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Screening in Ultrashort (5 nm) Channel MoS,
Transistors: A Full-Band Quantum Transport Study

Varun Mishra, Samuel Smith, Lei Liu, Ferdows Zahid, Member, IEEE, Yu Zhu,
Hong Guo, and Sayeef Salahuddin, Senior Member, IEEE

Abstract—Full-band ballistic quantum transport calculations
were used to study the screening effects in ultrashort-channel
few-layer MoS; transistors. A large density of states resulted in
small screening lengths while inhibiting direct source-to-drain
tunneling. Short-channel effects were observed even for the
structurally confined 2-D transistors resulting in degraded
electrostatic control. Electron confinement effects were also
observed in the OFF-state in multilayered devices.

Index Terms— Dichalcogenide, monolayer transistors, MoS;,
nonequilibrium Green’s function (NEGF), quantum confinement.

I. INTRODUCTION

UE to a naturally occurring layered structure, large

bandgap, and compensated surface, 2-D transition
metal dichalcogenides could provide unprecedented gate
control [1]-[4] for ultrashort channel length (~5 nm)
transistors where conventional semiconductors such as
Si and III-V are expected to show a significant short-
channel effect [5]. Owing to weak interlayer interactions,
Transition Metal Dichalcogenide (TMD) can be exfoliated to
fabricate few-layered transistors. Thus, transistors based on
TMD materials, especially, MoS,, have received significant
interest in the research community over the last few years [6]—
[10]. Models based on effective mass description of the
bandstructure show excellent electrostatic properties of MoS;
transistors with good subthreshold behavior [6] owing to large
bandgaps and high effective mass [2], [9], [10]. However, a
quantitative understanding of what extent of gate control can
actually be achieved, what the determining factors are, and
what tradeoffs need to be made requires a more rigorous
model of the bandstructure so that the effect of applied
voltages on the charge density and, therefore, the current can
be appropriately captured. Here, we present a full-band
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self-consistent quantum transport study of electrostatic
screening in 5-nm channel length MoS; transistors with doped
contacts as a function of number of layers with both
single-gate and double-gate geometries. Our results show that
for such ultrashort-channel lengths, the following can be
observed.

1) The layer closest to the gate can effectively screen out
the gate potential due to a large density of states, and
as a result, the gate cannot effectively control more than
one layer.

2) For a monolayer, a significant short-channel effect can
still be observed.

3) Because of 1) and 2), only a double-gate geometry for a
monolayer device provides reasonable gate control (sub-
threshold swing ~84 mV/decade). Surprisingly, these
numbers are not better and rather comparable with what
could be achieved with a surround-gate Si nanowire of
small dimensions (~3-nm diameter) [11].

II. APPROACH
A. Bandstructure

The electronic structure calculations [Fig. 1(a)—(d)] of MoS;
were performed by fitting orthogonal tight-binding (TB)
parameters to density functional theory (DFT) calculations.
The parameterization scheme used in this paper follows a
similar technique as described in [12], but with improvements
that allow for directly including the deviations of bandgaps and
effective masses into the minimized cost function [13]-[16].
The obtained TB parameters are listed in Table I, and the
corresponding fitting results of bandgaps and effective masses
are listed in Tables II and III, respectively. The electronic states
near the top of valence bands and the bottom of conduction
bands are mainly contributed from Mo d-orbitals and
S p-orbitals, mixing with Mo s-orbitals [17]. The energy
positions of the states are determined through complicated
interactions between those orbitals and many other states in
the Hilbert space with higher energies. In order to reproduce
the band structure obtained using the first-principle method
with high precision, we have also included Mo p-orbitals
and S s- and d-orbitals in our TB model, which are used
to include the influence of the many other states with higher
energies, in an effective way. Therefore, the parameters related
to those orbitals may lose their original physical meanings,
and should be considered as pure mathematical parameters.
The interlayer interactions were included in the bandstructure
calculation. This leads to an indirect bandgap for few-layered
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Fig. 1. Electronic structure computed from TB models along high symmetry lines for (a) monolayer MoS, (electronic structure from DFT calculations marked
with circles), for bilayer MoS, calculated using TB models with the interaction between the two layers turned (b) ON and (c) OFF, and for (d) three-layer
MoS;. The bandgap of monolayer MoS, is 1.8 eV with the offset between the K (conduction band minimum) and X, (minimum energy point along the
K — T direction) valleys equal to 0.2503 eV. The valence band maximum for monolayer MoS; shifts from the K point to the I' point when the interaction
is turned ON resulting in an indirect bandgap. The bandgap of bilayer MoS; is equal to 1.48 eV, while that of three-layer MoS; is 1.46 eV. The conduction
band minimum shifts from K to X, as the number of layers is increased from three. The layer-wise projected density of states for the eigenstates at the
bottom of conduction band at (¢) K and (f) X,y points for three-layer MoS, show a higher confinement of electrons in the middle layer. The bottom of the
conduction band is shown by the dotted black line. A lower temperature was used at the K point as opposed to room temperature used at the X i, point to
show the confinement effects at the K point as the eigenstates are closer to each other. The effect is thus less significant at the K point compared with the

X min point.

MoS; as shown in Fig. 1(a) and (b). The bandgaps from the
TB parameters were calculated to be 1.8, 1.48, and 1.46 eV
for monolayer, bilayer, and three-layer MoS,, respectively.
The bandstructure matches well with previous theoretical
and experimental results [18]. Monolayer MoS; has a direct
bandgap at the K point. The valence band maximum shifts
to the I' point for few-layered devices, while it shifts back
from the I' point to K point if the interlayer interactions
are removed, showing their significance, especially in p-type
transport. The conduction band minimum also shifts from the
K point to Zpin (local minimum along K — I') point as the
number of layers is increased from three. In this paper,
we will investigate only the electronic properties of one- to
three-layered transistors.

One important observation for multilayer (e.g., the
three-layer) structures is the fact that increased surface energy
leads to a higher projected density of eigenstates in the inner
layer [Fig. 1(e) and (f)]. The layer-wise density was calculated
by normalizing the eigenvector corresponding to a certain
energy and momentum and summing over the probability of
all the orbitals belonging to a layer. The probability density
of eigenstates at the bottom of the conduction band at both
the K and X, points shows a considerable confinement of
electrons to the inner layer, thus resulting in higher charge
densities in those layers. There is reasonably large density
of states in the surface layers 100 meV above the band
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Fig. 2. Schematic of the simulated layered MoS, transistors with
(a) single gate and (b) double gates. The gate length is 5 nm. The number of
layers of TMDs is varied from 1 to 3, resulting in a body thickness in the range
of 0.6-1.8 nm. The source and drain contacts are ohmic (no Schottky barrier).
EOT is 0.5 nm.

minimum at the Xy, point while it is significant 20 meV
from the minimum at the K point. Thus, the effect will be
more significant for multilayered devices, as Zp, becomes
the conduction band minimum. A higher current could be
expected in the middle layer in the OFF-state for three-layered
transistors, if the electric field can penetrate through the top
most layer.

B. Device Simulation

The schematic of the simulated device structures along
with the device parameters is shown in Fig. 2. We use both
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TABLE I
TB PARAMETERS FOR M0S, USING ORTHOGONAL MODEL WITH sp3d5
ORBITALS, NEAREST-NEIGHBOR INTERACTIONS, AND SPIN-ORBIT
COUPLING, IN THE UNIT OF ELECTRONVOLTS

Single Layer ~ Double Layer Bulk
On-site energy
5(S) 17.9023 17.4692 17.2848
p(S) -2.4009 -2.6415 -2.2950
d(S) 75.2885 75.1980 74.6303
s(Mo) 9.9447 9.7433 10.1452
p(Mo) 36.6985 37.4747 36.2812
d(Mo) 4.1225 4.3256 4.2039
Spin-orbit splitting Aso
p(S) 0.05388 0.2446 0.3126
p(Mo) 0.9235 0.8246 1.5907
Slater-Koster energy integral (intra-layer)
s(S)s(S)o -0.8590 -0.5104 -0.4557
s(S)p(S)o -0.2142 -0.1193 -0.2661
p(S)p(S)o 0.8715 0.9152 0.9406
p(S)p(S)™ -0.2449 -0.2604 -0.3175
s(S)d(S)o 3.1818 3.3973 3.6853
p(S)d(S)o 0.1138 -0.4924 0.2515
p(S)d(S)m -0.4476 0.2920 -0.3709
d(S)d(S)o 3.7203 -2.7489 3.6162
d(S)d(S)m -2.5901 -2.7489 -1.3972
d(S)d(8)d -1.1719 -1.0508 -1.3690
s(Mo)s(Mo)o -1.5166 -1.4157 -1.4603
s(Mo)p(Mo)o 0.4991 0.5353 0.1376
p(Mo)p(Mo)o -3.8198 -4.4557 -5.3723
p(Mo)p(Mo) 4.5562 4.6003 4.3870
s(Mo)d(Mo)o 0.007971 0.06601 0.3100
p(Mo)d(Mo)o 1.3306 1.0464 1.3263
p(Mo)d(Mo)m 0.95906 -0.3587 -0.3780
d(Mo)d(Mo)o 0.95906 1.0819 0.9623
d(Mo)d(Mo)m -0.452 -0.3991 -0.4319
d(Mo)d(Mo)éd 0.5143 0.4971 0.4623
s(S)s(Mo)o -0.1246 0.4253 0.1484
s(S)p(Mo)o 3.9553 4.3327 3.7256
p(S)p(Mo)o 1.2385 0.9410 1.1730
p(S)p(Mo) -0.2589 -0.3840 -0.4290
s(S)d(Mo)o 1.6798 1.2016 1.6079
p(S)d(Mo)o -2.8710 -2.7683 -2.9008
p(S)d(Mo)n 0.8901 0.8137 0.9168
d(S)d(Mo)o 4.8937 5.7088 5.0221
d(S)d(Mo)m -9.3391 -9.3064 -9.2758
d(S)d(Mo)é 1.2478 1.1624 1.6762
s(S)d(Mo)o 1.6798 1.2016 1.6079
s(Mo)p(S)o 1.1862 1.0713 1.0930
s(Mo)d(S)o 10.4024 9.5661 9.9100
p(Mo)d(S)o 16.3744 16.4443 16.2916
p(Mo)d(S)m -16.6761 -16.7952  -16.4873
Slater-Koster energy integral (inter-layer)
s(S)s(S)o 0.3665 -0.1649
s(S)p(S)o -0.7006  -0.03491
p(S)p(S)o 0.4188 0.3206
p(S)p(S)m 0.07841 0.06415
s(S)d(S)o -0.09494 0.5781
p(S)d(S)o 0.8274 1.0903
p(S)d(S)m -0.6468 -0.6043
d(S)d(S)o -0.1055 -0.4620
d(S)d(S)m™ -1.2847 -0.7753
d(S)d(8S)d -0.5428 -0.9156

single-gated (SG) and double-gated (DG) devices in this paper.
The oxide thickness for each gate-stack has an effective oxide
thickness of 0.5 nm. Highly doped [19] contacts, with a
doping concentration of 3 x 10'3 cm ™2, are used in the source
and drain regions. A small underlap is used to reduce fringe
capacitances from the source and drain regions as well as to
inhibit direct source—drain tunneling [20]. The workfunction
difference between the gate and channel is assumed to be zero.
The width of each device was assumed to be large enough
so that a mode space summation could be used along that
direction, while a real space representation was used along
the direction of transport [21]. The TB parameters fitted from
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TABLE 11
BANDGAP ENERGIES OBTAINED BY DFT-HSE [12] AND OURTB MODEL.

THE FIFTH COLUMN IS THE DEVIATION BETWEEN THE
HEYD-SCUSERIA-ERNZERHOF (HSE) AND THE
TB VALUES. ALL THE ENERGIES ARE IN THE UNIT OF ELECTRONVOLTS.
SUBSCRIPTS » AND ¢ STAND FOR VALENCE BAND AND CONDUCTION
BAND, RESPECTIVELY. THE SPLITTING OF THE VALENCE BAND
MAXIMUM AT K POINT IS GIVEN BY K,,; (TOP) AND
K,7 (BOTTOM), WHEREAS X IS THE MIDPOINT OF
THE LINE JOINING THE I AND THE K POINTS

SRR Band-gap energies (eV)
Structure | Transitions | —pep=rr o T TB (ftied) | Deviation%
Monolayer | Kov1 © Ke | 17857 17857 0.00
Ky, 0K, | 19782 19742 0.00
T, o Ko | 19457 79123 17
T, 0S¢ | 22252 2.1613 287
T, to Ko | 1.4801 1.4749 2036
Bilayer T, o Sc 16178 15532 3.09
Ky o Ko | 17787 177894 0.60
Kyz 0 K, | 1.9802 T.9829 0.14
T, 0 5o 1.3280 13280 0.00
Bulk T, o Ko | 1.3661 13543 1086
Ko o Ky | 17751 16755 561
K,z to Ko | 1.9985 20411 2.13
TABLE 1II

VALUES OF EFFECTIVE MASSES AT VARIOUS BAND EDGES IN THE UNIT
OF FREE ELECTRON MASS (mg) CALCULATED USING THE HSE
METHOD [12] AND OUR TB MODEL. THE SUBSCRIPTS [ AND ¢

REFER TO THE MASSES CALCULATED AT THE POINT
ALONG THE LONGITUDINAL AND THE TRANSVERSE
DIRECTIONS OF THE LINE CONNECTING THE
I POINT AND THAT POINT, RESPECTIVELY

Electron mass (mg) Hole mass (mg)
Structure Point HSE TB Deviat- HSE TB Deviat-
(target) (fitted) ion (%) (target) (fitted) ion (%)
Mono- K 0.4065 0.4072 0.16 0.4852 0.4855 0.06
layer K 0.4035 0.4031 -0.10 0.4804 0.4802 -0.05
T 1.0387 1.0387 0.00
Bilayer K 0.4302 0.4275 -0.63 0.4851 0.4853 0.03
K¢ 0.4227 0.4260 0.79 0.4810 0.4853 -0.21
T 0.7849 0.7849 0.00
Bulk P 0.5737 0.5737 0.00
> 0.8186 0.8186 0.00

the DFT calculations were used to formulate the full-band
Hamiltonian for each of the considered devices. The
charge was calculated within the nonequilibrium Green’s
function (NEGF) formalism [22], [23]. The calculated charge
was then used by a finite-difference Poisson solver with
appropriate boundary conditions to calculate the potential
corresponding to the charge [24]. Dirichlet boundary condi-
tions are used at the gate contacts, while Neumann boundary
conditions are assumed at the electrostatic domain boundary
for doped contacts so that the electric potential profile floats to
ensure charge neutrality at the boundaries. This was then used
by the transport solver to achieve a self-consistent solution for
each bias point. The transmission 7(E) as a function of energy
was then calculated using the converged potential profile along
the channel, while summing over all the transverse modes.
Scattering effects could be considered to be minimal at these
channel lengths. The valence band could be ignored in most
of the calculations, because of the large bandgap of MoS, and
hence a lack of band-to-band tunneling. The total current was
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Fig. 3. (a) Ips—Vgs characteristics and (b) charge density at the top of the
barrier for SG and DG monolayer MoS, transistors at Vpg = 0.05 V. The
DG transistor has significantly better electrostatic control with better
subthreshold swing and higher ON-currents. The charge density is about
two times higher for DG transistors.
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Fig. 4. Ips—Vgs characteristics of (a) DG monolayer MoS, transistors with
a top oxide thickness of 0.5 nm and varying bottom oxide thickness and
(b) SG monolayer transistors with varying source—drain doping concentration
at Vpg = 0.05 V. The gate control goes down with increased oxide thickness.
The drain control increases with higher doping concentration leading to worse
electrostatic control.

then calculated by summing the transmission over the energy
grid by weighting it with the difference in Fermi distribution
at the source and drain

I =Y dE T(E)(f(E—us)— f(E—pp)) (1)
E

where f(FE) is the Fermi—Dirac distribution, while xg and up

are the chemical potentials at the source and drain,

respectively.

III. RESULTS AND DISCUSSION

The Ips—Vgs characteristics for SG and DG MoS; for low
drain voltage (Vps 0.05 V) are shown in Fig. 3. The
DG device (SS ~ 84 mV/decade) shows better performance
than the SG device (SS ~ 102 mV/decade) even in the
case of a monolayer demonstrating significant short-channel
effects. The charge accumulated at the top of the barrier is
almost twice for the DG device compared with the SG device
showing a considerably higher gate control. There is a need
of further scaled gate oxides at these gate lengths to achieve
reasonable performance characteristics. Fig. 4(a) compares
Ips—Vgs characteristics for DG monolayer devices with a
fixed top oxide thickness of 0.5 nm and varying bottom oxide
thickness. The subthreshold behavior degrades with increased
bottom oxide thickness and tends to resemble the SG device.

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 62, NO. 8, AUGUST 2015
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Fig. 5. (a) Ips—Vps characteristics of monolayer MoS, transistors.

(b) Current spectrum as a function of energy. Negative differential resistance
can be observed in the transistors at high drain voltages due to limited
bandwidth. The effect is confirmed in the current spectrum as transmission
reduces beyond a drain voltage of 0.45 V.
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Fig. 6. (a) Ips—Vgs characteristics and (b) charge density at the top of the
barrier for SG and DG (each layer) bilayer MoS; transistors at Vpg = 0.05 V.
The DG transistor shows better performance owing to greater gate control.
The charge on the second layer is significantly lower than on the first layer
showing a small effective screening length.
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Fig. 7. (a) Layer-wise current for single-gate bilayer MoS; at Vpg = 0.05 V.
(b) Potential profile along the channel at Vgg = 0.40 V (solid lines) and
Vgs = 1.10 V (dashed lines). The first layer has higher current for higher gate
voltages while showing marginally lower OFF-current. The potential barrier
is lower for the top layer at high gate voltages resulting in higher current.

The Ips—Vgs characteristics for monolayer SG MoS; shown
in Fig. 4(b) demonstrate the increased drain control as the
contact doping is increased leading to degraded subthreshold
behavior. The Ips—Vps characteristics are shown in Fig. 5(a)
for SG monolayer MoS, at different gate biases. Negative
differential resistance can be observed for high drain voltages
(Vps greater than 0.45 V) because of limited bandwidth of
the first few bands. The current spectrum as a function of
energy as shown in Fig. 5(b) for Vps = 0.40 and 0.45 V lies
on top of each other, while that of Vps = 0.50 V is lower.
This effect has been observed before and is a manifestation
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Fig. 8. (a) Ips—Vs characteristics of SG and DG three-layer MoS; transistors at Vpg = 0.05 V. Layer-wise current for (b) single-gate and (c) double-gate

three-layer transistor. The DG transistor shows better performance with higher ON-currents and lower OFF-currents. The third layer provides the maximum
current in the OFF-state due to lower gate control, while it has the lowest current in the ON-state due to screening from the top layer single-gate devices.
The middle layer carries maximum current in the OFF-state owing to higher confinement of electrons, while it is screened in the ON-state for double-gate

transistors.

of ballistic transport, which may not be observable in
experiments because of electron—phonon scattering [25], [26].
Electron—phonon coupling introduces transmission channels
among different transverse modes, thus eliminating the gap
in current transmission.

Going on to bilayer, Fig. 6(a) shows a comparison
of Ips—Vgs characteristics of SG versus DG bilayer MoS»
at low drain voltage. Bilayer MoS, shows much weaker gate
control compared with monolayer MoSz; SS ~ 109 and
140 mV/decade for DG and SG, respectively. The charge
density at the top of the barrier in Fig. 6(b) shows the screening
of the second layer from the gate by the top layer in the
ON-state. The current contribution from the second layer is
therefore significantly less than that of the top layer. The
subthreshold swing goes down to 90 mV/decade for a doping
concentration of 6 x 10'2 cm~2. Fig. 7 shows the loss in gate
control of the bottom layer in both the ON and OFF states.
The barrier to current flow is higher in the OFF-state for the
top layer resulting in marginally lower current, while it is
significantly lower in the ON-state, thus screening the bottom
layer from the gate. These results underline the significant
screening effect by charge accumulated at the layer closest to
the gate and therefore poor gate control of any additional lay-
ers. Because of these small screening lengths, the DG bilayer
behaves like two SG monolayer transistors resulting in similar
transfer characteristics to the same.

To test the consistency of these results, we have further
investigated a three-layer device. The higher gate control
of DG compared with SG three-layer transistors can be
observed in Fig. 8(a), with lower OFF- and ON-currents in
the DG device. Fig. 8(b) shows layer-wise currents for the
SG three-layer device, where the bottom layer contributes the
highest current in the OFF-state, while the top layer conducts
most of the current in the ON-state, showing that the change in
thermal barrier to current flow is the highest for the top layer.
The DG three-layer device shows similar characteristics with
the middle layer carrying the lowest current in the ON-state,
while some confinement effects can be observed in the
OFF-state [Fig. 8(c)]. The middle layer carries more current

—1st/3rd layer —1st/3rd layer
0.2 —2nd layer 0.4 —2nd layer
50 100 150

J (uApm~Tev)
(b)

X (nm)

(@)

Fig. 9. (a) Electric potential profile along the channel for double-gate
three-layer devices. (b) Current density as a function of energy at
Vgs = 0.75 V (OFF-state). The middle layer carries greater current
compared with the surface layer due to higher confinement of eigenstates.
The conduction band is further below the Fermi level for the surface layers
owing to the same reason.

than the surface layers in the OFF-state, i.e., for Vgs = 0.8 V.
This effect, which is a consequence of higher Density of States
(DOS) near the band edge in the middle layer [Fig. 1(e) and
()], is further illustrated in Fig. 9. Fig. 9(a) shows the potential
profile along the channel for the DG three-layer device at
Vgs = 0.75 V. The conduction band is further below the Fermi
level for the surface layers compared with the middle layer,
because of higher concentration of electrons toward the center
of the channel. The barrier height of the electrons from the
Fermi level is the same for all the layers at this bias point as
screening effects are not significant. The current density as a
function of energy

J(E) = T(E)(f(E — us) — f(E — up)) )

is shown in Fig. 9(b) at the same bias point. As expected,
higher current is drawn from the middle layer because of
increased surface energy for the outer layers. Both the surface
layers have similar characteristics because of symmetry in the
simulated device.

The Ips—Vgs characteristics at Vps = 0.50 V for all devices
considered are shown in Fig. 10(a), while the ON-current for
the corresponding ON/OFF is shown in Fig. 10(b). The transfer
characteristics follow similar trends as the previous results
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Fig. 10. (a) Ips—Vgs characteristics of single- and double-gate monolayer,
bilayer, and three-layer MoS, transistors at Vpg = 0.50 V. (b) ON-current
for the above transistors as a function of ON/OFF ratios at Vpp = 0.50 V.
The DG monolayer transistor shows the best ON-currents for a given ON/OFF,
achieving the highest ON-current and lowest OFF-current. The trends for the
three-layer devices move toward worse ON/OFF ratios.

with DG monolayer showing the best ON- and OFF-currents.
The SG monolayer device shows a Drain Induced Barrier
Lowering (DIBL) of 70 mV/V, while the bilayer device
shows a DIBL of 300 mV/V, showing significant drain
control at these scales. The DIBL for the DG monolayer
device is 30 mV/V showing that better performance char-
acteristics could be achieved through Effective Oxide Thick-
ness (EOT) scaling. The ON/OFF ratios shown in Fig. 10(b)
correspond to a supply voltage of 0.50 V, while the
bias window for gate voltage is moved along the transfer
characteristics. The above could be achieved in practice by
engineering the workfunction of the gate metal [27]. None of
the SG devices were able to achieve an ON/OFF of 10°, the
minimum ratio needed to be considered as a viable alternative
for low operating power transistors. Only DG monolayer
device achieved an ON/OFF of 10° but at an ON-current
of 90 uA/um. The trends for SG monolayer transistor are
similar to those of the DG bilayer transistors with the bilayer
device having higher current levels. The three-layer devices
show worse ON/OFF ratios because of increased screening
effects.
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IV. CONCLUSION

To summarize, layered MoS, transistors with doped
contacts and 5-nm channel length were studied using a
full-band self-consistent quantum transport model within the
ballistic NEGF formalism. One of the interesting observations
from this full-band study is the fact that in a multilayer
structure, the middle layers give the lowest energy states and
would therefore fill up first. This effect is evident in our
calculations for small charge levels when the gate electric field
can still penetrate through the top layers. As for the
current—voltage behavior, the ballistic approximation is
relevant in the view that the gate length is only 5 nm.
In addition, together with a doped contact, the ballistic approx-
imation provides the best case scenario for these devices.
It is observed that the ballistic ON-current for these devices
for a Vpp swing of 0.5 V is not competitive with what can
be otherwise obtained from Si, III-V, or carbon nanotube
devices at this channel length. This is not surprising because
the injection velocity for MoS; is small due to its large
effective mass. It also found that it is not possible to boost the
ON-current up by increasing the number of layers at this
channel length because the gate electric field
(for ~0.5-nm EOT) is almost completely screened out
by the layer nearest to the gate. As a result, layers underneath
cannot be effectively controlled by the gate, leading to
significant reduction in subtheshold swing. In fact, even for
a single monolayer, the short channel effect is prominent
and only a double-gate geometry can provide a reasonable
subthreshold swing (~84 mV/decade). Surprisingly, this is
comparable with (and not better than) what has been predicted
to be achievable with surround-gate small-diameter (~3 nm)
Si nanowire transistors [11]. On the other hand, a double-gate
geometry for a monolayer structure may prove to be very
challenging to fabricate. However, one particular aspect stands
out: Mo$S; transistors could provide a 10° ON/OFF ratio even
at 5-nm channel length, albeit at a small ON-current level,
which is not possible at all in Si or III-V due to much stronger
direct source-to-drain tunneling. This indicates potential use
in very low power applications where performance is not a
critical need.
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