ(ξ2j,2).

We next recall the definitions and results regarding the V@R, AV@R and comonotonicity.

For a thorough reference, see Denuit et al. (2005) and Kaas et al. (2008). Define the (left-

continuous) quantile function of Y as F−1Y (p)
M
= inf{x ∈ R|FY (x) ≥ p} for any p ∈ (0, 1].

Definition 2.3. Assume that α ∈ (0, 1].

(i) The V@R of Y at the level α, denoted by V@Rα(Y ), is defined as

V@Rα(Y )
M
= F−1Y (α).

(ii) The AV@R of Y at the level α, denoted by AV@Rα(Y ), is defined as

AV@Rα(Y )
M
=

1

1− α

∫ 1

α

V@Rλ(Y )dλ =
1

1− α

∫ 1

α

F−1Y (λ)dλ

for α < 1; when α = 1, AV@Rα(Y ) is defined as the ess supY .

(iii) Y and Z are said to be comonotonic if, and only if, there exist a random variable

S and two non-decreasing functions f1 and f2 such that Y
d
= f1(S) and Z

d
= f2(S).

By definition, for a non-negative random variable Y , the integral in AV@Rα(Y ) is the

area bounded by the horizontal boundaries y = α, y = 1, the vertical boundary x = 0,

and the graph FY .

Proposition 2.6. Assume that α ∈ (0, 1].

(i) For any non-decreasing continuous function f , V@Rα(f(Y )) = f(V@Rα(Y )).

(ii) Both V@R and AV@R are translation invariant and comonotonic additive.
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2.2 Problem Formulation

Let X be a non-negative integrable random variable defined on an atomless probability

space (Ω,F ,P) to model the insurable risk/loss of an agent over a fixed period of time. To

avoid unnecessary technical details, we assume that the cumulative distribution function

FX is continuous and strictly increasing on the support of X.1 Also, denote SX = 1−FX
as the survival function. To reduce the risk exposure, the agent seeks for an insurance

protection by paying a premium P in advance, while in return the insurer is responsible

for a part of the loss (ceded loss), which is denoted by I(X), where the ceded loss

function I satisfies certain reasonable assumptions to be specified below. Consequently,

the agent retains the remaining part of the loss (retained loss), which is denoted by

R(X) = X − I(X); and, the terminal risk/loss exposure and terminal wealth of the

agent, with a positive initial capital w, are

LI
M
= X − I(X) + P = R(X) + P

and

ZI
M
= w − LI(X) = w − P −X + I(X),

respectively.

In this article, any feasible ceded loss function I satisfies I(0) = 0 and 0 ≤ I(x) ≤ x,

which is normalized at zero and depicts that any insurance indemnity cannot be greater

than the loss in any ethical manner. Also, to avoid moral hazard and potential swindles

from the insured, (i) for any additional loss claim, at least not lesser insurance payment

would be requested; and (ii) a unit increment of loss cannot result in more than a unit

additional indemnity payment; mathematically, in the sequel, we assume that, for any

feasible ceded loss function I,

0 ≤ I(x1)− I(x2) ≤ x1 − x2, for 0 ≤ x2 < x1 ≤ ess supX.

Define the set I of feasible ceded loss functions as follows:

I M
= {I : [0, ess supX]→ [0, ess supX]|

(I1) : 0 ≤ I(x) ≤ x, for any x ∈ [0, ess supX];

(I2) : 0 ≤ I(x1)− I(x2) ≤ x1 − x2, for any 0 ≤ x2 < x1 ≤ ess supX}.

1Our analysis and results include that case that FX has a jump at 0.
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As a result, the corresponding set R of feasible retained loss functions is given by:

R M
= {R : [0, ess supX]→ [0, ess supX]|

(R1) : 0 ≤ R(x) ≤ x, for any x ∈ [0, ess supX];

(R2) : 0 ≤ R(x1)−R(x2) ≤ x1 − x2, for any 0 ≤ x2 < x1 ≤ ess supX}.

Both (I2) and (R2) are referred as 1-Lipchitz condition. Notice that, for any I ∈ I, both

I and the corresponding R are non-decreasing functions.

Naturally, the agent is interested in purchasing an insurance contract under a certain op-

timality criterion. In particular, we assume that the agent chooses the insurance contract

which would respectively solve the following two general optimization problems.

Problem 2.1. Let g1 be an arbitrary function from R3
+ to R+, and α ∈ (0, 1] be a

threshold risk level. Let P be a fixed positive constant. Let V1,cv be a functional preserving

concave order. Consider the premium principle H1 defined by:

H1(·)
M
= g1(E[·],V@Rα(·),AV@Rα(·)).

The agent aims to choose an optimal policy I ∈ I that maximizes

V1,cv(w −H1(I(X))−X + I(X)),

subject to the premium constraint that H1(I(X)) = P .

Problem 2.2. Let g2 be a function from R2
+ to R+, which is non-decreasing in both

arguments. Let V2,cx be a convex order preserving functional. Let G2 be a real-valued

function on R3
+, which is non-decreasing in all arguments. Let α ∈ (0, 1] be a threshold

risk level. Consider the premium principle H2 defined by:

H2(·)
M
= g2 (E[·], V2,cx(·)) .

The agent would like to choose an optimal policy I ∈ I that minimizes

G2(E [X − I(X) +H2(I(X))] ,V@Rα(X−I(X)+H2(I(X))),AV@Rα(X−I(X)+H2(I(X)))).

Before analyzing and solving these two classes of problems, we emphasize that they

are formulated with reasonable, but not maximal, generality and flexibility, and yet with

minimal assumptions. These two classes of problems include and generalize many existing

models in the literature as shown in the next two sections. In particular, the premium
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H1(I(X)) for the first problem includes the well-known actuarial premium principle

(1 + θ)E[I(X)],

where the risk-loading θ is a constant; on the other hand, it could also take the form of

(1 + Θ (V@Rα(I(X))))E[I(X)],

where Θ (·) is a nondecreasing function. This premium valuation generalizes the actuarial

premium principle by allowing the risk-loading be influenced by the tail risk exposure,

which is natural in practice.

In the sequel, for notational simplicity, we denote a
M
= V@Rα(X) and b

M
= AV@Rα(X).

3 Main Theorem

In this section, we study the convex ordering of the retained losses R(X) among the

retained loss functions R ∈ R. Results for the ceded losses follow the same way by

replacing any R by I and R by I. We first define two sub-classes R1 and R3 of R by

R1
M
= {R ∈ R | R(x) = x− (x− d)+ for some 0 ≤ d ≤ ess supX},

and

R3
M
= {R ∈ R | R(x) = x− (x− d1)+ + (x− d2)+ − (x− d3)+

for some 0 ≤ d1 ≤ d2 ≤ d3 ≤ ess supX}.

Clearly, R1 is a subset of R3. If the class R1 is partitioned into sub-classes

R1,µ
M
= {R ∈ R1 | E [R(X)] = µ},

parametrized by the mean µ of the retained loss, each non-empty sub-class R1,µ is a

singleton, i.e., the parameter d in each sub-classR1,µ is unique. The following proposition

is well-known in the literature which is immediate by Theorem 2.3.

Proposition 3.1. For any µ ∈ [0,E [X]] and R ∈ R with E [R(X)] = µ, there exists a

unique R̃ ∈ R1,µ such that R̃(X) ≤cx R(X).

By this proposition, for the optimal insurance problem which minimizes the convex order

of the retained loss with the premium principle being solely a function of the expectation
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of the retained loss, the optimal solution takes the single layer form.

Similarly, the idea to solve Problem 2.1 and 2.2 is to find the retained loss function(s), for

which the corresponding retained loss(es) has the smallest convex order with the same

mean, V@R and AV@R. However, each retained loss function in R1 contains only one

parameter which is not flexible enough for these two problems. Therefore, we need to

generalize the result in Proposition 3.1 from R1 to R3 which allows a greater flexibility in

choosing the parameters. We apply the Karlin-Novikoff-Stoyan-Taylor (multiple-)crossing

conditions in Theorem 2.5 to prove the following main theorem, which demonstrates that,

to minimize the convex order of R(X) with the same values of mean and with the same

functional values ν at some point τ , it suffices to consider those functions R in the sub-

class R3.

Theorem 3.2. For any µ ∈ [0,E [X]], (τ, ν) ∈ [0, ess supX] × [0, τ ], and R ∈ R\R3

with E [R(X)] = µ and R(τ) = ν, there exists R̃ ∈ R3, with parameters d1, d2, d3, such

that (i) d2 ≤ τ ≤ d3, (ii) E
[
R̃(X)

]
= E [R(X)] = µ, (iii) R̃(τ) = R(τ) = ν, and (iv)

R̃(X) ≤cx R(X).

Proof. Fix µ ∈ [0,E [X]], (τ, ν) ∈ [0, ess supX]× [0, τ ], and R ∈ R\R3 with E [R(X)] = µ

and R(τ) = ν. Let (d1, d2, d3) ∈ [0, τ ] × [d1, τ ] × [τ, ess supX] be real constants which

satisfy the following system:
(a) E [X − (X − d1)+ + (X − d2)+ − (X − d3)+] = E [R(X)] = µ,

(b) τ − d2 + d1 = R(τ) = ν,

(c) E
[
((X − (X − d1)+ + (X − d2)+ − (X − d3)+)− (τ − d2 + d1))+

]
= E

[
(R(X)−R(τ))+

]
.

The existences of d1, d2, d3 are guaranteed by Intermediate Value Theorem. Define R̃(x)
M
=

x− (x− d1)+ + (x− d2)+ − (x− d3)+ which is clearly in R3. By the definition of R̃, (a)

is equivalent to

E
[
R̃(X)

]
= E [R(X)] = µ;

(b) is equivalent to

R̃(τ) = R(τ) = ν;

and, (c) is equivalent to

E
[
(R̃(X)− R̃(τ))+

]
= E

[
(R(X)−R(τ))+

]
.
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It is easy to check that FR̃(X), the distribution function of R̃(X), is given by:

FR̃(X)(y) =


FX(y), for 0 ≤ y < d1,

FX(y + d2 − d1), for d1 ≤ y < d3 − d2 + d1,

1, for y ≥ d3 − d2 + d1.

Suppose that R̃ and R do not overlap on any interval. In this case, FR̃(X) and FR(X)

cross each other three times with ξ1,1 = ξ1,2
M
= d1, ξ2,1 = ξ2,2

M
= τ − d2 + d1, and

ξ3,1 = ξ3,2
M
= d3 − d2 + d1. By condition (a), E

[
R̃(X)

]
= E [R(X)], while, by condition

(c), πR̃(X)(ξ2,2) = πR(X)(ξ2,2). The form of FR̃(X) guarantees FR̃(X)(y)− FR(X)(y) < 0 for

ξ0,2 < y < ξ1,1. Therefore, by Theorem 2.5, R̃(X) ≤cx R(X).

On the other hand, if R̃ and R overlap on some interval, similar arguments hold as the

previous case but it is possible that FR̃(X) and FR(X) cross only once. For instance, if

there exists 0 ≤ e1 ≤ τ ≤ e2 ≤ η such that R(x) = x− (x− e1)+ + (x− e2)+ for x ≤ η,

let d ∈ [τ, ess supX] such that

E
[
R(X)1{X≥τ}

]
= E

[
(R(τ) +X − (X − d)+)1{X≥τ}

]
.

The existence of d is again guaranteed by Intermediate Value Theorem. Take d1 = e1,

d2 = τ and d3 = d, and hence FR̃(X) and FR(X) cross once. By the construction of d and

Theorem 2.5, R̃(X) ≤cx R(X).

As an illustration, we provide a crossing example of R̃ and R when they do not overlap on

any interval. Because the crossing conditions are written using the distribution functions,

we express conditions (R1) and (R2) in R in terms of the distribution function of R(X)

as follows:

(FR1) : FR(X)(0−) = 0 and FX(z) ≤ FR(X)(z) for any z ∈ [0, ess supX];

(FR2) : 0 ≤ F−1R(X)(β2)− F
−1
R(X)(β1) ≤ F−1X (β2)− F−1X (β1) for any 0 ≤ β1 < β2 ≤ 1.

Since R̃, R ∈ R, their distribution functions FR̃(X) and FR(X) satisfy conditions (FR1)

and (FR2), i.e., both FR̃(X) and FR(X) lie above FX , and they exhibit a smaller horizontal

increment than FX for the same vertical increment. Figure 1 shows an example of the

graphs of FX (dashed), FR(X) (semi-thick) and FR̃(X) (ultra-thick) with three crossings.

The construction of R̃ in Theorem 3.2 is actually not necessarily unique. The reason is

that the class R3 can be written as the union of sub-classes

R3,µ,τ,ν
M
= {R ∈ R3 | E [R(X)] = µ and R(τ) = ν},
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Figure 1: An example of distribution functions in the proof of Theorem 3.2

1

ξ1,1 = ξ1,2 ξ2,1 = ξ2,2

= R(τ) = R̃(τ)

ξ3,1 = ξ3,20

FX

FR(X)

FR̃(X)

parametrized by the mean µ of the retained loss and the point (τ, ν), where each non-

empty sub-class R3,µ,τ,ν is not necessarily a singleton since the parameters d1, d2, d3 in

each of these sub-classes R3,µ,τ,ν are not necessarily unique. There could be more than

one, and even infinitely many, feasible double layer retained loss functions such that

the retained losses have the same mean and the functions pass through the point (τ, ν).

Indeed, the condition (c) in the proof can be replaced by the inequality:

(c′)E
[
((X − (X − d1)+ + (X − d2)+ − (X − d3)+)− (τ − d2 + d1))+

]
≤ E

[
(R(X)−R(τ))+

]
,

such that any retained loss function R satisfying conditions (a), (b) and (c′) is also a

possible candidate for the existence. However, the R̃ constructed in the proof has the

added advantage that, it not only preserves the mean of its retained loss and passes

through the same point, but also preserves the mean above and below the point (τ, ν) as

those of the arbitrary R. This observation helps us solve some special cases of Problem

2.1 and 2.2 as corollaries by Theorem 3.2.

Nevertheless, Theorem 3.2 only demonstrates that one can exclude those retained loss

functions R outside R3 when seeking for the retained loss with a smaller convex order

among the functions R ∈ R. It does not compare the convex order of the retained losses

among the functions R ∈ R3. Hence, we have the following theorem which reveals the
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convex ordering within the sub-class R3.

Theorem 3.3. Let µ ∈ [0,E [X]] and (τ, ν) ∈ [0, ess supX] × [0, τ ]. Define d∗ ∈
[0, ess supX] such that E [X − (X − d∗)+] = µ. For any R ∈ R3 with parameters

(d1, d2, d3) ∈ [0, ess supX] × [d1, ess supX] × [d2, ess supX] such that E [R(X)] = µ, and

R(τ) = ν, let (d′1, d
′
2, d
′
3) ∈ [0, ess supX]× [d′1, ess supX]× [d′2, ess supX] be real constants

such that

E [X − (X − d′1)+ + (X − d′2)+ − (X − d′3)+] = E [R(X)] ,

and satisfy one of the following systems of inequalities:

(a) 
d1 ≤ d′1 ≤ d∗,

d′1 ≤ d′2 ≤ d′1 + d2 − d1,

d∗ ≤ d′3 − d′2 + d′1 ≤ d3 − d2 + d1,

if 0 ≤ τ ≤ d1,

(b) 
d′1 = d1,

τ ≤ d′2 ≤ d2,

d∗ − d1 ≤ d′3 − d′2 ≤ d3 − d2,

if d1 ≤ τ ≤ d2,

(c) 
d1 ≤ d′1 ≤ τ − d2 + d1,

d′2 = d′1 + d2 − d1,

d∗ + d2 − d1 ≤ d′3 ≤ d3,

if d2 ≤ τ ≤ d∗ + d2 − d1,

(d) 
d1 ≤ d′1 ≤ d∗,

d′2 = d′1 + d2 − d1,

τ ≤ d′3 ≤ d3,

if d∗ + d2 − d1 ≤ τ ≤ d3,
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(e) 
d1 ≤ d′1 ≤ d∗,

d′3 − d′2 + d′1 = d3 − d2 + d1,

d3 ≤ d′3 ≤ τ,

if d3 ≤ τ .

Then, for R′(x)
M
= x − (x − d′1)+ + (x − d′2)+ − (x − d′3)+, we have (i) R′ ∈ R3, (ii)

E
[
R′(X)

]
= E [R(X)] = µ, (iii) R′(τ) = R(τ) = ν, and (iv) R′(X) ≤cx R(X).

Proof. Fix µ ∈ [0,E [X]], (τ, ν) ∈ [0, ess supX] × [0, τ ], and R ∈ R3 with E [R(X)] = µ,

R(τ) = ν and parameters d1, d2, d3. We only prove the cases that d2 ≤ τ ≤ d∗ + d2 − d1
and d∗ + d2 − d1 ≤ τ ≤ d3 since the remaining cases can be shown similarly. For both of

these two cases, let d′1, d
′
2, d
′
3, where the existences are guaranteed by Intermediate Value

Theorem, and R′ be as stated. It is clear that (i)–(iii) are true. For (iv), FR′(X) and

FR(X) only cross once, with ξ1,1 = d′1 and ξ1,2 = d′3 − d2 + d1. Also, the form of FR′(X)

guarantees FR′(X)(y) − FR(X)(y) < 0 for ξ0,2 < y < ξ1,1. Therefore, by Theorem 2.5,

R′(X) ≤cx R(X).

4 Analysis of Problem 2.1

In this section, we consider a general class of optimal insurance decision problems in which

the objective is to maximize a concave order preserving functional of the terminal wealth

ZI , and the premium is an arbitrary function of the expectation, V@R, and AV@R of

I(X), which is mathematically presented in Problem 2.1 in Section 2. Using Theorem 3.2

and 3.3, we demonstrate, in Corollaries 4.1–4.4, that this problem class includes Gollier

and Schlesinger (1996) and Kaluszka and Okolewski (2008) as special cases, and further

examples which have not appeared in the literature.

Firstly, using Proposition 2.6, the premium constraint can be expressed in terms of both

the ceded loss as:

g1(E[I(X)], I(a),AV@Rα(I(X))) = P, (1)

or in terms of the retained loss as:

g1(E[X]− E[R(X)], a−R(a), b− AV@Rα(R(X))) = P. (2)

Let P be the feasible set of all positive premium values P such that there is at least one

feasible I ∈ I (resp. R ∈ R), satisfying the premium constraint (1) (resp. (2)); and we
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fix a premium P ∈ P throughout this section. We then embed the premium constraint

(1) to the feasible class I and the premium constraint (2) to the feasible class R, by

introducing the sets

IP
M
= {I ∈ I | g1(E[I(X)], I(a),AV@Rα(I(X))) = P} ,

and

RP
M
= {R ∈ R | g1(E[X]− E[R(X)], a−R(a), b− AV@Rα(R(X))) = P}

respectively. By defining V1,cx(x)
M
= −V1,cv(w−P −x), Problem 2.1 is now equivalent to

Problem 4.1.

inf
R∈RP

V1,cx(R(X)).

In words, the objective of Problem 4.1 is to determine an optimal retained loss function

R∗ such that R∗(X) is the smallest in terms of the convex order subject to the premium

constraint (2).

We say that a function h : Rn → R does not depend on the i-th argument if for any

(x1, . . . , xi−1, xi+1, . . . , xn) ∈ Rn−1, the univariate function

xi 7→ h(x1, . . . , xi−1, xi, xi+1, . . . , xn)

is a constant. To indicate explicitly the dependence of g1 on its three arguments, we

introduce the indicators:

Ji (g1)
M
=

0 if g1 does not depend on the i-th argument,

1 otherwise,

for i = 1, 2, 3. In the following corollaries, we demonstrate that Problem 2.1, or equiva-

lently Problem 4.1, includes some existing and contemporary optimal insurance problems

as special cases, and we show that their solution forms could be reduced in some cases.

Corollary 4.1. Assume that g1 depends on all three arguments, such that J1(g1) =

J2(g1) = J3(g1) = 1. The optimal ceded loss function for Problem 2.1 takes the form of

I∗(x) = (x− d∗1)+ − (x− d∗2)+ + (x− d∗3)+,

for some 0 ≤ d∗1 ≤ d∗2 ≤ a ≤ d∗3 ≤ ess supX.
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Proof. For any R ∈ RP , if R ∈ RP\R3,P , by Theorem 3.2 and taking τ = a, there exists

R̃ ∈ R3 such that 

(a) E
[
R̃(X)

]
= E [R(X)] ,

(b) R̃(a) = R(a),

(c) E
[
(R̃(X)− R̃(a))+

]
= E

[
(R(X)−R(a))+

]
,

(d) R̃(X) ≤cx R(X).

By (b) and (c),

(1− α) AV@Rα(R̃(X)) = R̃(a) (1− α) + E
[
(R̃(X)− R̃(a))+

]
= R(a) (1− α) + E

[
(R(X)−R(a))+

]
= (1− α) AV@Rα(R(X)).

Therefore, R̃ ∈ R3,P and hence, it suffices to consider those R ∈ R3,P , with parameters

d1, d2, d3. Define

R′(x) =



x− (x− d∗)+ if 0 ≤ a ≤ d1,

x− (x− d1)+ + (x− a)+ − (x− d′3)+ if d1 ≤ a < d2,

x− (x− d1)+ + (x− d2)+ − (x− d3)+ if d2 ≤ a ≤ d3,

x− (x− d′1)+ + (x− d′2)+ − (x− a)+ if d3 < a,

where d′1, d
′
2, d
′
3 are constructed such that E

[
R′(X)

]
= E [R(X)]. Notice that, in any

cases, d′2 ≤ a ≤ d′3. By Theorem 3.3, R′ ∈ R3,P and R′(X) ≤cx R(X).

Corollary 4.2. Assume that g1 depends only on the first and the third arguments, such

that J1(g1) = J3(g1) = 1 but J2(g1) = 0. The optimal ceded loss function for Problem

2.1 takes the form of

I∗(x) = (x− d∗1)+ − (x− d∗2)+ + (x− d∗3)+,

for some 0 ≤ d∗1 ≤ d∗2 ≤ d∗3 ≤ ess supX.

Proof. The proof works essentially the same as that of Corollary 4.1.

Corollary 4.3. [Extension of Kaluszka and Okolewski (2008)] Assume that g1

depends only on the first and the second arguments, such that J1(g1) = J2(g1) = 1 but
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J3(g1) = 0. The optimal ceded loss function for Problem 2.1 takes the form of

I∗(x) = (x− d∗1)+ − (x− a)+ + (x− d∗2)+,

for some 0 ≤ d∗1 ≤ a ≤ d∗2 ≤ ess supX, or

I∗∗(x) = (x− d∗∗1 )+ − (x− d∗∗2 )+ + (x− a)+,

for some 0 ≤ d∗∗1 ≤ d∗∗2 ≤ a ≤ ess supX.

In particular, if α = 1, the optimal indemnity is a single layer

I∗∗∗(x) = (x− d∗∗∗1 )+ − (x− d∗∗∗2 )+,

for some 0 ≤ d∗∗∗1 ≤ d∗∗∗2 ≤ ess supX. This special case was considered in Kaluszka and

Okolewski (2008).

Proof. Similarly, by Theorem 3.2, it suffices to consider any R ∈ RP\R3,P with parame-

ters d1, d2, d3. Define

R′(x) =


x− (x− d∗)+ if 0 ≤ a ≤ d1,

x− (x− d′1)+ + (x− a)+ − (x− d′3) if d1 ≤ a ≤ d∗ + d2 − d1,

x− (x− d′1)+ + (x− d′2)+ − (x− a)+ if d∗ + d2 − d1 ≤ a,

where d′1, d
′
2, d
′
3 are constructed such that E

[
R′(X)

]
= E [R(X)]. By Theorem 3.3 and

taking τ = a, we have R′ ∈ R3,P and R′(X) ≤cx R̃(X). Finally, the special case of α = 1

corresponds to that a = ess supX.

Cheung et al. (2015) studied the optimal insurance problems under various disappoint-

ment theories. Since the objective functions under the Disappointment Theory by Loomes

and Sugden (1986) when the disappointment function is concave and Disappointment

Aversion Theory by Gul (1991) preserve the concave order, those results now can be

deduced from Corollary 4.3. However, it is not clear that whether the objective function

under the generalized Disappointment Theory without prior expectation motivated by

Cillo and Delquié (2006) and proposed in Cheung et al. (2015) preserves the concave

order and so Corollary 4.3 may not be applicable in general.

Corollary 4.4. [Extension of Gollier and Schlesinger (1996)] Assume that g1 solely

depends on the first argument, such that J1(g1) = 1 but J2(g1) = J3(g1) = 0. The optimal
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ceded loss function for Problem 2.1 takes the form of

I∗(x) = (x− d∗)+,

for some 0 ≤ d∗ ≤ ess supX.

Proof. It is immediate by Proposition 3.1 or Theorem 3.2 and 3.3 with τ = ν = 0.

Corollary 4.4 extends the model studied by Gollier and Schlesinger (1996), who general-

ized the objective function from the expected utility framework by Arrow (1974) to any

increasing convex order (or second order stochastic dominance) preserving functional.

Also, this example includes the problems studied by Borch (1960) and Ohlin (1969), in

which the objective functions are the variance and a measure of dispersion, respectively.

5 Analysis of Problem 2.2

In this section, we consider another general class of optimal insurance decision problems

in which the objective is to minimize a general function of the expectation, V@R and

AV@R of the terminal loss LI with the premium being another general function of the

expectation and a convex order preserving functional of I(X), which is mathematically

depicted in Problem 2.2 in Section 2. We show, in Corollaries 5.1–5.4, that this class

of problems includes Chi (2012b) as special cases, and further examples which have not

appeared in the literature. Proofs in this section are similar to those in the previous

section but use the main theorems in Section 3 by replacing any R by I and R by I, and

hence are omitted.

As a result of Proposition 2.6 and by substituting the premium principle H2(I(X)) into

the objective function, Problem 2.2 is equivalent to

Problem 5.1.

inf
I∈I

G2(E [X]− E [I(X)] + g2 (E[I(X)], V2,cx(I(X))) ,

a− I(a) + g2 (E[I(X)], V2,cx(I(X))) ,

b− AV@Rα(I(X)) + g2 (E[I(X)], V2,cx(I(X)))).

Again, to explicitly clarify the dependence of G2 on its three arguments, define the
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indicators:

Ji (G2)
M
=

0 if G2 does not depend on the i-th argument,

1 otherwise,

for i = 1, 2, 3, in which the meaning of argument dependence was defined in Section 4.

Corollary 5.1. Assume that G2 depends on all three arguments, such that J1(G2) =

J2(G2) = J3(G2) = 1. The optimal ceded loss function for Problem 2.2 takes the form of

I∗(x) = x− (x− d∗1)+ + (x− d∗2)+ − (x− d∗3)+,

for some 0 ≤ d∗1 ≤ d∗2 ≤ a ≤ d∗3 ≤ ess supX.

Corollary 5.2. [Extension of Chi (2012b)] Assume that G2 depends only on the first

and the third arguments, such that J1(G2) = J3(G2) = 1 but J2(G2) = 0. The optimal

ceded loss function for Problem 2.2 takes the form of

I∗(x) = x− (x− d∗1)+ + (x− d∗2)+ − (x− d∗3)+, (3)

for some 0 ≤ d∗1 ≤ d∗2 ≤ a ≤ d∗3 ≤ ess supX.

Corollary 5.3. [Extension of Chi (2012b)] Assume that G2 depends only on the first

and the second arguments, such that J1(G2) = J2(G2) = 1 but J3(G2) = 0. The optimal

ceded loss function for Problem 2.2 takes the form of

I∗(x) = x− (x− d∗1)+ + (x− d∗2)+ − (x− a)+, (4)

for some 0 ≤ d∗1 ≤ d∗2 ≤ a ≤ ess supX, or

I∗∗(x) = x− (x− d∗∗)+, (5)

for some 0 ≤ d∗∗ ≤ ess supX.

Corollaries 5.2 and 5.3 include the work of Chi (2012b); indeed, for δ ∈ [0, 1], suppose

that

G2 (E [LI(X)] ,V@R (LI(X)) ,AV@R (LI(X))) = (1− δ)E [LI(X)] + δV@R (LI(X)) ,

or

G2 (E [LI(X)] ,V@R (LI(X)) ,AV@R (LI(X))) = (1− δ)E [LI(X)] + δAV@R (LI(X)) .
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Due to the translation invariance of V@R and AV@R, the objective reduces to the risk-

adjusted liability studied in Chi (2012b):

E [LI(X)]+δV@R (LI(X)− E [LI(X)]) , or E [LI(X)]+δAV@R (LI(X)− E [LI(X)]) ,

with the same premium valuation. Note that our solution forms (3), (4) and (5) coincide

with Chi (2012b).

Corollary 5.4. Assume that G2 solely depends on the first argument, such that J1(G2) =

1 but J2(G2) = J3(G3) = 0. The optimal ceded loss function for Problem 2.2 takes the

form of

I∗(x) = x− (x− d∗)+,

for some 0 ≤ d∗ ≤ ess supX.

We make a final remark before closing this section. Chi (2012a) studied the optimal

insurance problems where the objective functions are

V@Rα (X − I(X) + E[I(X)] + g(Var(I(X))))

and

AV@Rα (X − I(X) + E[I(X)] + g(Var(I(X)))) ,

for some increasing function g. This formulation can be regarded as a special case

of our Problem 2.2, in which (i) G2(x, y, z) = y or G2(x, y, z) = z so that G2 does

not depend on the first argument, (ii) V2,cx(Y ) = Var(Y ) = E
[
(Y − E [Y ])2

]
, and (iii)

g2 (E[I(X)], V2,cx(I(X))) = E[I(X)] + g(Var(I(X))). We also remark that the “flipping

argument” used in Chi (2012a) remains applicable to the following general setting: (i’)

G2 does not depend on the first argument, (ii’) V2,cx(Y ) = V2,cx(a − Y ) for any random

variable Y and a ∈ R, and (iii’) g2 is translational invariant with respect to the first

argument. With these extra structures, one can obtain the single layer indemnity as the

optimal solution.

6 Concluding Remarks

We studied two broad classes of convex order related optimal insurance decision problems,

in which either the objective function or premium valuation depends on the expectation,

V@R and AV@R of the losses. We showed that the optimal solution of these problems

in general takes the double layer form. To solve these problems, we adopted the convex

ordering approach and applied the Karlin-Novikoff-Stoyan-Taylor multiple-crossing con-
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ditions. This multiple-crossing conditions allow us to provide a unifying scheme to solve

the optimality.
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