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We propose a scheme to store the spin-nematic squeezing in a spinor Bose-Einstein condensate by
applying periodic microwave pulses. For a proper pulse period and phase shift, the squeezing can
be enhanced and maintained for a long time, which realizes the storage of the maximal squeezing.
We also propose a method to generate the spin-nematic squeezed vacuum, which is associated with
negligible occupation of the squeezed modes, through an adiabatic sweep of the magnetic field. It is
shown that the method can be readily implemented for both ferromagnetic and antiferromagnetic
condensates.

PACS numbers: 03.75.Mn, 03.75.Kk, 67.85.Fg

I. INTRODUCTION

Improving measurement sensitivity beyond the stan-
dard quantum limit (SQL) has been attracted much at-
tention for many years due to its important applications
in quantum metrology. By using the squeezed states, the
SQL of measurement uncertainty can be surpassed. Due
to such a property, squeezed state has a widely appli-
cations in atom interferometers and high-precision atom
clocks. In the experiment the spinor BEC, i.e., Bose-
Einstein condensate of ultracold atomic gases with inter-
nal degrees of freedom, provide an ideal platform for ex-
ploring the spin squeezing [1–6], and the squeezed states
could be generated via nonlinear interaction such as one
axis twisting and two-axis counter twisting [7, 8].

Spin squeezing of the spin-1/2 systems has been widely
studied by utilizing two appropriate magnetic sublevels
or two mode condensate [9–14]. For spin-1/2 particles,
the state can be uniquely specified by different compo-
nent of the total spin vector S = (Sx, Sy, Sz). For
higher spin particles, future degrees of freedom beyond
the spin vector are required to express the state. In
the case of spin-1 atomic Bose-Einstein condensates [15–
26], the multipolar moments can be specified in both
terms of the spin vector and nematic tensor [5, 27–32].
Qi,j({i, j} ∈ {x, y, z}) which constitute SU(3) Lie alge-
bra. In matrix form, the nematic moments Qi,j can be
expressed Qi,j = SiSj + SjSi − (4/3)δij with δij being
the Kronecker delta. The SU(3) Lie algebra suggests new
trade-off relations between the spin operator S and the
nematic tensor operator Qi,j, which indicates squeezing
can be caused by other types of correlations beyond the
spin-spin correlation, such as spin-nematic and interne-
matic correlations. The spin-nematic quadrature squeez-
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ing was observed in the recent experiment [5] and im-
proved on the SQL by up to 8-10 dB. However, does
the stronger spin-nematic squeezing can be generated in
such a system is unknown. How to further improve and
control the squeezing is an important goal in the exper-
imental frontier. In addition, improving and controlling
the squeezing may also have an important application for
the quantum metrology and quantum information pro-
cessing.

In this paper we propose a scheme for storage of the
maximal spin-nematic squeezing in a quantum many-
body spin system by periodically manipulating the
phases of the states. We employ a system of spin-1
Bose condensate with initial state of all atoms in the
state of mF = 0. The free dynamical process gives
rise to quantum spin mixing and spin-nematic squeez-
ing. By manipulating the external periodic microwave
pulses, we find the system could finally be stabilized
and the spin-nematic squeezed vacuum will never dis-
appear. With proper pulse period and phase shift, the
spin-nematic squeezing can be enhanced and stored for a
long time. The results indicate the spin nematic squeez-
ing can be improved up to −20 dB and maintained for
about 100ms. We also propose a method to generate
the spin-nematic squeezed vacuum through an adiabatic
sweep of the magnetic field and show that the optimal
spin-nematic squeezed vacuum is obtained at the phase
transition point.

This paper is organized as follows. In Sec. II, we intro-
duce the model of spin-1 condensates under an external
magnetic field. In Sec. III, we propose a scheme for stor-
age of the spin-nematic squeezing. In Sec. IV, a method
is proposed to generate the spin-nematic squeezed vac-
uum by slowly sweeping the magnetic field. Finally, our
conclusions and some remarks on our results are pre-
sented in Sec.V.
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{Sx, Qyz, Q+} Qyz Q+ {Sy, Qxz, Q−} Qxz Q−

Sx iQ+ −2iQyz Sy iQ− −2iQxz

Qyz 2iSx Qxz 2iSy

TABLE I: Commutation relationship of the two subspaces
{Sx, Qyz, Q+} and {Sy , Qxz, Q−}.

II. MODEL

We consider the system with spin-1 Bose-Einstein con-
densate under an external magnetic field. In the single
mode approximation, the Hamiltonian of the system can
be written as [5, 15]

Ĥ = λ(Ŝ2 − 2N̂) + pŜz +
q

2
Q̂zz, (1)

where λ is the inter-spin interaction energy, p and q(∝
B2) are the linear and quadratic Zeeman energy, respec-

tively. Q̂zz = (2/3)â†1â1 − (4/3)â†0â0 +(2/3)â†−1â−1 is an
element of spin-1 nematic tensor, and âi is the annihi-
lation operator of the ith spin mode. The Hamiltonian

conserves the magnetization Sz = â†1â1− â†−1â−1 and the

total number N̂ = â†1â1 + â†0â0 + â†−1â−1, and thus the
dynamical evolution then occurs only in the internal spin
degrees of freedom. Then the effective Hamiltonian for
the evolution problem becomes [5]

Ĥeff = λŜ2 +
q

2
Q̂zz. (2)

For a high magnetic field, the system favors a nematic
ordering of the spins with 〈Ŝ〉 = 0. Such a nematic phase
brokes the rotational symmetry with the anisotropy of
the spin fluctuation. In the Fock basis, |N1, N0, N−1〉,
this state can be written as |0, N, 0〉 which corresponds to
all of the atoms stay atmF = 0 state. For a low magnetic
field, the ground state of the system is determined by
the sign of λ, i.e., λ < 0 (87Rb) and > 0 (23Na) means
the system favors a ferromagnetic or antiferromagnetic
phase, respectively. For an intermediate field, the system
exhibits a quantum transition at the critical point qc =
−4Nλ for the ferromagnetic case [33].

For our system with spin-1 atoms, squeezing is gener-
ated by the nonlinear collisional spin interaction Hs =
λŜ2, which contains a four-wave mixing terms HFWM =

2λ(â†
2

0 â1â−1 + â†1â
†
−1â

2
0). In this case, the squeezing

can be described in terms of a two-mode formalism in
which a±1 modes represent the signal and idler, re-
spectively. The dynamical behavior of the spin-1 con-
densates have been widely investigated in the experi-
ments [34–37] and exhibits many interesting quantum
phenomena [5, 37, 38]. Here we investigate the squeezing
using the commutators of the SU(3) group and consider
the ferromagnetic case, λ < 0.

III. SPIN-NEMATIC SQUEEZING

Based on the definition of the operator Q̂i,j, such as [5]

Q̂yz =
i√
2
(â†0â−1 − â†1â0 + â†0â1 − â†−1â0),

Q̂xz =
1√
2
(â†1â0 − â†0â−1 + â†0â1 − â†−1â0),

Q̂xx =
2

3
â†0â0 −

1

3
(â†1â1 + â†−1â−1) + â†1â−1 + â†−1â1,

Q̂yy =
2

3
â†0â0 −

1

3
(a†1â1 + â†−1â−1)− â†1â−1 − â†−1â1,

we can define {Sx, Qyz, Q+} and {Sy, Qxz, Q−} as
two subspaces of SU(3). Here, Q+ and Q− are defined
as Q+ = Qzz − Qyy, Q− = Qxx − Qzz, respectively.
The commutation relationship for these two subspaces is
shown in Table I. According to the generalized Heisen-
berg uncertainty relation ∆A∆B >

1
2 | 〈[A,B]〉 |, squeez-

ing occurs only for the operator pairs with non-zero ex-
pectation values for their commutation relations. For
the initial state of the condensate with all atoms in the
mF = 0 state, only two operators in the above two sub-
spaces have nonzero expectation values, i.e., 〈Q±〉 6= 0.
Then the two different spin-nematic squeezing parame-
ters in a SU(2) subspace are defined by [2]

ξ2x(y) =
〈

(∆(cos θSx(y) + sin θQyz(xz)))
2
〉

/
〈

Q+(−)/2
〉

,

(3)
θ is the quadrature angle. For a proper θ, we can ob-
tain a minimum value of ξ2x(y). If the state of the sys-

tem with negligible populations of the mF = ±1 states,
we have 〈[Sx, Qyz]〉 = −2iN and 〈[Sy, Qxz]〉 = 2iN . In
this case, the relevant uncertainty relations between a
quadrupole nematic operator and a spin operator is given
by ∆SxQyz > N and ∆SyQxz > N . Then the squeezing
parameter ξ2x(y) is the ratio between the variance of the

quadrature operator to the standard quantum limit of N
and ξ2x(y) < 1 indicates spin-nematic squeezed vacuum.

With the above discussion, we now turn on our main
task. Considering the initial state of the system with
all of the atoms in mF = 0 state, and then let the state
become free dynamic evolution with the system in a lower
magnetic field. During this processing, the spin mixing
Hamiltonian conserves both the total particle number N
and magnetization, the evolution state of the system in
vector form is

|ψ(t)〉 =
N/2
∑

k=0

ak(t) |N, k〉 , (4)

where |N, k〉 is so-called pairs basis with N the total par-
ticle number and k the number of pairs of atom in the
mF = ±1 states. In Fig. 1 (a) we plot the spin-nematic
squeezing parameter (10 log10 ξ

2
x) as a function of t with

the spinor interaction energy λ = −7.2π~/N Hz and
the magnetic field B = 60 mG, which determines the
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FIG. 1: (Color online) Evolution of spin-nematic squeezing
parameter ξ2x for different applied phase shifts (a) ∆θ = 0
(free dynamic evolution) and (b) ∆θ = −0.9π. The green
ticks represent the pulses. The phase period is 31 ms and
the total particle number N = 103. The inset shows the time
evolution of N0/N .

quadratic Zeeman effect q = 143.2π~×B2 Hz/G2. From
Fig. 1, we can see the free evolution gives rise to spin-
nematic squeezing and quantum spin mixing. For the
initial short time, the inset plot in Fig. 1(a) shows that
there is essentially no population transfer from the state
mF = 0 to the other two statesmF = ±1 (N0/N > 99%),
which corresponds to squeezed vacuum for the mF = ±1
modes. However, the spin nematic squeezed vacuum
only keeps for a short time due to the spin mixing dy-
namic of atom population transfer to mF = ±1 modes
(N1/N = N−1/N > 0.5%).
To maintain the phenomenon of the spin-nematic

squeezed vacuum, we need to stabilize the evolution of
state mF = 0. It can be achieved by using periodic phase
shifts of the spinor wave function, which is manifested as
a rotation about a polar axis in the spin-nematic phase
space and represented as the operator exp(i∆θQzz) [15].
In the experiment, such a rotation can be implemented
by using 2π Rabi pluses on the |f = 1,mF = 0〉 ↔
|f = 2,mF = 0〉 microwave clock transition, which can
effectively shift the phase of the state |f = 1,mF = 0〉
with an amount ∆θ0 = π(1+∆/

√
1 + ∆2), where ∆ is the

detuning normalized to the on-resonance Rabi rate [5].
After the phase shift of ∆θ, the wave function is

|ψ(t)〉∆θ = eiQzz∆θ |ψ(t)〉

=

N/2
∑

k=0

e4i∆θ(−N/3+k)ak |N, k〉 . (5)

As shown in Fig. 1(b), the time evolution of the spin-
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FIG. 2: (Color online) Evolution of spin-nematic squeezing
parameter ξ2x for different quadrature phase shifts ∆θ = 0
(blue dashed) and ∆θ = −0.99π (red). The dotted line rep-
resents the minimum value for the free evolution of ξ2x. The
phase period is 28.7 ms and the green ticks represent the
pulses.

nematic squeezing is plotted with a microwave pulse with
phase shift ∆θ = −0.9π. The pulse period is 31 ms
with the first pulse at 31 ms after the quench. For a
proper size of quadrature phase shift, the value of the
spin population N0/N ≈ 1 (inset of Fig. 1(b)), which
corresponds to stabilized dynamics. From Fig. 1(b) we
can see ξ2x oscillates as a function of t and keeps the
corresponding value smaller than 0, which indicates that
in the evolution process, the system always exhibits a
spin-nematic squeezed vacuum phenomenon.

In addition to the generation of the squeezing state it-
self, it is desirable to maintain the squeezing for a long
time. In Fig. 2 we plot the spin-nematic squeezing pa-
rameter ξ2x as a function of time with ∆θ = −0.99π.
The pulse period is 28.7 ms with the first pulse at 28.7
ms after the quench. We can see that the spin-nematic
squeezing parameter maintain at the value of −20dB for
a long time (≈ 100ms). Comparing with the result of the
free evolution (∆θ = 0), we can find the squeezing can
even be enhanced. Here, we emphasize that the main-
tained squeezing is not squeezed vacuum, as shown in the
set of Fig. 2, mf = ±1 states are macroscopically pop-
ulated (N1/N > 0.5%) when t > 53ms. Varying both
the parameters of the pulse period and the phase shift
over from 8ms to 45ms and 0 to 2π, respectively. We
have found the spin-nematic squeezing (ξ2x ≈ −20dB)
can also be maintained for a long time (≈ 100ms) with
many other sizes of the microwave pulse parameters,
such as δθ = −0.99π, the pulse period T = 31ms, and
δθ = −0.985π, T = 31ms. In this way, we realize the
storage of spin-nematic squeezing by applying external
microwave pulses.
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FIG. 3: (Color online) (a) The order parameter N0/N and
(b) The energy gap ∆ in the unit of N |λ| as a function of
q/N |λ| with the total atom number N = 103.

IV. ADIABATIC PASSAGE GENERATE

SQUEEZING

Now we propose another method to generate the spin
nematic squeezing though an adiabatic sweep of the mag-
netic field. To analyze the squeezing behavior, first we
quantitatively calculate the phase transition points dur-
ing this adiabatic passage and the corresponding energy
gap. For our proposed adiabatic passage, we perform the
numerical many-body calculation in the Hilbert space
with N−1 = N1. As shown in Fig. 3(a), numerical re-
sult of the condensate fraction in mF = 0 state is plot-
ted as a function of q/(N |λ|). It shows a second-order
phase transition at the critical point q

N |λ| = 4, in which

the condensate fraction N0/N drops from 1 to a posi-
tive number. This result agrees with the the mean-field
prediction [16]. Besides the prediction of the behavior
of the condensate fraction at the critical point, the exact
numerical calculation can also show the energy gap at the
phase transition point. In Fig. 3(b), we plot the energy
gap ∆ as a function of q/N |λ|, where ∆ is defined as the
energy difference between the first excite state and the
ground state. At the phase transition point, we can see
the energy gap attains its minimum value. In fact the
energy gap is dependent on the particle number and the
scaling of the energy gap at the phase transition point is
given by ∆ = 7.4N−1/3|λ| [39].
We now turn to discuss the spin nematic squeezing

generation with the adiabatic passage. Suppose the sys-
tem is initially prepared under a strong magnetic field
q(i), which produces state with all the particles in the
mF = 0 state. We then sweep q from positive value to 0
with a constant rate v > 0 and the corresponding time
dependent magnetic field is given by

q(t) = q(i) − vt (6)

with t > 0. At time t = tf , we measure the spin-nematic
squeezing. As shown in Fig. 4, the spin-nematic squeez-
ing is plotted as a function of q/N |λ| with the total par-
ticle number N = 4 × 103. We see the squeezing attains
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FIG. 4: Spin-nematic squeezing as a function of q/N |λ| with
a linear field sweeping rate v = 1 × 10−3. The total particle
number is chosen N = 4×103. The inset shows the evolution
of N0/N as a function q(t)/N |λ|.

its minimum value at q = 4N |λ| which corresponds the
phase transition point. As the field sweeps over the phase
transition point, the condensate wave function bifurcates
into the states forming the minimum gap and thus be-
comes a coherent superposition of states with different
particle population in mF = 0 state. To get the opti-
mal squeezing, we can stop the sweeping at the magnetic
field q = 4N |λ|. When q 6 4N |λ|, as shown the in-
set of Fig. 4, N0/N ≃ 1, thus the generated squeezing is
a spin-nematic squeezed vacuum and the corresponding
squeezing is improved on the standard quantum limit by
up to 13 dB.
In the above discussion, all the calculation are done

for the case of ferromagnetic with λ < 0 due to the
positive quadratic Zeeman shift q. In the recent exper-
iments [34, 40–42], it is found that the value of q can
be switched to both the positive and the negative side
by using an ac Stark shift from a π-polarized microwave
dressing field which couples the hyperfine levels |F = 1〉
and |F = 2〉. In such a case, our scheme can also be ap-
plied for the antiferromagnetic case. With λ > 0, we can
change the adiabatic sweep along the highest eigenstate
of the Hamiltonian in Eq. (2) and then all of the calcula-
tion is same with the ferromagnetic case. Here we shall
note that the initially parameter needs to be set with a
negative value, i.e., q < 0 and the atoms are prepared
into the state mF = 0.

V. CONCLUSION

In summary, we have investigate the generation and
the coherent control of spin-nematic squeezing in a spinor
BEC condensate. By applying the periodic microwave
pulses, spin-nematic squeezed vacuum can exist all the
time. With a proper pulse period and phase shift, the
spin-nematic squeezing can be even enhanced to −20dB
and maintained for a long time. We also propose an-
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other scheme to generate spin-nematic squeezed vacuum
through an adiabatic sweep of the magnetic field. We ob-
tain the optimal spin-nematic squeezing vacuum, which
improves on the standard quantum limit by up to 13 dB,
at the phase transition point.
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