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Characterizing mutual exclusivity as the strongest
negative multivariate dependence structure

Ka Chun Cheung∗, and Ambrose Lo†

Department of Statistics and Actuarial Science, The University of Hong Kong,
Pokfulam Road, Hong Kong

Abstract

Mutual exclusivity is an extreme negative dependence structure that was first pro-
posed and studied in Dhaene and Denuit (1999) (The safest dependence structure among
risks. Insurance: Mathematics and Economics 25, 11-21) in the context of insurance
risks. In this article, we revisit this notion and present versatile characterizations of mu-
tually exclusive random vectors via their pairwise counter-monotonic behaviour, minimal
convex sum property, distributional representation and the characteristic function of the
sum of their components. These characterizations highlight the role of mutual exclusivity
in generalizing counter-monotonicity as the strongest negative dependence structure in a
multi-dimensional setting.

Keywords: Mutual exclusivity; Fréchet bounds; Counter-monotonicity; Convex order;
Complete mixability

1 Introduction

It is a fundamental result in the theory of dependence that the joint distribution function FX

of any random vector X is bounded from above and below by two multivariate functions:

Mn(x1, . . . , xn) ≤ FX(x1, . . . , xn) ≤ Wn(x1, . . . , xn) for all (x1, . . . , xn) ∈ Rn.

Here, Wn(x1, . . . , xn) = min{F1(x1), . . . , Fn(xn)} and Mn(x1, . . . , xn) = (
∑n

i=1 Fi(xi)− n+ 1)+
are respectively known as the Fréchet upper bound and Fréchet lower bound of the Fréchet space
R(F1, . . . , Fn) of all n-dimensional random vectors having F1, . . . , Fn as marginal distributions.
This classical result is known as the Fréchet-Höeffding inequality (see, for example, Joe (1997);
Denuit et al. (2005)). While the Fréchet upper bound is always a proper distribution function
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and corresponds to the extreme positive dependence structure of comonotonicity (see Dhaene
et al. (2002) for further discussions), the Fréchet lower bound is in general not admissible in
R(F1, . . . , Fn) when n ≥ 3 (see Example 3.1 of Joe (1997)). This presumably explains why
studies of multivariate negative dependence structure remain rare in the literature.

Necessary and sufficient conditions on the marginal distributions for Mn, n ≥ 3, to be a proper
distribution function are given in Joe (1997). When these conditions are fulfilled and the
marginal distributions are restricted to be non-negative, the Fréchet lower bound corresponds
to a structure known as mutual exclusivity studied in Dhaene and Denuit (1999). Among the
many properties of a mutual exclusive random vector, the authors proved that this concept
gives rise to the safest dependence structure among risks in that a mutually exclusive sum is
the smallest with respect to convex order.

By giving manifold characterizations that parallel those of comonotonicity, this paper aims to
justify rigorously the assertion that mutual exclusivity, whenever admissible, is an appropriate
generalization of the bivariate notion of counter-monotonicity as the strongest negative multi-
dimensional dependence structure. The organization of the paper is as follows. Section 2 is a
recapitulation of the essential results needed in the sequel concerning the Fréchet lower bound,
comonotonicity and counter-monotonicity. Known properties of mutual exclusivity considered
in Dhaene and Denuit (1999) are reviewed in Section 3, where, to allow for greater generality, we
also generalize the definition of mutually exclusive random variables by allowing their essential
infima or essential suprema to be non-identical. Properties in the original definition are shown
to carry over to the new one. The main results of this paper unfold in Section 4, where
the first characterization of mutually exclusive (in the generalized sense defined in Section
3) random variables via their pairwise counter-monotonic behaviour is provided. The novel
pairwise counter-monotonic property allows us to establish, in Section 5, that under appropriate
conditions, a random vector is mutually exclusive if and only if the sum of its components is
minimal in the sense of convex order. The relationship between mutual exclusivity and complete
mixability, which is another negative dependence structure proposed in Wang and Wang (2011),
is also delineated. Section 6 presents a new distributional representation of mutually exclusive
random vectors, which sheds light on their structure and makes the computations of various
expectations transparent. Section 7 is devoted to the analytic properties of mutual exclusivity.
The necessary and sufficient conditions for the existence of mutually exclusive random vectors
are articulated equivalently in terms of characteristic functions. In particular, it will be shown
that, in contrast to comonotonicity, the characteristic function of mutually exclusive sums can
be expressed explicitly in terms of the marginal characteristic functions. Two examples in risk
theory enhance the interest and applicability of this result. Finally, Section 8 concludes the
paper.

2 Preliminaries

All random variables in this paper are assumed to be defined on a common probability space
(Ω,F ,P). The left-continuous inverse of the distribution function FX of any random variable
X is defined by

F−1X (p) := inf{x ∈ R | FX(x) ≥ p}, 0 ≤ p ≤ 1.
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Similarly, the right-continuous inverse distribution function is defined by

F−1+X (p) := inf{x ∈ R | FX(x) > p}, 0 ≤ p ≤ 1.

For any real x, we denote by FX(x−) = limxn↑x FX(xn) the left-hand limit of FX at x. The
survival function and characteristic function of X are denoted by FX and ϕX respectively.
Integrability and non-degeneracy of all distributions are assumed.

2.1 Fréchet lower bound

The Fréchet lower bound Mn is in general not a proper distribution function when n ≥ 3. A
necessary and sufficient condition for Mn with n ≥ 3 to be admissible in R(F1, . . . , Fn) is given
in Theorem 3.7 of Joe (1997), which we state below for completeness.

Lemma 2.1. For n ≥ 3, the Fréchet lower bound Mn is a distribution function in R(F1, . . . , Fn)
if and only if either of the following conditions holds:

(a)
∑n

i=1 Fi(xi) ≤ 1 for all (x1, . . . , xn) ∈ Rn with 0 < Fi(xi) < 1, i = 1, . . . , n; or

(b)
∑n

i=1 Fi(xi) ≥ n− 1 for all (x1, . . . , xn) ∈ Rn with 0 < Fi(xi) < 1, i = 1, . . . , n.

The conditions in Lemma 2.1 can be interpreted as follows. Condition (a) means that for each Fi,
there is a finite upper support point ui on which Fi has a probability mass, and the probability
masses 1 − Fi(u

−
i ) at the ui’s are large enough in the sense that

∑n
i=1[1 − Fi(u

−
i )] ≥ n − 1.

Condition (b) admits a similar interpretation.

2.2 Comonotonicity

Comonotonicity as the strongest positive dependence structure has been studied extensively in
the literature (see Dhaene et al. (2002) and Deelstra et al. (2011) for overviews of the most
relevant results of this dependency notion). A random vector X = (X1, . . . , Xn) is said to be
comonotonic if there is a null set N such that (Xi(ω)−Xi(ω

′)) (Xj(ω)−Xj(ω
′)) ≥ 0 for all

i, j ∈ {1, . . . , n} and ω, ω′ ∈ Ω \N .

The following lemma collects several characterizations of comonotonicity concerning the joint
distribution, pairwise comonotonic property, maximal convex sum property and distributional
representation of a comonotonic random vector. They can be found, for example, in Dhaene
et al. (2002); Cheung (2008, 2010). Two swift proofs of Property (c) are discussed in Remark
4 of Cheung and Lo (2013a).

Lemma 2.2. A random vector X∗ = (X∗1 , . . . , X
∗
n) in the Fréchet space R(F1, . . . , Fn) is

comonotonic if and only if the following equivalent conditions hold:

(a) FX∗(x) = Wn(x) for all x = (x1, . . . , xn) ∈ Rn;
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(b) (X∗i , X
∗
j ) is comonotonic for all i 6= j;

(c) X1 + · · ·+Xn ≤cx X∗1 + · · ·+X∗n for all (X1, . . . , Xn) ∈ R(F1, . . . , Fn);

(d) for any uniform(0, 1) random variable U ,

X
d
=
(
F−11 (U), . . . , F−1n (U)

)
.

The objective of this paper is to show that each of these properties enjoys a parallel version for
mutually exclusive random vectors, suggesting that mutual exclusivity is the structure giving
rise to the most negative dependence.

2.3 Counter-monotonicity

In the special case of n = 2, the Fréchet lower bound M2 corresponds to an extreme dependence
structure known as counter-monotonicity. A bivariate random vector (X1, X2) is said to be
counter-monotonic if there is a null set N such that (X1(ω)−X1(ω

′)) (X2(ω)−X2(ω
′)) ≤ 0 for

any ω, ω′ ∈ Ω \N . Since X1 and X2 move in the opposite direction almost surely, this explains
why (X1, X2) exhibits the strongest negative dependence. Note that counter-monotonicity is a
bivariate concept. An application of counter-monotonicity to merging risks was considered in
Cheung et al. (2014).

The key step in the proofs of our main results lies in reducing multivariate problems to bivariate
ones and applying known results of counter-monotonicity. To this end, the following result,
which asserts that the minimal convex sum behaviour of a random vector is a defining property
of counter-monotonicity, will play an instrumental role in connecting counter-monotonicity and
mutual exclusivity. The “only if” part is a standard result (see, for example, Dhaene and
Goovaerts (1996); Denuit et al. (2005)), while the “if” part was proved recently in Theorem 1
and Remark 1 of Cheung and Lo (2013a) using three simple methods.

Lemma 2.3. A bivariate random vector (X∗1 , X
∗
2 ) in R(F1, F2) is counter-monotonic if and

only if
X∗1 +X∗2 ≤cx X1 +X2 for all (X1, X2) ∈ R(F1, F2).

A generalization of Lemma 2.3 to three or more random variables will be demonstrated in
Section 5 of this paper.

3 Generalized definition of mutually exclusive random

variables

The notion of mutually exclusive random variables was first proposed by Dhaene and Denuit
(1999) in the context of non-negative random variables, more commonly known as risks.
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Definition 3.1. (Dhaene and Denuit (1999), Definition 6) The non-negative random variables
X1, . . . , Xn are said to be mutually exclusive if

P(Xi > 0, Xj > 0) = 0 for all i 6= j.

As noted in Dhaene and Denuit (1999), examples of mutually exclusive random variables abound
in actuarial science and finance. For instance, the present value random variables of term and
endowment insurances written on the same life are mutually exclusive, so are the payoffs of
European call and put options written on the same underlying asset with the same strike price
and time to expiration.

As the notion of mutual exclusivity imposes probability masses on zero, an arbitrary Fréchet
space of non-negative distributions, such as continuous distributions, does not always contain
mutually exclusive risks. A necessary and sufficient condition for mutual exclusivity to be a
feasible dependence structure was given in Theorem 7 of Dhaene and Denuit (1999).

Lemma 3.2. (Dhaene and Denuit (1999), Theorem 7) A Fréchet space R(F1, . . . , Fn) of non-
negative distributions supports mutually exclusive random variables if and only if the condition∑n

i=1[1− Fi(0)] ≤ 1 is fulfilled.

Some useful properties of mutually exclusive random variables derived in Dhaene and Denuit
(1999) are collected in Lemma 3.3. Property (a) shows that the joint distribution of a mutually
exclusive random vector reaches precisely the Fréchet lower bound, and Property (b) demon-
strates the additivity of the stop-loss premiums of a sum of mutually exclusive random variables
for non-negative deductibles. This implies the substantive fact in (c) that a mutually exclusive
sum, when it exists, is minimal with respect to convex order. For two random variables X and
Y , we say that X is less than Y in convex order if E[X] = E[Y ] and E[(X − t)+] ≤ E[(Y − t)+]
for all real t (see Shaked and Shanthikumar (2007)).

Lemma 3.3. Let X∗ = (X∗1 , . . . , X
∗
n) be a random vector in a Fréchet space R(F1, . . . , Fn) of

non-negative distributions satisfying
∑n

i=1[1− Fi(0)] ≤ 1, and S∗ = X∗1 + · · ·+X∗n.

(a) X∗ is mutually exclusive if and only if FX∗ = Mn;

if X∗ is mutually exclusive, then:

(b) E
[
(S∗ − d)+

]
=
∑n

i=1 E[(X∗i − d)+] for all d ≥ 0;

(c) X∗1 + · · ·+X∗n ≤cx X1 + · · ·+Xn for all (X1, . . . , Xn) ∈ R(F1, . . . , Fn).

Motivated by the two conditions in Lemma 2.1, in this section we propose a more generalized
definition of mutually exclusive random variables to be used hereafter to allow for considerably
greater generality. Further explanations on why the generalized definition is desirable will be
given in Remark 4.2 (d) in the next section. Throughout this paper, we let li and ui be the
essential infimum and essential supremum of a random variable Xi, i.e. li = F−1+Xi

(0) and

ui = F−1Xi
(1).
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Definition 3.4. (Mutual exclusivity in the generalized sense) The real-valued random variables
X1, . . . , Xn are said to be:

(a) mutually exclusive from below if P(Xi > li, Xj > lj) = 0 for all i 6= j;

(b) mutually exclusive from above if P(Xi < ui, Xj < uj) = 0 for all i 6= j.

In other words, if X1, . . . , Xn are mutually exclusive, then the realized value of at most one of
them can differ from its essential infimum or essential supremum. Intuitively, such restricted
pointwise behavior exerts exceedingly strong negative dependence on the underlying random
variables. Note that implicit in the definition is the fact that l1, . . . , ln or u1, . . . , un are all
real-valued; otherwise, X1, . . . , Xn would be degenerated at +∞ or −∞.

By translating the random variables back to the original definition of mutual exclusivity, direct
analogues of Lemmas 3.2 and 3.3 can be readily obtained.

Lemma 3.5. For n ≥ 3, a Fréchet space R(F1, . . . , Fn) accommodates mutually exclusive
random variables if and only if any of the following conditions is satisfied:

(a)
∑n

i=1 qi ≤ 1, where qi := 1 − Fi(li), i = 1, . . . , n, in which case random variables which
are mutually exclusive from below are supported;

(b)
∑n

i=1 pi ≤ 1, where pi := Fi(u
−
i ), i = 1, . . . , n, in which case random variables that are

mutually exclusive from above are supported.

From the remark following Lemma 2.1, we note that Condition (a) (resp. (b)) in Lemma 3.5
is equivalent to Condition (b) (resp. (a)) in Lemma 2.1. In other words, the two conditions in
Lemma 3.5 are also necessary and sufficient conditions for the Fréchet lower bound Mn to be a
genuine distribution function when n ≥ 3.

Throughout this paper, we denote the two mutually exclusive conditions in Lemma 3.5 by
Condition (A):

n∑
i=1

qi ≤ 1, where qi := 1− Fi(li), i = 1, . . . , n,

Condition (A): or
n∑
i=1

pi ≤ 1, where pi := Fi(u
−
i ), i = 1, . . . , n.

We will also emphasize instances in which Condition (A) is a hypothesis and those in which
it is a consequence. Notation-wise, we denote by XMB the counterpart of a given random
vector X which is mutually exclusive from below, and by XMA the random vector that is
mutually exclusive from above. When both possibilities wish to be incorporated, the generic
term “mutually exclusive” will be used without “from below” or “from above”, and a mutually
exclusive random vector will be written as XM . The sum of the components of XMB,XMA and
XM are denoted by SMB, SMA and SM respectively.
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Lemma 3.6. Let X∗ be a random vector in a Fréchet space R(F1, . . . , Fn) with n ≥ 3.

(a) X∗ is mutually exclusive if and only if FX∗ = Mn;

(b) if X∗ is mutually exclusive, then

X∗1 + · · ·+X∗n ≤cx X1 + · · ·+Xn for all (X1, . . . , Xn) ∈ R(F1, . . . , Fn).

Proof. Since the proof of (a) is highly similar to that of Theorem 8 of Dhaene and Denuit
(1999), we only prove (b).

Case 1. Suppose that X∗ is mutually exclusive from below such that the condition
∑n

i=1 qi ≤
1 in Lemma 3.5 (a) holds. For all d ≥

∑n
i=1 li and (X1, . . . , Xn) ∈ R(F1, . . . , Fn),

we apply Lemma 3.3 (b) to the non-negative mutually exclusive random variables
Xi − li and obtain

E

[(
n∑
i=1

X∗i − d

)
+

]
= E

[
n∑
i=1

(X∗i − li)−

(
d−

n∑
i=1

li

)]
+

=
n∑
i=1

E

[
(Xi − li)−

(
d−

n∑
i=1

li

)]
+

. (1)

Due to the superadditivity of the function f(x) = (x− d)+ for any x ≥ 0 and d ≥ 0,
we further have

n∑
i=1

E

[
(Xi − li)−

(
d−

n∑
i=1

li

)]
+

≤ E

[
n∑
i=1

(Xi − li)−

(
d−

n∑
i=1

li

)]
+

= E

[(
n∑
i=1

Xi − d

)
+

]
. (2)

Combining (1) and (2), we get

E

[(
n∑
i=1

X∗i − d

)
+

]
≤ E

[(
n∑
i=1

Xi − d

)
+

]
(3)

for any d ≥
∑n

i=1 li. Since (3) is trivially true for d <
∑n

i=1 li, we conclude that
X∗1 + · · ·+X∗n ≤cx X1 + · · ·+Xn.

Case 2. If X∗ is mutually exclusive from above, then −X∗ is mutually exclusive from below.
Applying the result in Case 1, one finds

−
n∑
i=1

X∗i ≤cx −
n∑
i=1

Xi,

or equivalently,
n∑
i=1

X∗i ≤cx
n∑
i=1

Xi

for all (X1, . . . , Xn) ∈ R(F1, . . . , Fn).
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Remark 3.7. (a) It should be noted that unlike Lemma 3.3, Lemma 3.6 (a) is in general
not true when n = 2. In the bivariate case, M2 is always a distribution function, so
one cannot conclude from FX = M2 that X must be mutually exclusive. For a simple

counter-example, consider (X1, X2)
d
= (U, 1 − U) for any uniform(0, 1) random variable

U .

(b) In fact, Lemma 3.6 (b) can be proved more easily by applying Lemma 3.3 (c) to the
non-negative mutually exclusive random variables X∗i − li, yielding

n∑
i=1

X∗i −
n∑
i=1

li ≤cx
n∑
i=1

Xi −
n∑
i=1

li

for all (X1, . . . , Xn) ∈ R(F1, . . . , Fn). The result follows by eliminating the constant∑n
i=1 li on both sides. Nevertheless, (1) and (2) shall be of use in later sections.

4 Pairwise counter-monotonic property of a mutually

exclusive random vector

It is well-known that a random vector with three or more random variables is comonotonic
if and only if it is pairwise comonotonic (Lemma 2.2 (b)). When pairwise comonotonicity is
replaced by pairwise counter-monotonicity, the resulting dependence structure, even if it exists,
is still unknown in the literature due to the eccentric pointwise behavior of the whole random
vector. For such a random vector, when one component increases and another decreases, all
remaining components must remain stationary almost surely, resulting in some probability
masses on the marginal distributions required in the definition of mutual exclusivity. The goal
of this section is to show that the pairwise counter-monotonicity property is synonymous with
mutual exclusivity, either from above or below. This result is interesting in its own right and
will be used in the next section to characterize mutual exclusivity further.

Theorem 4.1. Let X = (X1, . . . , Xn) be a random vector in R(F1, . . . , Fn) with n ≥ 3. Then
X is mutually exclusive if and only if (Xi, Xj) is counter-monotonic for all i 6= j.

Proof. Assume that X is mutually exclusive. By Lemma 3.6 (a), the distribution function of
X is Mn, so that of (Xi, Xj) for any i 6= j is

FXi,Xj
(xi, xj) = lim

xk→∞,
k 6=i,j

Mn(x1, . . . , xi, . . . , xj, . . . , xn)

= [Fi(xi) + Fj(xj) + (n− 2)− n+ 1]+

= M2(xi, xj)

for all (xi, xj) ∈ R2. Reaching the Fréchet lower bound, (Xi, Xj) is counter-monotonic.

Conversely, suppose that (Xi, Xj) is counter-monotonic whenever i 6= j. Without loss of gener-
ality, we assume n = 3 and consider three pairwise counter-monotonic random variables, X1, X2
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and X3. It is then enough to show that the distribution function of X = (X1, X2, X3) is given
by

FX(x) = M3(x) =

(
3∑
i=1

Fi(xi)− 2

)
+

, for all x ∈ R3. (4)

This is because if this is true, then M3 is a genuine distribution function in R(F1, F2, F3).
By Lemmas 2.1 and 3.5, Condition (A) holds and R(F1, F2, F3) supports a mutually exclusive
random vector XM = (XM

1 , X
M
2 , X

M
3 ) whose distribution function, by virtue of Lemma 3.6

(a), is M3. Hence X and XM coincide in distribution, which means that X is also a mutually
exclusive random vector.

For any x ∈ R3 such that FX(x) = 0, the Fréchet-Höeffding inequality implies that

0 ≤M3(x) ≤ FX(x) = 0.

Thus FX(x) = M3(x) = 0. To show (4) for x ∈ R3 such that FX(x) > 0, we divide the
remainder of the proof into several steps.

Step 1: Fix x ∈ R3 such that P(X ∈ L) = FX(x) > 0, where

L := {y ∈ R3 | yi ≤ xi for all i = 1, 2, 3}.

For any distinct i and j in {1, 2, 3}, let

Lij := {y ∈ R3 | yi ≤ xi, yj ≤ xj}.

Then we have

L =
⋂
i 6=j

Lij = L12 ∩ L23 = L12 ∩ L13 = L13 ∩ L23 = L12 ∩ L13 ∩ L23. (5)

Step 2: We claim that

P

(
X ∈

⋃
i 6=j

Lij

)
= 1. (6)

To show this, we exploit the pairwise counter-monotonic hypothesis and let N be a null set
such that whenever ω, ω′ ∈ Ω \N ,

(Xi(ω)−Xi(ω
′)) (Xj(ω)−Xj(ω

′)) ≤ 0 for all i 6= j.

Then S := {X(ω) | ω ∈ Ω \N} is a support of X. Since P(X ∈ L) > 0, L ∩ S is non-empty, so
there exists a ∈ L ∩ S, which means

ai ≤ xi for all i = 1, 2, 3. (7)

If
(⋂

i 6=j L
C
ij

)
∩ S is non-empty, then we can find b ∈

(⋂
i 6=j L

C
ij

)
∩ S such that there exist

distinct i∗ and j∗ in {1, 2, 3} such that

bi∗ > xi∗ and bj∗ > xj∗ . (8)

9



Combining (7) and (8), we obtain

(ai∗ − bi∗)(aj∗ − bj∗) > 0,

which contradicts the fact that a,b ∈ S. In other words,
(⋂

i 6=j L
C
ij

)
∩S must be empty, so (6)

holds.

Step 3: From (6),

1 = P(X ∈ L12 ∪ L23 ∪ L13)

= P(X ∈ L12) + P(X ∈ L23) + P(X ∈ L13)

−P(X ∈ L12 ∩ L23)− P(X ∈ L12 ∩ L13)

−P(X ∈ L23 ∩ L13) + P(X ∈ L12 ∩ L23 ∩ L13)

= P(X ∈ L12) + P(X ∈ L23) + P(X ∈ L13)− 2P(X ∈ L)

= (F1(x1) + F2(x2)− 1)+ + (F2(x2) + F3(x3)− 1)+
+ (F1(x1) + F3(x3)− 1)+ − 2FX(x),

where the third equality follows from (5), and the last equality is due to the pairwise counter-
monotonicity of X. For notational simplicity, we let ti := Fi(xi) for i = 1, 2, 3, and

T1 := (t2 + t3 − 1)+,

T2 := (t1 + t3 − 1)+,

T3 := (t1 + t2 − 1)+.

Then we have

FX(x) =
1

2
(T1 + T2 + T3 − 1).

Note that FX(x) > 0 by our choice of x, and each Ti ≤ 1, so among T1, T2, T3, at least two of
them must be strictly positive.

• Case 1 (T1, T2, T3 are all strictly positive): In this case,

FX(x) =
1

2
[2(t1 + t2 + t3)− 4]

= t1 + t2 + t3 − 2

= M3(x).

• Case 2 (one Ti is zero): Without loss of generality, suppose that T1 = 0 and T2 > 0, T3 >
0. Then

FX(x) =
1

2
[(t1 + t3 − 1) + (t1 + t2 − 1)− 1]

=
1

2
(2t1 + t2 + t3 − 3).

However, T1 = 0 implies that t2 + t3 ≤ 1, which in turn leads to

FX(x) ≤ 1

2
[2(1) + (1)− 3] = 0,

which is a contradiction.
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Therefore, Case 1 is the only possibility. This completes the proof of (4) and, as a result, that
of Theorem 4.1.

Remark 4.2. (a) Theorem 4.1 not only reveals the intimate relationship between mutual ex-
clusivity and counter-monotonicity, but also suggests that the study of mutual exclusivity
boils down to that of bivariate distributions. This is a characteristic of an extreme de-
pendence structure such as comonotonicity. This approach will be used in the proof of
Theorem 5.1.

(b) The same argument in Remark 3.7 (a) shows that Theorem 4.1 is generally not true when
n = 2.

(c) Note that Condition (A) is a direct consequence of Theorem 4.1 and Lemma 3.5; it need
not be imposed for Theorem 4.1 to hold true. If it is known a priori that the underlying
Fréchet space satisfies Condition (A) (as assumed throughout in Dhaene and Denuit
(1999)), the proof of the sufficiency part of Theorem 4.1 can be considerably simplified
as follows:

Suppose that
∑n

i=1 qi ≤ 1 and fix any distinct indices j and k. Since qi ≥ 0
for all i = 1, . . . , n, the condition

∑n
i=1 qi ≤ 1 implies that qj + qk ≤ 1. By

Lemma 3.5 (a), the two-dimensional Fréchet space R(Fj, Fk) supports mutually
exclusive (from below) random variables. Then it follows that (Xj, Xk), with
distribution M2 and lying in R(Fj, Fk), is not only counter-monotonic, but also
mutually exclusive from below for all j 6= k. If Xi > li for some i ∈ {1, . . . , n},
then by the definition of mutual exclusivity, Xj = lj for all j 6= i, which shows
that the whole random vector X is mutually exclusive from below.

The case of
∑n

i=1 pi ≤ 1 is similar.

The advantage of the proof of the sufficiency part of Theorem 4.1 is that we directly show
that the random vector must be mutually exclusive without making use of Condition (A),
which is a by-product of the theorem, because the pairwise counter-monotonicity property
itself imposes strong restrictions on the Fréchet space.

(d) With the pairwise counter-monotonic property alone, we can neither determine the signs
of the li’s and ui’s nor conclude whether X is mutually exclusive from below or from
above. This explains the necessity of introducing the generalized definition of mutual
exclusivity in Section 3.

(e) The non-degeneracy assumption, which is made throughout this paper, is crucial as illus-
trated by the random vector (U, 1, 1−U), where U is any uniform(0, 1) random variable.
This random vector is pairwise counter-monotonic, but not mutually exclusive from above
or below.

5 Minimal convex sum property

As a further step towards fully characterizing mutual exclusivity, in this section we show that
mutually exclusive random variables are defined by the minimality of their sum with respect

11
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to convex order. The main idea of our proof is to reduce multivariate assumptions to bivariate
statements, apply the minimal convex sum property of counter-monotonicity applicable to
bivariate couples and use the pairwise counter-monotonic property established in the previous
section to arrive at the desired multivariate conclusion.

Theorem 5.1. Let X∗ = (X∗1 , . . . , X
∗
n) be a fixed random vector in the Fréchet spaceR(F1, . . . , Fn)

which satisfies Condition (A). Then X∗ is mutually exclusive if and only if

X∗1 + · · ·+X∗n ≤cx X1 + · · ·+Xn for all (X1, . . . , Xn) ∈ R(F1, . . . , Fn).

Proof. The necessity follows from Lemma 3.6 (b). For the converse, we take a mutually exclusive
random vector XM in R(F1, . . . , Fn), which exists under Condition (A), and assume without
loss of generality that XM is mutually exclusive from below. Then Lemma 3.6 (b) and the
hypothesis together imply

X∗1 + · · ·+X∗n
d
= XM

1 + · · ·+XM
n . (9)

We now prove that

X∗1 + · · ·+X∗n−1
d
= XM

1 + · · ·+XM
n−1 (10)

by showing that the stop-loss premiums on both sides are equal. To this end, we proceed as in
the proof of Lemma 3.6 (b) and write the stop-loss premium of the mutually exclusive sum in
(9) as

E

[(
n∑
i=1

XM
i − d

)
+

]
=

n−1∑
i=1

E

[
(XM

i − li)−

(
d−

n∑
i=1

li

)]
+

+ E

[
(XM

n − ln)−

(
d−

n∑
i=1

li

)]
+

= E

[
n−1∑
i=1

(XM
i − li)−

(
d−

n∑
i=1

li

)]
+

+ E

[
(XM

n − ln)−

(
d−

n∑
i=1

li

)]
+

= E

[
n−1∑
i=1

XM
i − (d− ln)

]
+

+ E

[
XM
n −

(
d−

n−1∑
i=1

li

)]
+

, (11)

for all d ≥
∑n

i=1 li, where the second equality follows because (XM
1 , . . . , X

M
n−1) is also mutually

exclusive. On the other hand, we also have

E

[(
n∑
i=1

X∗i − d

)
+

]
= E

[
n∑
i=1

(X∗i − li)−

(
d−

n∑
i=1

li

)]
+

≥ E

[
n−1∑
i=1

(X∗i − li)−

(
d−

n∑
i=1

li

)]
+

+ E

[
(X∗n − ln)−

(
d−

n∑
i=1

li

)]
+

= E

[
n−1∑
i=1

X∗i − (d− ln)

]
+

+ E

[
X∗n −

(
d−

n−1∑
i=1

li

)]
+

(12)

for all d ≥
∑n

i=1 li. Because of (9), we combine (11) and (12) to obtain

E

[
n−1∑
i=1

XM
i − (d− ln)

]
+

≥ E

[
n−1∑
i=1

X∗i − (d− ln)

]
+

(13)
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for all d ≥
∑n

i=1 li. Note that (13) is trivially true for d <
∑n

i=1 li, so (13) indeed holds for all
d ∈ R. Since the reverse inequality must also hold by Lemma 3.6 (b), we have

E

[(
n−1∑
i=1

XM
i − d

)
+

]
= E

[(
n−1∑
i=1

X∗i − d

)
+

]
for all d ∈ R,

which proves (10).

Applying (10) inductively, we get X∗i + X∗j
d
= XM

i + XM
j for all i 6= j. By Theorem 4.1,

XM
i +XM

j is a counter-monotonic sum in R(Fi, Fj), so it follows from Lemma 2.3 that (X∗i , X
∗
j )

is counter-monotonic for all i 6= j. Using Theorem 4.1 once more, we conclude that X∗ is a
mutually exclusive (from below) random vector.

Theorem 5.1 can be regarded as a complement of Lemmas 2.2 (c) and 2.3. The optimality
of the sum of a random vector’s components in the sense of convex order, under appropriate
conditions, allows one to identify the dependence structure of that random vector.

Corollary 5.2. Let X∗ = (X∗1 , . . . , X
∗
n) be a fixed random vector in the Fréchet spaceR(F1, . . . , Fn)

which satisfies Condition (A) and S∗ = X∗1 + · · · + X∗n. Then S∗
d
= SM if and only if X∗ is

mutually exclusive.

If each marginal distribution has finite second moment, then the minimal convex sum property
is equivalent to the minimality of the variance of the sum of a random vector’s components.

Proposition 5.3. Let X∗ = (X∗1 , . . . , X
∗
n) be a fixed random vector in the Fréchet space

R(F1, . . . , Fn) of square integrable distributions such that Condition (A) is fulfilled. Then X∗

is mutually exclusive if and only if

Var(X∗1 + · · ·+X∗n) ≤ Var(X1 + · · ·+Xn) for all (X1, . . . , Xn) ∈ R(F1, . . . , Fn).

Proof. The “only if” part is trivial. For the “if” part, assume that the minimum of Var(X1 +
· · · + Xn) over all (X1, . . . , Xn) ∈ R(F1, . . . , Fn) is attained by X∗ = (X∗1 , . . . , X

∗
n), but X∗

is not mutually exclusive. By Theorem 4.1, we can find some (X∗i , X
∗
j ) which is not counter-

monotonic, or equivalently, Cov(X∗i , X
∗
j ) is not minimal. Considering the mutually exclusive

random vector XM =(XM
1 , . . . , X

M
n ), whose existence is guaranteed by Condition (A), we have

Var(X∗1 + · · ·+X∗n) > Var(XM
1 + · · ·+XM

n ),

which is a contradiction.

As a matter of fact, Corollary 5.2 and Proposition 5.3 admit the following generalization, taking
into account Theorem 3.A.60 of Shaked and Shanthikumar (2007).

Proposition 5.4. Let X∗ = (X∗1 , . . . , X
∗
n) be a fixed random vector in the Fréchet space

R(F1, . . . , Fn) such that Condition (A) is fulfilled. Then X∗ is mutually exclusive if and only if

E[φ(X∗1 + · · ·+X∗n)] = E[φ(XM
1 + · · ·+XM

n )]

for some strictly convex function φ such that the expectations exist.
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We caution that while the “only if” part of Theorem 5.1, Corollary 5.2, Propositions 5.3 and
5.4 is always true even without Condition (A), the imposition of Condition (A) is crucial for
the reverse implication to hold. In general, the minimality of the sum of the components of a
random vector with respect to convex order without knowing any properties of the underlying
Fréchet space is not sufficient for mutual exclusivity, as Example 5.6 below illustrates.

Definition 5.5. (a) (Wang and Wang (2011), Definition 2.1) A distribution function F is
said to be n-completely mixable if there exist n random variables X1, . . . , Xn with the
same distribution F such that

P(X1 + · · ·+Xn = C) = 1 (14)

for some constant C ∈ R.

(b) A Fréchet space R(F1, . . . , Fn) is said to be completely mixable if there exist n random
variables X1, . . . , Xn with distribution functions F1, . . . , Fn respectively such that (14)
holds for some C ∈ R.

Example 5.6. Consider the Fréchet space R(F, . . . , F ), where F is the binomial distribution
with parameters m and p/n, and m ∈ N \ {1} and p, n ∈ N. The non-degeneracy of F
requires that p < n, or p + 1 ≤ n. By Proposition 2.3 (3) of Wang and Wang (2011), F is
n-completely mixable, so there exists a random vector X∗ = (X∗1 , . . . , X

∗
n) ∈ R(F, . . . , F ) such

that X∗1 + · · ·+X∗n is almost surely constant. By Jensen’s inequality,

X∗1 + · · ·+X∗n ≤cx X1 + · · ·+Xn

for all (X1, . . . , Xn) ∈ R(F, . . . , F ). However, the inequalities

n∑
i=1

P(X∗i > 0) = n
[
1−

(
1− p

n

)m]
> n

[
1−

(
1− p

n

)]
= p ≥ 1

and
n∑
i=1

P(X∗i < m) = n
[
1−

(p
n

)m]
> n

(
1− p

n

)
= n− p ≥ 1

show that Condition (A) is violated. In other words, X∗ is not a mutually exclusive random
vector. �

For further information about complete mixability, we refer the reader to Puccetti et al. (2012)
and Wang et al. (2013).

From Theorem 5.1 and Example 5.6, one sees that mutual exclusivity and complete mixability
are possible solutions to the convex minimization problem

min
(X1,...,Xn)∈R(F1,...,Fn)

E[f(X1 + · · ·+Xn)],

where f is a given convex function, for different types of marginals F1, . . . , Fn. More precisely:

• if R(F1, . . . , Fn) satisfies Condition (A), then mutual exclusivity will be the optimal de-
pendence structure;
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• if R(F1, . . . , Fn) is completely mixable, the solution will be complete mixability.

Interestingly, mutual exclusivity and complete mixability are not “mutually exclusive” depen-
dence structures. As we shall show in the next proposition, their coexistence is equivalent to
the underlying marginal distributions being two-point distributions.

Proposition 5.7. A Fréchet space R(F1, . . . , Fn) is completely mixable and accommodates
mutually exclusive from below random vectors if and only if

Fi(x) = (1− qi)1{x≥li} + qi1{x≥ui}, (15)

where the essential infima l1, . . . , ln and essential suprema u1, . . . , un satisfy u1 − l1 = · · · =
un − ln and

∑n
i=1 qi = 1.

Proof. Suppose that the mutually exclusive from below random vector XMB exists in the com-
pletely mixable Fréchet space R(F1, . . . , Fn). Then it follows from Corollary 5.2 that the
mutually exclusive sum SMB is almost surely equal to its mean. Define, for i = 1, . . . , n,
Ai := {XMB

i > li}. For any fixed i ∈ {1, . . . , n} and ω ∈ Ai, mutual exclusivity implies that
XMB
j (ω) = lj for all j 6= i. If XMB

i can take two or more distinct values on Ai, then this would
contradict the degeneracy of SMB. Hence, each XMB

i can only take two values, namely, li and
ui. Now if ωi ∈ Ai and ωj ∈ Aj with i 6= j, then

ui − li +
n∑
i=1

li = SMB(ωi) = SMB(ωj) = uj − lj +
n∑
j=1

lj,

showing that ui − li must equal the same positive constant, say c, for all i = 1, . . . , n. Since∑n
i=1 li + c = SMB = E[SMB] =

∑n
i=1 li + c

∑n
i=1 qi, we have

∑n
i=1 qi = 1.

Conversely, if the distribution of each Fi is given as in (15) with the stated properties, then
Condition (A) is satisfied, guaranteeing the existence of the mutually exclusive from below
random vector XMB in R(F1, . . . , Fn). As

∑n
i=1 qi = 1, the sets Ai defined in the “only if” part

of the proof are mutually exclusive and exhaustive. We conclude that SMB =
∑n

i=1 li+c almost
surely, where c := u1 − l1 = · · · = un − ln. Hence R(F1, . . . , Fn) is completely mixable.

Using the same argument, it can be easily shown that a Fréchet space R(F1, . . . , Fn) is com-
pletely mixable and accommodates mutually exclusive from above random vectors if and only
if

Fi(x) = pi1{x≥li} + (1− pi)1{x≥ui},

such that u1 − l1 = · · · = un − ln and
∑n

i=1 pi = 1.

From its definition, complete mixability is a negative dependence structure. It is also clear that
when the underlying Fréchet space is completely mixable, the minimal convex sum property
characterizes complete mixability. However, necessary and sufficient conditions for complete
mixability are not known in the literature. In addition, a completely mixable random vector
may not be pairwise counter-monotonic.
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Example 5.8. Consider n = 3 and Ω = {ω1, ω2}. Define a random vector X∗ = (X∗1 , X
∗
2 , X

∗
3 )

via:

ω X∗1 (ω) X∗2 (ω) X∗3 (ω) (X∗1 +X∗2 +X∗3 )(ω) P({ω})
ω1 1 2 −3 0 1/2
ω2 −2 −1 3 0 1/2

As X∗1 +X∗2 +X∗3 ≡ 0, X∗ is completely mixable. However, (X∗1 , X
∗
2 ) is not counter-monotonic.

�

As we shall show in the next section, mutual exclusivity possesses a distributional representation
that can be readily compared with that in Lemma 2.2 (d). Corresponding precisely to the
Fréchet lower bound and enjoying a counterpart of each property in Lemma 2.2 as well as
a high degree of analytic tractability, mutual exclusivity, whenever it exists, is arguably the
strongest dependence structure.

6 Distributional representation of a mutually exclusive

random vector

In this section, we present the third characterization of mutual exclusivity by demonstrating
the distributional representation of mutually exclusive random variables. This result is of both
practical and theoretical importance because it not only provides a simple method for generating
mutually exclusive random variables, but also reveals the underlying copula which is unknown
in the literature. As in the extreme cases of comonotonicity and counter-monotonicity, a single
uniform(0, 1) random variable suffices to generate the whole mutually exclusive random vector.

Theorem 6.1. Suppose that the Fréchet space R(F1, . . . , Fn) satisfies Condition (A) and U is
any uniform(0, 1) random variable.

(a) (Mutual exclusivity from below) If
∑n

i=1 qi ≤ 1, then

XMB d
=
(
F−11 (U1), . . . , F

−1
n (Un)

)
,

where, for i = 1, . . . , n,

Ui :=

(
U + 1−

i∑
j=1

qj

)
1{U∈(0,∑i

j=1 qj)} + (1− U)1{U∈[∑i
j=1 qj ,1)} (16)

Moreover,

F−1i (Ui) =

{
F−1i

(
U + 1−

∑i
j=1 qj

)
,
∑i−1

j=1 qj ≤ U <
∑i

j=1 qj,

li, otherwise,
(17)

with the convention that
∑0

j=1 qj := 0;
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(b) (Mutual exclusivity from above) if
∑n

i=1 pi ≤ 1, then

XMA d
=
(
F−11 (U1), . . . , F

−1
n (Un)

)
,

where, for i = 1, . . . , n,

Ui :=

(
i∑

j=1

pj − U

)
1{U∈(0,∑i

j=1 pj)} + U1{U∈[∑i
j=1 pj ,1)}.

Furthermore,

F−1i (Ui) =

{
F−1i

(∑i
j=1 pj − U

)
,
∑i−1

j=1 pj ≤ U <
∑i

j=1 pj,

ui, otherwise,

with the convention that
∑0

j=1 pj := 0.

Proof. We only prove (a) as the proof of (b) is similar. We first check that the distribution of
each F−1i (Ui) is indeed Fi by showing that each Ui is a uniform(0, 1) random variable. To this
end, we compute the characteristic function of Ui:

ϕUi
(t) =

ˆ ∑i
j=1 qj

0

eit(p+1−
∑i

j=1 qj) dp+

ˆ 1

∑i
j=1 qj

eit(1−p) dp

=

(
eit − eit(1−

∑i
j=1 qj)

it

)
+

(
eit(1−

∑i
j=1 qj) − 1

it

)

=
eit − 1

it
, t 6= 0.

Due to the one-to-one correspondence between characteristic functions and distributions, we de-
duce that each Ui is a uniform(0, 1) random variable, and by extension,

(
F−11 (U1), . . . , F

−1
n (Un)

)
lies in R(F1, . . . , Fn).

Next, we prove (17) by showing that F−1i (Ui) = li whenever U /∈
[∑i−1

j=1 qj,
∑i

j=1 qj

)
for each

i = 1, . . . , n.

• If 0 < U <
∑i−1

j=1 qj, then 1−
∑i

j=1 qj < U + 1−
∑i

j=1 qj < 1− qi, so F−1i (Ui) = li.

• If
∑i

j=1 qj ≤ U < 1, then 0 < 1− U ≤ 1−
∑i

j=1 qj ≤ 1− qi. Thus F−1i (Ui) = li as well.

As the intervals [0, q1), [q1, q1 + q2), . . . , [
∑n−1

i=1 qi,
∑n

i=1 qi) are disjoint, it follows from (17) that

P(F−1i (Ui) > li, F
−1
j (Uj) > lj) = 0 for all i 6= j.

Consequently,
(
F−11 (U1), . . . , F

−1
n (Un)

)
is mutually exclusive from below, as desired.

We give several remarks to elucidate the seemingly complicated distributional representation
in Theorem 6.1.
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Remark 6.2. (a) Note that U1, . . . , Un all depend on the same uniform(0, 1) random variable
U , but they are not monotonic functions of U . As in the case of comonotonicity, a mutually
exclusive random vector XM admits a simple structure in the sense that calculations of
expectations involving XM are particularly easy since only a single integration is necessary
(see the remarks following Theorem 7.1 in the next section).

(b) The distributional representation is not unique since it is possible to rearrange the se-
quence of probabilities {q1, . . . , qn} and {p1, . . . , pn} to produce different non-overlapping
intervals on which the value of at most one random variable can exceed (resp. be less
than) its essential infimum (resp. essential supremum).

(c) In the context of such a distributional representation, the meaning of Condition (A) man-
ifests itself since the inequality

∑n
i=1 qi ≤ 1 or

∑n
i=1 pi ≤ 1 ensures that the randomization

variable U is bounded above by one.

(d) If the underlying probability space is atomless, then we can apply Corollary 6.11 of Kallen-
berg (2002) to strengthen the distributional representation in Theorem 6.1 into an almost
sure equality: there exists a uniform(0, 1) random variable V such that

XMB =
(
F−11 (V1), . . . , F

−1
n (Vn)

)
almost surely,

where, for i = 1, . . . , n,

Vi :=

(
V + 1−

i∑
j=1

qj

)
1{V ∈(0,∑i

j=1 qj)} + (1− V )1{V ∈[∑i
j=1 qj ,1)}.

(e) From the definition of U1, . . . , Un, the copula of a mutually exclusive random vector,
denoted by CM

n (·, . . . , · | q1, . . . , qn), can in principle be determined. In the case of mutual
exclusivity from below, for instance, if ui ∈

[
1− ∧nj=1qj, 1

]
for all i = 1, . . . , n, then

CMB
n (u1, . . . , un | q1, . . . , qn) = P(U1 ≤ u1, . . . , Un ≤ un)

= P

(
U ∈

n⋃
i=1

[
i−1∑
j=1

qj, u
∗
i

]
∪

[
n∑
i=1

qi, 1

])
,

where u∗i := ui − 1 +
∑i

j=1 qj ∈
[∑i−1

j=1 qj,
∑i

j=1 qj

)
(see Figure 1 for an illustration when

n = 3). It follows that

CMB
n (u1, . . . , un | q1, . . . , qn) =

n∑
i=1

(
u∗i −

i−1∑
j=1

qj

)
+

(
1−

n∑
i=1

qi

)

=
n∑
i=1

(ui − 1 + qi) +

(
1−

n∑
i=1

qi

)

=
n∑
i=1

ui − (n− 1).

The general expression of CMB
n (u1, . . . , un | q1, . . . , qn) depends on the ranges of values of

u1, . . . , un.
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U
q1 q1 + q2 q1 + q2 + q3

1− q1

U1

1− q1 − q2

U2

1− q1 − q2 − q3

U3

u1

u∗1

u2

u∗2

u3

u∗3

Figure 1: Illustration of the determination of CMB
3 (u1, . . . , u3) for ui ≥ 1− ∧3

j=1qj, i = 1, 2, 3.

Example 6.3. (Explicit calculations of CMB
2 (·, · | q1, q2)) In this example, we compute the

bivariate mutually exclusive (from below) copula explicitly. Under the assumption that q1 ≤ q2
with q1 + q2 ≤ 1, the expressions of CMB

2 (u1, u2 | q1, q2) for different u1 and u2 are given in
Table 1.

For example, when u1 ∈ [1− q1 − q2, 1− q1) and u2 ∈ [1− q1, 1], then

CMB
2 (u1, u2 | q1, q2) = P(1− u1 ≤ U ≤ u2 + q1 + q2 − 1) + P(q1 + q2 ≤ U ≤ 1)

= (u1 + u2 + q1 + q2 − 2)+ + (1− q1 − q2)
= (u1 + u2 − 1) ∨ (1− q1 − q2).

The calculations in other cases are similar.

CMB
2 (u1, u2 | q1, q2) u2 ∈ [1− q1, 1] u2 ∈ [1− q1 − q2, 1− q1) u2 ∈ [0, 1− q1 − q2)

u1 ∈ [1− q1, 1] u1 + u2 − 1 (u1 − q2) ∧ u2 + (u2 + q2 − 1)+ u2

u1 ∈ [1− q1 − q2, 1− q1) (u1 + u2 − 1) ∨ (1− q1 − q2) (u1 + u2 − 1) ∨ (1− q1 − q2) u2

u1 ∈ [0, 1− q1 − q2) u1 u1 u1 ∧ u2

Table 1: Explicit expressions of CMB
2 (u1, u2 | q1, q2) for different ranges of values of u1 and u2.

Note that CMB
2 (·, · | q1, q2) is different from the Fréchet lower copula defined by CM(u1, u2) :=

(u1 + u2 − 1)+. In other words, there are two different copulas, CMB
2 (·, · | q1, q2) and CM ,
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corresponding to the Fréchet lower bound M2:

M2(x1, x2) = CMB
2 (F1(x1), F2(x2) | q1, q2) = CM (F1(x1), F2(x2))

for all x1, x2 ∈ R. No contradiction with Sklar’s theorem (see, for example, Theorem 2.3.3
of Nelsen (2006)) arises; this example just presents another instance of the non-uniqueness of
copulas corresponding to a given joint distribution if its marginals are not continuous. However,
when ui ≥ 1− q1 ≥ 1− q2 for i = 1, 2, CMB

2 (u1, u2 | q1, q2) = CM(u1, u2), showing that the two
copulas agree on the product of the ranges of the marginal distribution functions. Note that
unlike CM , the copula CMB

2 (·, · | q1, q2) is marginal-dependent in the sense that its definition
involves the probabilities q1 and q2 from the marginal distributions. �

7 Characteristic function of a mutually exclusive sum

Unlike comonotonicity, the characteristic function, and more generally, any transform functions
whenever they exist, of a mutually exclusive sum will be shown in this section to comprise the
sum of the marginal characteristic functions, as opposed to a product in the well-known case of
independence. Of equal importance is that the consideration of characteristic functions allows
us to give an equivalent reformulation of Condition (A) in terms of marginal characteristic
functions. For simplicity, we consider mutual exclusivity from below with all essential infima
being zero and from above with zero essential suprema. The general case can be treated by
simple translation of random variables.

Theorem 7.1. Suppose that R(F1, . . . , Fn) is a Fréchet space with l1 = · · · = ln = 0 or
u1 = · · · = un = 0. Then R(F1, . . . , Fn) supports mutual exclusivity if and only if

n∑
i=1

ϕi(t)− (n− 1), t ∈ C,

defines a valid characteristic function.

Proof. We consider the cases (1) l1 = · · · = ln = 0 and (2) u1 = · · · = un = 0 separately.

Case 1. Assume that mutual exclusivity from below is admissible in R(F1, . . . , Fn). The
characteristic function of the mutually exclusive sum SMB is

ϕSMB(t) = E[eitS
MB

]

=
n∑
i=1

E[eitS
MB | Xi > 0]P(Xi > 0) + P(S = 0)

=
n∑
i=1

E[eitXi | Xi > 0]P(Xi > 0) + P(S = 0)

=
n∑
i=1

[ϕi(t)− P(Xi = 0)] + P(S = 0).
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As P(S = 0) = 1− P(S > 0) = 1−
∑n

i=1 P(Xi > 0) = 1−
∑n

i=1[1− P(Xi = 0)], we
further have

ϕSMB(t) =
n∑
i=1

[ϕi(t)− P(Xi = 0)] +

[
1−

n∑
i=1

[1− P(Xi = 0)]

]

=
n∑
i=1

ϕi(t)− (n− 1).

Conversely, suppose that
∑n

i=1 ϕi − (n − 1) is a valid characteristic function of a
random variable, say Y . For any non-negative λ, we set t = iλ to obtain

E[e−λY ] =
n∑
i=1

E[e−λXi ]− (n− 1) (18)

for all (X1, . . . , Xn) ∈ R(F1, . . . , Fn). Note that

E[e−λXi ] = P(Xi = 0) + E[e−λXi | Xi > 0]P(Xi > 0)

→ P(Xi = 0)

as λ→∞ by dominated convergence theorem. It follows from (18) that

n∑
i=1

P(Xi = 0)− (n− 1) =
n∑
i=1

(1− qi)− (n− 1) ≥ 0,

or
∑n

i=1 qi ≤ 1, which is Condition (A).

Case 2. If R(F1, . . . , Fn) admits mutual exclusivity from above and XMA
1 , . . . , XMA

n are ran-
dom variables which are mutually exclusive from above with u1 = · · · = un = 0,
then −XMA

1 , . . . ,−XMA
n are random variables that are mutually exclusive from be-

low with zero essential infima. In this case, the characteristic function of the mutually
exclusive sum SMA is

ϕSMA(t) = ϕ−SMA(−t)

=
n∑
i=1

ϕ−Xi
(−t)− (n− 1)

=
n∑
i=1

ϕXi
(t)− (n− 1),

where the second equality follows from the “only if” part of Case 1.

To show that if
∑n

i=1 ϕi − (n− 1) is a valid characteristic function, then Condition
(A) is fulfilled, we can apply the same argument in the “if” part of Case 1 with
t = −iλ for any non-negative λ.

In the proof of the “only if” part of Theorem 7.1, the characteristic function of the mutually
exclusive sum can also be derived by means of the distributional representation in Theorem
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6.1. For example,

ϕSMB(t) =

ˆ q1

0

eit[F
−1
1 (p+1−q1)] dp+

ˆ q1+q2

q1

eit[F
−1
2 (p+1−q1−q2)] dp

+ · · ·+
ˆ q1+···+qn

q1+···+qn−1

eit[F
−1
n (p+1−q1−···−qn)] dp

+[1− (q1 + · · ·+ qn)]

=
n∑
i=1

ˆ ∑i
j=1 qj

∑i−1
j=1 qj

(
eit[F

−1
i (p+1−

∑i
j=1 qj)] − 1

)
dp+ 1

=
n∑
i=1

(ϕi(t)− 1) + 1

=
n∑
i=1

ϕi(t)− (n− 1).

In essence, this is merely the conditioning argument in the proof of Theorem 7.1 expressed
equivalently in integral forms.

Armed with Theorem 7.1 and our preceding characterization of mutual exclusivity by the
minimal convex sum property, we can also characterize mutually exclusive random vectors by
the characteristic function of the sum of their components. Note that Condition (A) is not
imposed a priori.

Theorem 7.2. A random vector X∗ = (X∗1 , . . . , X
∗
n) in a Fréchet space R(F1, . . . , Fn) with

l1 = · · · = ln = 0 or u1 = · · · = un = 0 is mutually exclusive if and only if the characteristic
function of S∗ = X∗1 + · · ·+X∗n is given by

ϕS∗(t) =
n∑
i=1

ϕi(t)− (n− 1) (19)

for all t ∈ C.

Proof. The necessity has been shown in the proof of Theorem 7.1. To prove the sufficiency, we
assume that the characteristic function of S∗ is given as in (19). Then Theorem 7.1 implies that
mutual exclusivity is supported by R(F1, . . . , Fn), or equivalently, Condition (A) is satisfied,
guaranteeing the existence of a mutually exclusive random vector XM in R(F1, . . . , Fn). By
hypothesis and the necessity, S∗ coincides in distribution with SM , so we conclude by Corollary
5.2 that S∗ must be mutually exclusive.

We end this section by applying Theorem 7.2 to show that a mutually exclusive sum of mixture
distributions remains as a mixture distribution. The same holds for compound distributions.
These results bear particular importance in risk theory.

Example 7.3. (Mutually exclusive sums of mixture distributions) Consider the random vari-
ables X1, . . . , Xn distributed as

Xi
d
=

{
0, with probability 1− qi,
Yi, with probability qi,
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where Y1, . . . , Yn are strictly positive random variables. Such random variables X1, . . . , Xn arise,
for example, in the individual risk model in risk theory (see Chapter 2 of Kaas et al. (2008) for
further discussions). Assume that

∑n
i=1 qi ≤ 1 so that Condition (A) is satisfied for the Fréchet

space (FX1 , . . . , FXn). By Theorem 7.2, the characteristic function of the mutually exclusive
sum SM = XM

1 + · · ·+XM
n can be computed as

ϕSM (t) =
n∑
i=1

ϕXi
(t)− (n− 1)

=
n∑
i=1

[(1− qi) + qiϕYi(t)]− (n− 1)

=

[
1−

n∑
i=1

qi

]
+

n∑
i=1

qiϕYi(t),

from which we deduce that SM is also a mixture random variable distributed as

SM
d
=


0, with probability 1−

∑n
i=1 qi,

Y1, with probability q1,
...

...

Yn, with probability qn.

�

Example 7.4. (Mutually exclusive sums of compound distributions) In the collective risk model
(see Chapter 3 of Kaas et al. (2008) for further discussions), we consider the compound ran-

dom variables S1, . . . , Sn distributed as Si
d
=
∑Ni

j=1Xij, where N1, . . . , Nn are counting random
variables and {Xij}i,j∈N is a sequence of identically distributed non-negative random variables
with characteristic function ϕX , such that Ni and {Xij}j≥1 are independent for any given
i ∈ {1, . . . , n}. The characteristic function of each Si is given by

ϕSi
(t) = PNi

[ϕX(t)],

where PNi
is the probability generating function of Ni. If (FN1 , . . . , FNn) supports a mutually

exclusive random vector, then so does (FS1 , . . . , FSn) by virtue of Theorem 7.1. Then it follows
from Theorem 7.2 that the characteristic function of the mutually exclusive sum SM = SM1 +
· · ·+ SMn of the compound variables is given by

ϕSM (t) =
n∑
i=1

PNi
[ϕX(t)]− (n− 1) = PNM [ϕX(t)],

where NM := NM
1 + · · · + NM

n . In other words, SM is also a compound random variable,
whose primary distribution is that of the mutually exclusive sum NM of the counting random
variables, and the secondary distribution remains unchanged at X.

We remark that while the result in Example 7.3 can also be established by considering dis-
tribution functions and using a simple conditioning argument similar to that in the proof of
Theorem 7.1 without resort to characteristic functions, such an approach may not work in
Example 7.4. This is because the distribution function of a compound variable in terms of
the probability functions of the primary and secondary distributions via convolution in general
takes a complicated form. �
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8 Concluding remarks

In this article, the investigation of mutual exclusivity initiated in Dhaene and Denuit (1999)
is considerably expanded and several novel characterizations of mutually exclusive random
variables are given. It has been shown that in a multi-dimensional setting, mutual exclusivity
is the strongest negative dependence structure corresponding to the Fréchet lower bound and
enjoying parallel defining properties of comonotonicity, under some conditions on the marginal
distributions (Condition (A)).

It is well-known that risk measures and comonotonicity are intimately linked. A promising
future research direction will be exploring the relationship between mutual exclusivity and risk
measures such as Value-at-Risk and Tail Value-at-Risk, and the explicit expressions of these risk
measures of mutually exclusive sums. The derivation of lower bounds on the Tail Value-at-Risk
and Haezendonck-Goovaerts risk measures of a sum of random variables characterizing mutual
exclusivity is pursued in Cheung and Lo (2013b).
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