
Title Self-dual quiver moduli and orientifold Donaldson-Thomas
invariants

Author(s) Young, MB

Citation Communications in Number Theory an Physics, 2015, v. 9 n. 3, p.
437-475

Issued Date 2015

URL http://hdl.handle.net/10722/217075

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38080747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


SELF-DUAL QUIVER MODULI AND ORIENTIFOLD

DONALDSON-THOMAS INVARIANTS

MATTHEW B. YOUNG

Abstract. Motivated by the counting of BPS states in string theory with ori-
entifolds, we study moduli spaces of self-dual representations of a quiver with

contravariant involution. We develop Hall module techniques to compute the

number of points over finite fields of moduli stacks of semistable self-dual rep-
resentations. Wall-crossing formulas relating these counts for different choices

of stability parameters recover the wall-crossing of orientifold BPS/Donaldson-

Thomas invariants predicted in the physics literature. In finite type examples
the wall-crossing formulas can be reformulated in terms of identities for quan-

tum dilogarithms acting in representations of quantum tori.

Introduction

Representations of quivers and the geometry of their moduli spaces have found
applications in many areas of mathematics, such as the theory of quantum groups,
derived categories of coherent sheaves and Donaldson-Thomas theory. Not unre-
lated, they have also found applications in quantum field theory and string theory.

Quiver moduli were originally constructed by King [21] who showed that the
definition of stability arising from geometric invariant theory coincides with a purely
representation theoretic definition, called slope stability. The latter is modelled on
slope stability of vector bundles over curves. More generally, stability of principal
bundles over curves, with structure group a classical group G, can be understood in
terms of slope stability [31]: from the point of view of the vector bundle associated
to the defining representation, the potentially destabilizing subbundles are required
to be isotropic.

The focus of this paper is the study of moduli spaces of quiver theoretic analogues
ofG-bundles over curves and their relationship with enumerative invariants in string
theory with orientifolds. To be more precise, we study moduli spaces of self-dual
representations of a quiver with contravariant involution. These representations
were introduced by Derksen and Weyman [9]. While the ordinary representation
theory of a quiver assigns a vector space to each node and a linear map to each
arrow, the self-dual representation theory in addition endows the vector spaces with
orthogonal or symplectic forms and imposes symmetry conditions on the linear
maps. From a categorical point of view, the quiver involution can be used to define
an exact contravariant endofunctor S of Repk(Q) and an isomorphism of functors

Θ : 1Repk(Q)
∼−→ S2. This makes Repk(Q) into an abelian category with duality

and the self-dual representations are recovered as its self-dual objects.
We introduce a notion of stability for self-dual quiver representations that is a

common generalization of quiver and G-bundle stability. This notion coincides with
the natural definition of stability arising in geometric invariant theory (Theorem
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2 M. B. YOUNG

2.7). Since the stability parameters in the self-dual theory have less degrees of free-
dom than their ordinary counterparts, there are in general many strictly semistable
self-dual representations. This causes the moduli spaces semistable self-dual rep-
resentations to be highly singular. Even the stable moduli spaces need not be
smooth, having orbifold singularities at non-simple stable self-dual representations.
Because of these singularities it will often be more natural to consider moduli stacks
of self-dual representations.

A powerful tool in the study of quiver moduli is the Hall algebra. Under as-
sumptions to ensure smoothness, analogous to the coprime assumption for vector
bundles over a curve, Hall algebras can be used to compute Poincaré polynomials
of quiver moduli [32]. This approach uses the Weil conjectures to relate the number
of Fq-rational points of quiver moduli to their Poincaré polynomials. A key rôle
is played by Reineke’s integration map, an algebra homomorphism from the Hall
algebra to a quantum torus. This map is used to translate categorical identities
in the Hall algebra into numerical identities in the quantum torus. Without any
smoothness assumptions the same techniques, with moduli stacks in place of mod-
uli spaces, can also be used to study the motivic DT theory of quivers [27], [28].
Generalizations of the Hall algebra and integration map, some of which remain
conjectural, are central to the motivic DT theory of three dimensional Calabi-Yau
categories [20], [22], [23].

The analogue of the Hall algebra for self-dual representations was introduced
in [41]. There the self-dual extension structure of the representation category,
controlling three term sequences consisting of a self-dual representation, an isotropic
subrepresentation and the resulting self-dual quotient, was used to construct a
module over the Hall algebra, called the Hall module. In this paper we develop
Hall module techniques to study self-dual quiver moduli. The first important result
in this direction is the construction of a Hall module integration map in Theorem
3.1. This is a morphism over the Hall algebra integration map with values in a
naturally defined representation of the quantum torus. By modifying arguments
of [32], in Theorem 3.3 we solve the Harder-Narasimhan recursion for self-dual
representations. Applying the Hall module integration map leads immediately to
an explicit formula for the number of Fq-rational points of stacks of semistable self-
dual representations; see Theorem 3.4. This provides a quiver theoretic analogue
of Laumon and Rapoport’s computation of the Poincaré series of the moduli stack
of semistable G-bundles over a curve [25].

One of the primary motivations of this paper is the development of a mathe-
matical framework for the counting of BPS states in string theory with orientifolds.
In the presence of an orientifold, the D-brane category B of the parent theory is
endowed with a duality structure (S,Θ) [10], [18]. The functor S is the parity

functor, sending a D-brane to its orientifold image, while Θ : 1B
∼−→ S2 encodes

the signs of the orientifold planes. The D-brane configurations in the orientifold
theory are precisely the self-dual configurations of the parent theory. Self-dual
quiver representations therefore provide a relatively simple example of this set-up.
The appearance of orthogonal and symplectic structures reflects the familiar re-
duction of structure group of Chan-Paton bundles on D-branes lying on orientifold
planes. Not unrelated, self-dual quiver representations also arise in the study of
worldvolume gauge theories on D-branes in orientifold backgrounds [12].

The cohomology of moduli spaces of semistable D-branes is closely related to the
BPS states of the theory [8]. Similarly, BPS states in the orientifold theory arise
from cohomology of the moduli of orientifold invariant D-branes and, for particular
theories, should provide an orientifold version of DT invariants. In [38] it is sug-
gested that real Gromov-Witten invariants are related (via a MNOP type formula)
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to orientifold DT invariants. Expected properties of orientifold DT invariants for
particular models were discussed from a physical perspective in [24]. However, a ba-
sic definition of the invariants was missing. In this paper, motivated by [22], [23] we
define the orientifold DT series of a quiver with involution as the generating func-
tion counting Fq-rational points of stacks of semistable self-dual representations,
computed in Theorem 3.4 above. The Hall module formalism leads immediately
to a wall-crossing formula, Theorem 3.5, relating orientifold DT series with differ-
ent stability parameters. In finite type examples the wall-crossing formulas can be
reformulated as quantum dilogarithm identities holding representations of quan-
tum tori. We use these identities to define orientifold DT invariants of finite type
quivers; see equation (16). These invariants satisfy an orientifold modification of
the primitive wall-crossing formula proposed in the physics literature [7]. We take
this as strong evidence that the Hall module framework is indeed applicable to the
study of orientifold BPS states. In Section 3.5 we explain how many of the above
results can be extended to quivers with potential using equivariant Hall algebras.

In [17] it was proposed that the space of BPS states in a quantum field theory
or string theory with extended supersymmetry has the structure of an algebra,
the product of two states encoding their possible bound states. Mathematical
models for this algebra include variants of the Hall algebra, most notably its motivic
[19], [22] and cohomological [23] versions. See also [6, §8]. Imposing different
structures on the physical theory leads to different algebraic structures on its space
of BPS states. For example, the space of BPS states in a theory with defects,
which can also be thought of as a space of open BPS states, is expected to form a
representation of the algebra of BPS states of the theory without defects [15]. In
some examples these open BPS modules are modelled using framed objects of the
D-brane category [36]. The Hall modules used in this paper are different, modelling
instead the space of BPS states in a string theory with orientifolds together with
an action of the BPS states of the parent theory. These modules are naturally
graded by the Grothendieck-Witt group of the D-brane category with orientifold
duality, an algebraic version of Atiyah’s KR-theory. This is in agreement with the
physical prediction that charges of D-branes in orientifold theories are elements of
real variants of K-theory [40], [14], [18].

Notation. Throughout this paper k denotes a fixed ground field. The character-
istic of k is assumed to be different from two. We will primarily be interested in
the cases k = C and k = Fq, a finite field with q elements.

Given a variable x and integers 0 ≤ k ≤ n define

[n]x = 1 + x+ · · ·+ xn−1

and

[n]x! =

n∏
i=1

[i]x,

[
n
k

]
x

=
[n]x!

[k]x![n− k]x!
.

Since each of these expressions lies in Z[x] the variable x can be specialized to any
complex number.

If S is a finite set, then #S ∈ Z≥0 denotes its cardinality.
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Singapore for support and hospitality during the program ‘The Geometry, Topology
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1. Representation theory of quivers

In this section we recall some preliminary material about (self-dual) representa-
tions of quivers.

1.1. Quiver representations. Let Q be a quiver with finite sets of nodes Q0 and
arrows Q1. Denote by ΛQ = ZQ0 the free abelian group generated by Q0. The
monoid of dimension vectors is Λ+

Q = Z≥0Q0.
A k-representation of Q is a finite dimensional Q0-graded vector space V =⊕
i∈Q0

Vi together with a linear map Vi
vα−→ Vj for each arrow i

α−→ j ∈ Q1. The

dimension vector of V is dimV =
∑
i∈Q0

(dim Vi)i ∈ Λ+
Q and its dimension is

dim V =
∑
i∈Q0

dim Vi ∈ Z≥0.

The category Repk(Q) of k-representations of Q is abelian and hereditary. The
Euler form of Repk(Q) is defined by

χ(U, V ) = dim Hom(U, V )− dim Ext1(U, V )

and descends to the bilinear form on ΛQ given by

χ(d, d′) =
∑
i∈Q0

did
′
i −

∑
i
α−→j∈Q1

did
′
j .

The associated skew-symmetric bilinear form on ΛQ is 〈d, d′〉 = χ(d, d′)− χ(d′, d).

1.2. Self-dual quiver representations. In this section we record some basic ma-
terial about self-dual representations of a quiver with contravariant involution.

Definition. An involution σ of a quiver Q is a pair of involutions, Q0
σ−→ Q0 and

Q1
σ−→ Q1, such that

(1) if i
α−→ j is an arrow, then σ(j)

σ(α)−−−→ σ(i), and

(2) all arrows of the form i
α−→ σ(i) are fixed by σ.

Let (Q, σ) be a quiver with involution. There is an induced involution of ΛQ,
again denoted by σ, and we write ΛσQ for the subgroup of σ-invariant dimension

vectors. There is a canonical map H : ΛQ → ΛσQ given by d 7→ d+ σ(d).

A duality structure on (Q, σ) is a pair of functions, s : Q0 → {±1} and τ : Q1 →
{±1}, such that s is σ-invariant and τατσ(α) = sisj for all arrows i

α−→ j.

Definition. A self-dual representation of (Q, σ) (with respect to a fixed duality
structure (s, τ)) is a pair (M, 〈·, ·〉) consisting of a representation M and a non-
degenerate bilinear form 〈·, ·〉 on the total space

⊕
i∈Q0

Mi such that

(1) the vector spaces Mi and Mj are orthogonal unless i = σ(j),
(2) the restriction of the form 〈·, ·〉 to Mi +Mσ(i) is si-symmetric,

〈x, x′〉 = si〈x′, x〉, ∀x, x′ ∈Mi +Mσ(i),

and
(3) for all arrows i

α−→ j the structure maps of M satisfy

〈mαx, x
′〉 − τα〈x,mσ(α)x

′〉 = 0, ∀x ∈Mi, x
′ ∈Mσ(j). (1)

The conditions on (s, τ) ensure that the second and third parts of the definition
of a self-dual representation are consistent. Let M be a self-dual representation.
If i = σ(i) then Mi is endowed with an orthogonal or symplectic form. If instead
i 6= σ(i), then Mi ⊕Mσ(i) ' Mi ⊕M∨i is endowed with the canonical hyperbolic
orthogonal or symplectic form. The self-dual representations for τ ≡ −1 and s ≡ 1
or s ≡ −1 recover the orthogonal or symplectic representations of Derksen and
Weyman [9]. Self-dual representations for more general (s, τ) were studied in [42]
where they were called supermixed representations.
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There is a categorical interpretation of self-dual representations that will be
useful below. Given a duality structure, define an exact contravariant functor S :
Repk(Q)→ Repk(Q) as follows. At the level of objects, S(M,m) is given by

S(M)i = M∨σ(i), S(m)α = ταm
∨
σ(α).

Here (−)∨ = Homk(−, k) is the linear duality functor on the category of finite
dimensional vector spaces. Given a morphism φ : M → M ′ with components
φi : Mi → M ′i , the morphism S(φ) : S(M ′) → S(M) is defined by its components
S(φ)i = φ∨σ(i). Write ev for the canonical evaluation isomorphism from a finite

dimensional vector space to its double dual. The assumptions on (s, τ) imply that
Θ =

⊕
i∈Q0

si ·evi defines a natural isomorphism from the identity functor 1Repk(Q)

to the square S2. Moreover, for each representation U the identity S(ΘU )◦ΘS(U) =
1U holds.

The above discussion shows that the triple (Repk(Q), S,Θ) is an example of
an abelian category with duality [2]. In this setting, a self-dual object is a pair
(M,ψM ), or just M for short, consisting of an object M and an isomorphism

ψM : M
∼−→ S(M) satisfying S(ψM )ΘM = ψM . An isomorphism φ : M

∼−→ M ′ of
self-dual objects is called an isometry if ψM = S(φ)ψM ′φ. We write M 'S M ′ if
M and M ′ are isometric. The group of self-isometries of M is denoted AutS(M).

Given a self-dual object M , the bilinear form 〈x, x′〉 = ψM (x)(x′) gives M the
structure of a self-dual representation. This defines an equivalence between the
groupoids of self-dual objects and self-dual representations, where the morphisms
in each category are the isometries. We will use this equivalence throughout the
paper.

Example. For any representation U , the hyperbolic representation on U is the

self-dual object H(U) = (U ⊕ S(U), ψH(U) =
(

0 1S(U)

ΘU 0

)
). /

Let M be a self-dual representation with subrepresentation i : U ↪→ M . The
orthogonal U⊥ ⊂M is defined to be the kernel of the composition

M
ψM−−→ S(M)

S(i)−−→ S(U).

The subrepresentation U is called isotropic if U ⊂ U⊥. In this case the self-dual
structure on M induces a canonical self-dual structure on the quotient U⊥/U ,
denoted by M//U .

For any representation U and i ≥ 0 the pair (S,Θ) gives Exti(S(U), U) the
structure of a representation of Z2. Decompose this representation into its trivial
and sign subrepresentations,

Exti(S(U), U) = Exti(S(U), U)S ⊕ Exti(S(U), U)−S ,

and define

E(U) = dim Hom(S(U), U)−S − dim Ext1(S(U), U)S .

The function E will play the rôle of the Euler form for the category with duality
(Repk(Q), S,Θ).

It was shown in [41, Proposition 3.3] that E(U) depends only on dimU and so
defines a function E : ΛQ → Z. Explicitly, from loc. cit. we have

E(d) =
∑
i∈Qσ0

di(di − si)
2

+
∑
i∈Q+

0

dσ(i)di −
∑

σ(i)
α−→i∈Qσ1

di(di + ταsi)

2
−

∑
i
α−→j∈Q+

1

dσ(i)dj .

(2)
Here Q0 = Q+

0 tQσ0 tQ
−
0 is a partition with Qσ0 consisting of the nodes fixed by σ

and σ(Q+
0 ) = Q−0 . The partition of Q1 is analogous.

Below we will also use the function Ẽ : ΛQ → Z defined by Ẽ(d) = E(d)−E(σ(d)).
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2. Moduli spaces of self-dual quiver representations

In this section we introduce a notion of stability for self-dual representations and
use geometric invariant theory to construct moduli spaces of self-dual representa-
tions.

2.1. σ-Stability. Fix an element θ ∈ Λ∨Q = HomZ(ΛQ,Z), called a stability. The
slope of a non-zero representation U with respect to θ is

µ(U) =
θ(U)

dim U
∈ Q.

Here θ(U) is shorthand for θ(dimU).

Definition ([21]). A representation U is semistable if µ(V ) ≤ µ(U) for all non-
zero subrepresentations V ( U . If this inequality is strict for all such V , then U is
called stable.

Let (Q, σ) be a quiver with involution. Denote by σ∗ the induced involution of
Λ∨Q.

Definition. A stability θ ∈ Λ∨Q is called σ-compatible if σ∗θ = −θ.

If θ is σ-compatible, then µ(S(U)) = −µ(U) for all representations U . In par-
ticular, the slope of a self-dual representation is necessarily zero.

Lemma 2.1. Let θ be a σ-compatible stability. A representation U is semistable
(stable) if and only if S(U) is semistable (respectively, stable).

Proof. The representation U is semistable if and only if µ(U) ≤ µ(W ) for all quo-
tients U �W . Since the functor S defines a bijection between quotients of U and
subobjects of S(U), the σ-compatibility of θ implies the statement for semistability.
The argument for stability is identical. �

The following definition is motivated by the stability of principal bundles over a
curve with classical structure groups [31].

Definition. A self-dual representation M is σ-semistable if µ(V ) ≤ µ(M) for all
non-zero isotropic subrepresentations V ⊂M . If this inequality is strict for all such
V , then M is called σ-stable.

A priori, σ-semistability is strictly stronger than semistability. However, we
have the following result. See [30, Proposition 4.2] for the analogous statement for
G-bundles over curves.

Proposition 2.2. A self-dual representation is σ-semistable if and only if it is
semistable as an ordinary representation.

Proof. Suppose that M is σ-semistable but not semistable. Let i : U ↪→M be the
strongly contradicting semistability subrepresentation, that is, the subrepresenta-
tion with maximal slope and maximal dimension among such subrepresentations.
Then U , and by Lemma 2.1 also S(U), is semistable with

µ(S(U)) < µ(M) < µ(U).

This implies that the composition

U
i−→M

ψM−−→ S(M)
S(i)−−→ S(U)

vanishes, being a map between semistable representations of strictly decreasing
slope. But then U is isotropic, contradicting the supposed σ-semistability of M .
The converse is immediate. �

From now on we will refer to σ-semistability simply as semistability.
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Proposition 2.3. Every self-dual representation M has a unique filtration

0 = U0 ⊂ U1 ⊂ · · · ⊂ Ur ⊂M
by isotropic subrepresentations such that the subquotients U1/U0, . . . , Ur/Ur−1 are
semistable, the self-dual quotient M//Ur is zero or semistable and the slopes satisfy

µ(U1/U0) > µ(U2/U1) > · · · > µ(Ur/Ur−1) > 0.

Proof. If M is semistable, then 0 ⊂ M is the desired filtration. So assume that
M is not semistable and proceed by induction on dim M . The case dim M = 1 is
vacuous since M is semistable. Let U1 ⊂M be the (non-zero) strongly contradict-
ing semistability subrepresentation, which is isotropic by the proof of Proposition
2.2. The inductive hypothesis implies that M//U1 has a unique filtration with the
required properties. Pulling this back by the quotient morphism U⊥1 � M//U1

gives the desired filtration of M . Uniqueness follows from the uniqueness of the
strongly contradicting semistability subrepresentation. �

The filtration given in Proposition 2.3 is called the σ-Harder-Narasimhan (HN)
of M . In fact, the σ-HN filtration coincides with the positive half (according to
slope) of the HN filtration of M , viewed as an ordinary representation.

We now turn to σ-stability. Recall that a stable k-representation U is called
absolutely stable if its base change U ⊗k k is a stable k-representation. Absolutely
σ-stable representations are defined analogously. A σ-stable representation is called
regular if it is also stable as an ordinary representation.

Lemma 2.4. Any σ-stable self-dual representation is isometric to an orthogonal
direct sum of regular σ-stable self-dual representations.

Proof. The proof of [30, Proposition 4.2, Remark 4.3(ii)] can be applied without
change in the quiver setting with no restriction on the ground field. �

Let M be a polystable k-representation, that is, a direct sum of stable represen-
tations of the same slope. Then M⊗k k is polystable and Aut(M⊗k k) is a product
of general linear groups. If M admits a self-dual structure, then AutS(M ⊗k k)
is a product general linear, symplectic and orthogonal groups; suppose there are
r orthogonal factors. If the field k is finite, then the Galois cohomology of the
isometry group is

H1(k,AutS(M ⊗k k)) ' Zr2,
each factor being identified with the choice of discriminant εi ∈ k×/k×2 ' Z2 of the
corresponding orthogonal form. It follows that there are 2r k-forms of the self-dual
representation M ⊗k k. The k-form associated to ε ∈ H1(k,AutS(M ⊗k k)) will be
denoted Mε. See [34, Chapter III] for background results on Galois cohomology.

Proposition 2.5. Assume that k is finite or algebraically closed. A self-dual rep-
resentation is σ-stable if and only if it is isometric to an orthogonal direct sum
of the form

⊕
lM
⊕ml,εl
l , where Ml are pairwise non-isomorphic regular σ-stable

representations and ml = 1 or (if k is finite) ml = 2 and M⊕2,εl
l is non-hyperbolic.

Proof. Suppose first that k is finite. Let M be σ-stable. Note that M has no
hyperbolic summands. By Lemma 2.4 there are pairwise non-isomorphic regular
σ-stable representations Ml such that M =

⊕
lM
⊕ml,εl
l . If ml ≥ 3 for some l, then

there exists a discriminant ε′l so that

M⊕ml,εll 'S H(Ml)⊕M
⊕(ml−2),ε′l
l ,

contradicting σ-stability of M . It follows that ml = 1 or ml = 2 and M⊕2,εl
l is

non-hyperbolic.
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Conversely, consider M =
⊕

lM
⊕ml,εl
l as in the statement of the proposition.

A slope zero subrepresentation U ⊂ M is necessarily a direct sum of copies of the
Ml. The assumptions on ml and εl imply that Ml does not appear as an isotropic
subrepresentation of M⊕ml,εll . Hence U is not isotropic and M is σ-stable.

When k = k the same proof applies. In this case the isometry M⊕2
l 'S H(Ml)

implies that ml = 1 for all l. �

Proposition 2.6. Assume that k is finite or algebraically closed.

(1) A σ-stable representation M is absolutely σ-stable if and only if, in the
notation of Proposition 2.5, each Ml is absolutely stable and ml = 1.

(2) If M is an absolutely σ-stable representation with r regular summands, then
AutS(M) ' Zr2.

Proof. When k = k the first statement is Proposition 2.5. So assume that k is
finite and, in the notation of Proposition 2.5, write a σ-stable representation as
M =

⊕
lM
⊕ml,εl
l . Then

M ⊗k k 'S
⊕
l

(Ml ⊗k k)⊕ml .

By Proposition 2.5 M ⊗k k is σ-stable if and only if ml = 1 and the summands are
pairwise non-isomorphic regular σ-stable representations. By Hilbert’s Theorem
90, the summands Ml ⊗k k are pairwise non-isomorphic if and only if the Ml are.
Also, Ml ⊗k k is regular σ-stable if and only if Ml is absolutely stable. This proves
the first part of the proposition.

For the second statement, writing M =
⊕r

l=1Ml as above (omitting εl from
the notation), Schur’s lemma gives End(M) =

⊕r
l=1End(Ml). Hence AutS(M) =⊕r

l=1AutS(Ml). Since each Ml is absolutely stable, End(Ml) ' k and AutS(Ml) '
Z2. The statement follows. �

2.2. GIT stability and moduli spaces. The affine variety of k-representations
of Q of dimension vector d ∈ Λ+

Q is Rd =
⊕

i
α−→j

Homk(kdi , kdj ). The algebraic

k-group GLd =
∏
i∈Q0

GLdi acts by simultaneous base change on Rd and its orbits
are in bijection with the set of isomorphism classes of representations of dimension
vector d.

Assume that k is algebraically closed. Fix d ∈ Λσ,+Q and assume that di is even if

i ∈ Qσ0 with si = −1. Up to isometry, there is a unique self-dual structure 〈·, ·〉 on
the trivial representation of dimension vector d. Denote by Rσd ⊂ Rd the subspace
of structure maps satisfying equation (1) with respect to 〈·, ·〉. Explicitly,

Rσd '
⊕

i
α−→j∈Q+

1

Homk(kdi , kdj )⊕
⊕

i
α−→σ(i)∈Qσ1

Bilsiτα(kdi).

Here Bilε(V ) denotes the vector space of symmetric (ε = 1) or skew-symmetric
(ε = −1) bilinear forms on a vector space V . The isometry group of 〈·, ·〉 is the
reductive k-group Gσd =

∏
i∈Q+

0
GLdi ×

∏
i∈Qσ0

Gsidi where Gsidi is an orthogonal or

symplectic group:

Gsidi =

{
Odi , if si = 1
Spdi , if si = −1.

The group Gσd acts on Rσd through the embedding Gσd ↪→ GLd given on factors by
Gsidi ↪→ GLdi for i ∈ Qσ0 and

GLdi → GLdi ×GLdσ(i) , gi 7→ (gi, (g
−1
i )T )

for i ∈ Q+
0 . Isometry classes of self-dual representations of dimension vector d are

in bijection with the Gσd -orbits of Rσd .
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If k is finite, the bilinear form 〈·, ·〉 need not be uniquely defined. Indeed, for
each i ∈ Qσ0 with si = 1 there are two inequivalent choices for the restriction of 〈·, ·〉
to Mi, labelled by a discriminant εi ∈ Z2. Fixing a choice ε of these discriminants,
there is an associated algebraic group Gσ,εd and a Gσ,εd -representation Rσ,εd . As a
vector space Rσ,εd is independent of ε. Isometry classes of self-dual representations
of dimension vector d are in bijection with the Gσ,εd -orbits of Rσ,εd as ε varies over
all choices.

Each stability θ ∈ Λ∨Q defines a character

χθ : GLd → k×, ({gi}i∈Q0) 7→
∏
i∈Q0

(det gi)
−θi

and by restriction also a character of Gσd . Note that σ-symmetric stabilities, σ∗θ =
θ, restrict to the trivial character of the identity component of Gσd and so are not
interesting from the point of view of GIT with respect to Gσd . In fact up to a factor
of one half, which is irrelevant for GIT, the characters of the identity component
can be identified with the σ-compatible stabilities.

Recall the definition of stability in GIT [29], [21]. Assume that k = k and let V
be a representation of a (not necessarily connected) reductive group G with kernel
∆ ⊂ G. Fix a character χ : G→ k×.

Definition. A point v ∈ V is χ-semistable if there exists n ≥ 1 and

f ∈ k[V ]G,χ
n

= {h ∈ k[V ] | h(g · v′) = χ(g)nh(v′), ∀g ∈ G, v′ ∈ V }

such that f(v) 6= 0. If, in addition, the stabilizer StabG/∆(v) is finite and the action
of G on {v′ ∈ V | f(v′) 6= 0} is closed, then v is called χ-stable.

The χ-(semi)stable points for the action of G and its identity component coincide
[29, Proposition 1.15]. In particular, we can apply the usual Hilbert-Mumford
criterion to test stability, regardless of the connectivity of G.

Theorem 2.7. Assume that k = k and let θ be a σ-compatible stability. A self-dual
representation M ∈ Rσd is σ-(semi)stable if and only if it is χθ-(semi)stable.

Proof. We follow the strategy of [21, §3] where the analogous statement for ordinary
representations is proven. We will prove the statement for stability. The argument
for semistability is the same.

Given M ∈ Rσd and a cocharacter λ : k× → Gσd define

Ma
i =

{
x ∈Mi | λ(z) · x = zax, ∀z ∈ k×

}
, a ∈ Z, i ∈ Q0.

For each arrow i
α−→ j the structure map mα decomposes into a collection of linear

maps ma,b
α : Ma

i →M b
j satisfying λ(z) ·ma,b

α = zb−ama,b
α . Then lim

z→0
λ(z) ·M exists

if and only if ma,b
α = 0 for all a > b and α ∈ Q1. The latter condition is equivalent

to the direct sum

M(w) =
⊕
i∈Q0

⊕
a≥w

Ma
i

being a subrepresentation of M for each w ∈ Z. Then {M(w)}w∈Z is a decreasing
filtration of M stabilizing at 0 for w � 0 and at M for w � 0.

Let x ∈Ma
i and x′ ∈M b

σ(i). Since λ acts by isometries we have

〈x, x′〉 = 〈λ(z)x, λ(z)x′〉 = za+b〈x, x′〉.

Therefore 〈x, x′〉 = 0 whenever a 6= −b, implying M⊥(w) = M(−w+1). In particular,

M(w) is isotropic if w > 0.



10 M. B. YOUNG

Writing (·, ·) for the canonical pairing between characters and cocharacters, we
compute

(χθ, λ) =
∑
w∈Z

θ(M(w))

=
∑
w>0

θ(M(−w+1)) +
∑
w>0

θ(M(w))

=
∑
w>0

(
θ(M//M(w)) + θ(M(w))

)
+
∑
w>0

θ(M(w))

= 2
∑
w>0

θ(M(w)).

In the last line we used that θ vanishes on ΛσQ.

If M is σ-stable, from the previous calculation we see that (χθ, λ) < 0 for all
cocharacters λ. By the Hilbert-Mumford criterion (in the form of [21, Proposition
2.5]) M is χθ-stable. Conversely, suppose that M is χθ-stable. A non-zero isotropic
subrepresentation U ⊂M defines a filtration

U ⊂ U⊥ ⊂M. (3)

There exists a cocharacter λ : k× → Gσd whose limit limz→0 λ(z) ·M exists and
whose associated filtration is (3); take λ to have weight −1 on U , weight zero on
a vector space complement of U in U⊥, and weight 1 on a complement of U⊥.
The Hilbert-Mumford criterion implies 2θ(U) = (χθ, λ) < 0, proving that M is
σ-stable. �

For each σ-compatible stability θ and dimension vector d ∈ Λσ,+Q , define the
moduli space of semistable self-dual representations as the GIT quotient

Mσ,θ
d = Proj

⊕
n≥0

k[Rσd ]G
σ
d ,χ

n
θ

 .

It is an irreducible normal quasi-projective variety parameterizing S-equivalence
classes of semistable self-dual representations. More precisely, each semistable self-
dual representation M has a σ-Jordan-Hölder filtration

0 = U0 ⊂ U1 · · · ⊂ Ur ⊂M,

with subquotients U1/U0, . . . , Ur/Ur−1 stable of slope zero and self-dual quotient
M//Ur zero or σ-stable. The associated graded self-dual representation is

GrS(M) =

r⊕
i=1

H(Ui/Ui−1)⊕M//Ur.

Two semistable self-dual representationsM1 andM2 are S-equivalent ifGrS(M1) 'S
GrS(M2). Using this and the self-dual generalization of [9, Theorem 2.6] we con-

clude that the forgetful map Mσ,θ
d →Mθ

d to the moduli space of ordinary represen-
tations is injective.

There is an open subvariety Mσ,θ-st
d ⊂ Mσ,θ

d parameterizing isometry classes of

σ-stable representations. While Mσ,θ-st
d in general has orbifold singularities (see

Proposition 2.6) the regular σ-stable representations are smooth points. If non-

empty, Mσ,θ-st
d is of dimension −E(d). This can be seen either by direct calculation

or by identifying the tangent space of the moduli stack of self-dual representations at
M with Ext1(M,M)S and the infinitesimal isometries of M with Hom(M,M)−S .

Example. Let Q be the following orientation of the A2n Dynkin diagram:
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-n -2 -1 1 2 n

The involution swaps nodes i and −i, fixes the middle arrow and swaps the remain-
ing arrows. If a representation is orthogonal (symplectic) then, along with other
conditions, the map assigned to the middle arrow is skew-symmetric (respectively,
symmetric).

For stability θi = −i the stable representations coincide with the indecompos-
able representations, which are in bijection with the positive roots of A2n. There
are no σ-stable orthogonal representations. The semistable orthogonal representa-
tions are hyperbolic sums of σ-symmetric indecomposables. The symplectic case
depends on the ground field. When k = k the regular σ-stable symplectic repre-
sentations are precisely the σ-symmetric indecomposables. When k is finite each
σ-symmetric indecomposable admits two distinct symplectic structures and this
give all the regular σ-stables. There is also a unique σ-stable symplectic structure
on the twofold direct sum of each σ-symmetric indecomposable. After base change
to k this representation is hyperbolic and so is not absolutely σ-stable. /

Example. Let Kn be the n-Kronecker quiver

−1 1
×n

with the involution that swaps the nodes and fixes the arrows. Symplectic repre-
sentations have symmetric structure maps. Fix the stability θi = −i and identify
Gσd with GLd1 . A symplectic representation of dimension vector (1, 1) is semistable
if and only if it is σ-stable if and only if not all of its structure maps are zero. Hence

Msp,θ
(1,1) ' Pn−1, arising as the coarse moduli space of a Z2-gerbe over Pn−1. For

n > 2, Msp,θ
(2,2) is in general singular.

Moduli spaces of K2-representations can be described explicitly. For each d ≥ 1,
using Jordan-Hölder filtrations and taking symmetric products gives isomorphisms

Msp,θ
(d,d) ' SymdMsp,θ

(1,1) ' Pd. (4)

From Proposition 2.5 Msp,θ-st
(d,d) is the complement of the big diagonal in (4). This

contrasts the situation for ordinary representations, where Mθ-st
(d,d) is empty if d >

1. /

3. Orientifold Donaldson-Thomas theory of a quiver

In this section we introduce the orientifold Donaldson-Thomas series of a quiver
with duality structure. We use Hall algebras and their representations to study the
basic properties of these series, including their wall-crossing.

3.1. Quantum torus and coistropics. Fix a finite field k = Fq of odd charac-

teristic and let Q be a quiver. The quantum torus T̂Q attached to RepFq (Q) is the

Q(q1/2)-vector space with topological basis {xd}d∈Λ+
Q

and multiplication

xd · xd′ = q
1
2 〈d,d

′〉xd+d′ . (5)

The algebra T̂Q, or rather the algebra generated by {xd}d∈ΛQ with the same mul-
tiplication, is a quantization of the Poisson algebra of regular functions on the
algebraic torus TQ = Λ∨Q ⊗Z C× with Poisson structure determined by the skew-

symmetrized Euler form 〈·, ·〉 [22].
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In the self-dual setting, let ŜQ be the Q(q1/2)-vector space with topological basis

{ξe}e∈Λσ,+Q
. Define an action of T̂Q on ŜQ by the formula

xd ? ξe = q
1
2 (〈d,e〉+Ẽ(d))ξH(d)+e. (6)

Using the identity

E(d+ d′) = E(d) + E(d′) + χ(σ(d), d′).

it is verified that this gives ŜQ the structure of a T̂Q-module.

The module ŜQ has the following geometric interpretation.1 The involution
σ : ΛQ → ΛQ induces an anti-Poisson involution σ∗ : TQ → TQ whose fixed point
locus is a coisotropic subtorus TσQ ⊂ TQ. The algebra of regular functions on TσQ,
and more generally the space of sections of a vector bundle over TσQ, inherits the

structure of a C[TQ]-module. From this point of view, ŜQ is a quantization of the

C[TQ]-module of sections of the trivial vector bundle of rank 2#Qσ0 over TσQ.

3.2. Hall algebras, Hall modules and integration maps. Let HQ be the Hall
algebra of RepFq (Q) [33]. Its underlying Q-vector space is generated by symbols [U ]
indexed by isomorphism classes of Fq-representations of Q and its multiplication is

[U ] · [V ] =
∑
X

FXU,V [X]

with structure constants the Hall numbers

FXU,V = #{Ũ ⊂ X | Ũ ' U, X/Ũ ' V }.

Then HQ is a Λ+
Q-graded associated algebra.

In [32, Lemma 6.1] (see also [27, Proposition 1]) Reineke showed that the map∫
H

: HQ → T̂Q, [U ] 7→ q
1
2χ(dimU,dimU)

#Aut(U)
xdimU

is a Q-algebra homomorphism. The map
∫
H is a one dimensional version of the

(partially conjectural) integration maps central to the motivic DT theory of three
dimensional Calabi-Yau categories [22].

We want to construct a lift of the homomorphism
∫
H to the self-dual setting.

To do this, we first recall the definition of the Hall module MQ associated to the
category RepFq (Q) with fixed duality structure [41]. It is the Q-vector space gen-
erated by symbols [M ] indexed by isometry classes of self-dual Fq-representations
of Q. The HQ-module structure on MQ is defined by

[U ] ? [M ] =
∑
N

GNU,M [N ]

with structure constants self-dual versions of Hall numbers,

GNU,M = #{Ũ ⊂ N | Ũ ' U, Ũ is isotropic, N//Ũ 'S M}.

The next result provides the desired lift of
∫
H.

Theorem 3.1. The map∫
M

:MQ → ŜQ [M ] 7→ q
1
2E(dimM)

#AutS(M)
ξdimM

1Again, for this interpretation we should use the module generated by {ξe}e∈Λσ
Q

.
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is a

∫
H

-morphism. More precisely, the diagram

HQ ⊗QMQ MQ

T̂Q ⊗Q(q
1
2 )

ŜQ ŜQ

∫
H
⊗
∫
M

∫
M

commutes, where the horizontal maps are the module structure maps.

Proof. By linearity it suffices to show that∫
M

([U ] ? [M ]) =

(∫
H

[U ]

)
?

(∫
M

[M ]

)
for all representations U and self-dual representations M . A direct calculation
shows that this is equivalent to the identity∑

N

GNU,M
#AutS(N)

=
q−χ(dimM,dimU)−E(dimU)

#Aut(U) ·#AutS(M)
.

Using [41, Lemma 2.2] this is in turn equivalent to the identity proven in [41,
Theorem 2.9]. �

Write ĤQ for the completion of HQ with respect to its Λ+
Q-grading and M̂Q

for the corresponding completion of MQ. Both integration maps
∫
H and

∫
M and

Theorem 3.1 extend to these completions.

Remark. Theorem 3.1 holds more generally if RepFq (Q) is replaced with an exact
subcategory of a hereditary finitary abelian category. The duality need only be
defined on the exact subcategory. An example of this type is the category of vector
bundles over a smooth projective curve over Fq with its standard duality.

3.3. Orientifold DT series. Define characteristic functions of (self-dual) repre-

sentations of a fixed dimension vector d in Λ+
Q or Λσ,+Q by

1d =
∑

dimU=d

[U ] ∈ HQ, 1σd =
∑

dimM=d

[M ] ∈MQ.

The sums run over the finitely many isomorphism (isometry) classes of (self-dual)
representations of dimension vector d. Given a (σ-compatible) stability θ, there are
similarly defined characteristic functions of semistable representations with fixed
dimension vector d or slope µ:

1θd ∈ HQ, 1θµ ∈ ĤQ, 1σ,θd ∈MQ, 1σ,θ ∈ M̂Q.

As self-dual representations have zero slope we have written 1σ,θ for 1σ,θµ=0. Apply-
ing the appropriate integration map to each characteristic function gives a stack
generating function, denoted by A with the corresponding sub/superscripts. For
example,

Aσ,θd =

∫
M

1σ,θd =
∑

dimM=d
M is s.s

q
1
2E(d)

#AutS(M)
ξd ∈ ŜQ. (7)

In analogy with [23] we call

Aσ,θ =
∑

d∈Λσ,+Q

Aσ,θd ∈ ŜQ
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the orientifold Donaldson-Thomas series of (Q, σ) with its given duality structure
and stability.

Let n ≥ 0 and put (y)n =
∏n
i=1(1− yi). For each d ∈ Λ+

Q and e ∈ Λσ,+Q define

(y)d =
∏
i∈Q0

(y)di , (y)σe =
∏
i∈Qσ0

(y2)b ei2 c ×
∏
i∈Q+

0

(y)ei

where b ei2 c is the greatest integer less than or equal to ei
2 .

Proposition 3.2. Fix d ∈ Λ+
Q, e ∈ Λσ,+Q and let θ be a σ-compatible stability.

(1) The following identities hold:

Ad =
q−

1
2χ(d,d)

(q−1)d
xd, Aσe =

q−
1
2E(e)

(q−1)σe
ξe.

(2) The quantity Aσ,θe is equal to q
1
2E(e) times the number of Fq-points of the

stack of semistable self-dual representations of dimension vector e:

Aσ,θe = q
1
2E(e) ·#[Rσ,ε,θ-sse /Gσ,εe ](Fq)ξe.

Proof. The identity for Ad is known [27]. In the self-dual case we have

Aσe =
∑
ε

q
1
2E(e) #Rσ,εe

#Gσ,εe
ξe.

Denote the function on ΛQ given by the first two sums (last two sums) in equation

(2) by E0 (respectively, E1). By direct inspection #Rσ,εe = q−E1(e). If i ∈ Q+
0 then

Gσ,εei = GLei and

1

#Gσ,εei
=
q−E0(ei(i+σ(i)))

(q−1)ei
.

If i ∈ Qσ0 then Gσ,εiei is an orthogonal or symplectic group. The cardinalities of the
finite classical groups are given by

#Oεi2n(Fq) =
2#GLn(Fq2)

qn + εi
, #Sp2n(Fq) =

1

2
#Oεi2n+1(Fq) = qn#GLn(Fq2),

with εi ∈ {−1, 1}. See for example [39, §§3.5 and 3.7]. Using this we find∑
εi

1

#Gσ,εiei

=
q−E0(eii)

(q−2)b ei2 c
.

These calculations together with Burnside’s lemma give the identity for Aσe .
Turning to the second part of the proposition, the number of Fq-points of the

stack [Rσ,ε,θ-sse /Gσ,εe ] is by definition

#[Rσ,ε,θ-sse /Gσ,εe ](Fq) =
∑

η∈Iso[Rσ,ε,θ-sse /Gσ,εe ](Fq)

1

#Aut(η)
.

The objects of the groupoid [Rσ,ε,θ-sse /Gσ,εe ](Fq) are in bijection with the set

Rσ,θ-sse (Fq)×H1(Fq, Gσ,εe (Fq)).

The cohomology H1(Fq, Gσ,εe (Fq)) is identified with the set of inequivalent choices
of ε′ with ε as the base point. Morphisms in the groupoid are the transporter
groups

Hom[R/Gσ](Fq) ((r′, ε′), (r′′, ε′′)) = δε′,ε′′Trans
Gσ,ε

′
e (Fq)

(r′, r′′).

Hence the automorphisms of (r′, ε′) are the stabilizers of r′ ∈ Rσ,ε′,θ-sse (Fq) under

the action of Gσ,ε
′

e (Fq), or in other words, AutS(r′). The proposition follows after
using equation (7). �
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Our next goal is to describe the characteristic function 1σ,θd for a given σ-

compatible stability θ. We will say that (d1, . . . , dn) ∈ (Λ+
Q)n has strictly decreasing

slope if µ(d1) > · · · > µ(dn). Similarly, (d1, . . . , dn; d∞) ∈ (Λ+
Q)n×Λσ,+Q has strictly

decreasing slope if (d1, . . . , dn) does and µ(dn) > 0.
As iterated products in the Hall algebra count filtrations of representations, the

existence of unique HN filtrations implies the following identity in HQ (see [32]):

1d =
∑
d•

1θd1 · · ·1θdn . (8)

The sum is over all n ≥ 1 and d• = (d1, . . . , dn) ∈ (Λ+
Q)n with strictly decreasing

slope and weight d =
∑n
i=1 d

i. Equation (8) gives a recursion for 1θd in terms of 1d′

with dim d′ ≤ dim d. This recursion was solved by Reineke [32, Theorem 5.1].
Using Proposition 2.3, similar reasoning gives an identity in MQ:

1σd =
∑

(d•;d∞)

1θd1 · · ·1θdn ? 1σ,θd∞ . (9)

The sum is now over all n ≥ 0 and (d•; d∞) ∈ (Λ+
Q)n×Λσ,+Q with strictly decreasing

slope and σ-weight d =
∑n
i=1H(di) + d∞. Note that d∞ may be zero but that

di 6= 0 if i 6= 0. We write l(d•) = n if d• ∈ (Λ+
Q)n.

Definition (cf. [32, Definition 5.2]). Let (d•; d∞) ∈ (Λ+
Q)n × Λσ,+Q .

(1) For a possibly empty subset I = {s1 < · · · < sk} ⊂ {1, . . . , n}, the I-coarsening

of (d•; d∞) is the element of (Λ+
Q)#I × Λσ,+Q given by

cI(d
•; d∞) = (d1 + · · ·+ ds1 , · · · , dsk−1+1 + · · ·+ dsk ;H(dsk+1 + · · ·+ dn) + d∞).

(2) The I-coarsening cI(d
•; d∞) is called σ-admissible if

(a) it has strictly decreasing slope,
(b) for each i = 1, . . . , k and j′ = si−1 + 1, . . . , si − 1 the inequality

µ(

j′∑
j=si−1+1

dj) > µ(

si∑
j=si−1+1

dj)

holds, and

(c) for each j′ = sk + 1, . . . , n− 1 the inequality µ(
∑j′

j=sk+1 d
j) > 0 holds.

We now solve the recursion (9) for 1σ,θd .

Theorem 3.3. For each d ∈ Λσ,+Q , equation (9) is solved by

1σ,θd =
∑

(d•;d∞)

(−1)n1d1 · · ·1dn ? 1σd∞

where the sum is over all n ≥ 0 and (d•; d∞) ∈ (Λ+
Q)n × Λσ,+Q which are equal to

(∅; d) or satisfy µ(
∑j
i=1 d

i) > 0 for j = 1, . . . , n and have σ-weight d.

Proof. Using the resolution of the HN recursion (8) from [32] and substituting the

claimed expression for 1σ,θd into equation (9) gives for 1σd the expression

∑
(d•;d∞)

∑
(d1,•,··· ,dn,•;d∞,•)

(−1)
∑n
i=1(li−1)+l∞

−→∞∏
i=1

−→
li∏
j=1

1di,j

 ? 1σd∞,∞ . (10)

The outer sum is over all (d•; d∞) with strictly decreasing slope and σ-weight d
while the inner sum is over all (d1,•, · · · , dn,•; d∞,•) with dk,• ∈ (Λ+

Q)lk of weight
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dk satisfying

µ(

l∑
i=1

dk,i) > µ(dk), l = 1, . . . , lk − 1

and d∞,• ∈ (Λ+
Q)l∞ × Λσ,+Q of σ-weight d∞ satisfying

µ(

l∑
i=1

d∞,i) > 0, l = 1, . . . , l∞.

Let (e•; e∞) be the concatenation of d1,•, . . . , dn,• and d∞,•,

(e•; e∞) =
(
d1,1, . . . , dn,ln , d∞,1, . . . , d∞,l∞ ; d∞,∞

)
.

Then (d•; d∞) is a σ-admissible coarsening of (e•; e∞). Since

n∑
i=1

(li − 1) + l∞ = l(e•)− l(d•)

the order of summation in (10) can be swapped to give for 1σd the expression∑
(e•;e∞)

(−1)l(e
•)

∑
(d•,d∞)

(−1)l(d
•)1e1 · · ·1el(e•) ? 1σe∞ .

The range of the outer sum is as in the statement of the theorem while the inner
sum is over all σ-admissible coarsenings of (e•; e∞).

To complete the proof it suffices to show that for fixed (e•; e∞) equal to (∅; d)
or satisfying the inequality in the statement of the theorem we have∑

(d•;d∞)

(−1)l(d
•) =

{
1, if (e•; e∞) = (∅; d)
0, otherwise

, (11)

the sum being over all σ-admissible coarsenings of (e•; e∞). This is a self-dual
analogue of [32, Lemma 5.4]. If l(e•) = 0, then (e•; e∞) = (∅; d) and equation
(11) is trivially true. For l(e•) ≥ 1 we proceed by induction. If l(e•) = 1, then
(e•; e∞) = (e1; e) with µ(e1) > 0. This has σ-admissible coarsenings I = ∅ and
I = {1} and equation (11) again holds. For l(e•) ≥ 2 we can follow the proof of
[32, Lemma 5.4], distinguishing the cases µ(e1) < µ(e2) and µ(e1) ≥ µ(e2). This
allows to complete the induction step. �

For d• ∈ (Λ+
Q)n and e ∈ Λσ,+Q introduce the notation

χ(d•) =
∑

1≤i<j≤n

χ(dj , di), χ(e, d•) =

n∑
i=1

χ(e, di), E(d•) = E(

n∑
i=1

di).

By applying the Hall module integration map to the expression for 1σ,θd from The-
orem 3.3 and then using Theorem 3.1 and Proposition 3.2 we obtain the following
result.

Theorem 3.4. For any d ∈ Λσ,+Q and σ-compatible stability θ, the coefficient of ξd

in Aσ,θd is equal to

q
1
2E(d)

∑
(d•;d∞)

(−1)l(d
•)q−χ(d•)−χ(d∞,d•)−E(d•)

l(d•)∏
i=1

q−χ(di,di)

(q−1)di

 q−E(d∞)

(q−1)σd∞
,

where the range of summation is as in Theorem 3.3.

In particular, there exists a rational function aσ,θd (t) ∈ Z(t
1
2 ) that specializes to

Aσ,θd (Fq) at every odd prime power q.
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For an acyclic quiver Q and a sufficiently generic stability θ, the ordinary moduli
space Mθ

d, over k = C say, is a smooth projective variety. In [32] the Weil conjec-
tures are used to show that the function aθd, specializing to Aθd at each prime power,
satisfies

aθd(v
2) = vχ(d,d)(v2 − 1)−1PMθ

d
(v),

giving an effective way to the compute the Poincaré polynomial PMθ
d
(v). In the self-

dual case, the requirement that θ be σ-compatible means that it cannot be chosen
generically, except in some low dimensional examples. This leads to the existence of

strictly semistable self-dual representations so that aσ,θd is not obviously related to

the Poincaré polynomial of Mσ,θ
d . Instead, aσ,θd can be interpreted as the Poincaré

series of the moduli stack [Rσ,θd /Gσd ]. For similar interpretations in the case of
G-bundles over curves and ordinary quiver representations see [1], [25] and [16]
respectively.

The functions aθd also have string theoretic importance, regardless of whether
θ is generic or not. In [26] it was proposed that the functions aθd determine the
Higgs branch expression for the index of multi-centred BPS black holes in N = 2
supergravity. Using the explicit computation of aθd from [32] this proposal was
tested in a number of examples. It would be interesting to test a similar relationship

between aσ,θd and a Coulomb branch formula for indices of BPS black holes in the
presence of an orientifold [7].

Example. For the n-Kronecker quiver with stability θi = −i we have

asp,θ(1,1)(t) = t
1
2E(1,1) t

n − 1

t− 1
= t

1−n
2 [n]t.

Indeed, there are 2[n]q isometry classes of semistable symplectic Fq-representations
of dimension vector (1, 1), each having isometry group Z2. These representations

are absolutely σ-stable. The moduli space is Msp,θ
(1,1) ' Pn−1 and we recover its

Poincaré polynomial via

asp,θ(1,1)(v
2) = vE(1,1)PMsp,θ

(1,1)
(v).

In general asp,θ(d,d) is rational, even after multiplication by t−
1
2E(d,d). For example,

using Theorem 3.4 we compute

asp,θ(2,2)(t) = t
1
2E(2,2) t

n−1[2n]t − [n]t
t+ 1

.

When n = 2 this is asp,θ(2,2)(t) = t
1
2E(2,2)(t3 + t − 1) while after multiplication by

t−
1
2E(2,2) is polynomial but fails to recover the Poincaré polynomial of Msp,θ

(2,2) ' P2

because of strictly semistable symplectic representations. /

We now describe a class of quivers with involution whose ordinary and self-
dual representation theories differ rather mildly. This is partially motivated by [8,
§5.2.1]. Let Q be an acyclic quiver and let Qt be the disjoint union of Q with
its opposite Qop. Then Qt has a canonical involution σ that swaps the nodes and
arrows of Q and Qop. Let Q′ be a quiver obtained from Qt by adjoining arrows
from Qop to Q in such a way that σ can be extended to Q′. The σ-compatible
stabilities of Q′ are of the form θ′ = θ − σ∗θ with θ ∈ Λ∨Q. Given d ∈ Λ+

Q pick

stabilities θ0, θ− ∈ Λ∨Q satisfying θ0(d) = 0 and θ−(d) < 0. Assume that θ0 and θ−
are generic in the sense that all semistable representations of Q of dimension vector
d are stable.
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Fix a duality structure on Q′. Any self-dual representation of dimension vector
d′ = H(d) can be written uniquely as a Lagrangian extension

0→ U → N → S(U)→ 0 (12)

with U a representation of Q of dimension vector d.
The representation N is θ′0-semistable if and only if U is θ0-semistable. In this

case the σ-Jordan-Hölder filtration of N coincides with the Jordan-Hölder filtration
of U . This implies that the map

M
σ,θ′0
d′ (Q′)→Mθ0

d (Q), N 7→ U

is an isomorphism. It is straightforward to verify that the Lagrangian extensions
(12) are parameterized by the vector space Ext1(S(U), U)S . Since Hom(S(U), U)
is trivial, we have dimExt1(S(U), U)S = −E(d). Using this we compute

a
σ,θ′0
d′ (v2) = vE(d′) v

−2E(d)

v2 − 1
P
M
σ,θ′0
d′ (Q′)

(v).

On the other hand, in some examples M
σ,θ′−
d′ (Q′) is a fibration over M

σ,θ′0
d′ (Q′)

with fibres weighted projective spaces of dimension −E(d)− 1.

Example. As an example of the previous discussion, let Q be the n-Kronecker
quiver on nodes {−2,−1} and let Q′ be the quiver

-2 -1 1 2

×n ×m ×n

A symplectic representation of Q′ of dimension vector d′ = (d2, d1, d1, d2) is a tuple

(A,B) ∈ Hom(kd2 , kd1)⊕n ⊕ (Sym2kd1)⊕m.

Suppose that d1 = 1. For stability θ0 = (d2,−1) the representation (A,B) is
semistable if and only if A 6= 0. From the discussion above

M
sp,θ′0
d′ (Q′) 'Mθ0

(d2,1)(Q) ' Gr(d2,Cn)

and

a
sp,θ′0
d′ (v2) = vE(d′) v2m

v2 − 1

[
n
d2

]
v

.

For θ− = (d2 + 1,−1) the representation (A,B) is semistable if and only if neither

A nor B is zero. Then M
sp,θ′−
d′ (Q′) is a Pm−1-fibration over M

sp,θ′0
d′ (Q′) and

a
sp,θ′−
d′ (v2) = vE(d′)[m]v

[
n
d2

]
v

= vE(d′)P
M

sp,θ′−
d′ (Q′)

(v).

Note that the computation of a
sp,θ′−
d′ takes into account the non-trivial Z2-gerbe

structure of the fibres. /

3.4. Wall-crossing of orientifold DT invariants. We begin this section by de-
scribing the expected wall-crossing behaviour of counts of σ-stable self-dual objects
in RepC(Q). Näıvely, these numbers are the orientifold DT invariants. A more
precise approach to wall-crossing is described below.

If θ is generic in the sense that all semistable representations of dimension vector
d are stable, then Mθ

d is smooth and the numerical DT invariant is the topological
Euler characteristic

Ωθd = (−1)dimMθ
dχ(Mθ

d) ∈ Z.
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The definition of Ωθd for general θ and d is more involved; see [20], [22], [23] and
equation (15) below. Under similar generic conditions we define the numerical
orientifold DT invariant by

Ωσ,θe = (−1)dimMσ,θ
e χ(Mσ,θ

e ).

By convention we set Ωσ,θ0 = 1 for all θ.
To study the θ dependence of Ωσ,θ fix an object U and a self-dual object M with

dimU = d and dimM = e. Assume that d, σ(d) and e are distinct and primitive.
Let θ−, θ0 and θ+ be nearby σ-compatible stabilities such that U and M are stable
with respect to all three and

µθ−(U) < 0, µθ0(U) = 0, µθ+(U) > 0.

For stability θ− we can obtain new σ-stable self-dual representations from U and
M through non-trivial self-dual extensions of the form

0→ U → N 99KM → 0,

presenting M as a quotient of U⊥ ⊂ N by U . On the other hand, for stability θ+ the
representation N is destabilized by U whereas non-trivial self-dual extensions of M
by S(U) may now be σ-stable. Since U , S(U) and M are stable and pairwise non-
isomorphic, Schur’s lemma implies that there are no non-zero morphisms between
them. In this case the self-dual extensions can be decomposed as

Ext1s.d.(M,U) ' Ext1(M,U)× Ext1(S(U), U)S

and
Ext1s.d.(M,S(U)) ' Ext1(M,S(U))× Ext1(U, S(U))S .

Roughly, the first factor in Ext1s.d.(M,U) describes the extension class of U⊥ while
the second factor describes the self-dual representation N as an extension of S(U)
by U⊥. See [41, §2.3] for details.

If indeed all non-trivial self-dual extensions described above are σ-stable, in
passing from stability θ− to θ+ we therefore expect to gain2 PExt1s.d.(M,S(U)) and
lose PExt1s.d.(M,U) worth of σ-stable representations of dimension vector H(d)+e,
leading to a change in χ(Mσ

H(d)+e) of

χ(PExt1s.d.(M,S(U)))− χ(PExt1s.d.(M,U)) = 〈M,U〉+ Ẽ(U).

Let I : ΛQ × ΛσQ → Z be the function defined by the expression on the right hand
side of this equation. As U and M vary over their respective moduli spaces the
total change in ΩσH(d)+e is

∆Ω
σ,θ−→θ+
H(d)+e = (−1)I(d,e)−1I(d, e)Ωθ0d Ωσ,θ0e . (13)

Note that this equation is already non-trivial in the Lagrangian case, where e = 0.
In this specialization the above argument can be made more precise by a slight
modification of [37, §4.3].

Equation (13) is an orientifold modification of the primitive wall-crossing formula
for BPS indices in four dimensional theories with N = 2 supersymmetry [8]. A
physical derivation of equation (13) was given in the setting of four dimensional
N = 2 supergravity in an orientifold background [7]. Physically, the function I is
a parity twisted Witten index [5], counting orientifold invariant open string states
between an arbitrary D-brane configuration of charge d ∈ ΛQ, its orientifold image
and an orientifold invariant D-brane configuration of charge e ∈ ΛσQ. The charge
of the orientifold plane is implicit in I.

2These are weighted projective spaces: the natural action of C× on Ext1s.d.(M,S(U)) has weight

one on Ext1(M,S(U)) and weight two on Ext1(U, S(U))S . Since the topological Euler character-
istics is not affected by the weighting it suffices to think of them as ordinary projective spaces.



20 M. B. YOUNG

Example. Consider again the quiver Q′, a modification of Qt. When M
σ,θ′−
d′ (Q′)

is indeed a weighted P−E(d)−1-bundle over Mθ0
d (Q) we have

χ(M
σ,θ′−
d′ (Q′)) = −E(d) · χ(Mθ0

d (Q)).

As M
σ,θ′+
d′ (Q′) is empty (the representation U in (12) destabilizes N), this agrees

with the Lagrangian specialization of equation (13). /

We now return to the finite field setting and discuss a more rigorous approach
to wall-crossing. We first prove a general wall-crossing formula for orientifold DT
series and then specialize it to the finite type case where it becomes much more
explicit and can be compared with equation (13).

Theorem 3.5. For any two σ-compatible stabilities θ and θ′, the identity

←−∏
µ∈Q>0

Aθµ ? A
σ,θ =

←−∏
µ∈Q>0

Aθ
′

µ ? A
σ,θ′

holds in ŜQ.

Proof. Writing equation (9) in terms of semistable characteristic functions with

fixed slope gives the following equalities in M̂Q:

←−∏
µ∈Q>0

1θµ ? 1σ,θ = 1σ =

←−∏
µ∈Q>0

1θ
′

µ ? 1σ,θ
′
. (14)

Applying
∫
M and using Theorem 3.1 gives the desired identity. �

The quantum dilogarithm is the series

Eq(x) =
∑
n≥0

q
n2

2

(qn − 1) · · · (qn − qn−1)
xn ∈ Q(q

1
2 )[[x]].

We recall one way that Eq(x) arises in DT theory. Fix a σ-compatible stability θ
and a rigid absolutely stable representation U with dimU = d. The subcategory
of RepFq (Q) generated by U consists of semistable representations {U⊕n}n≥1 with

Aut(U⊕n) ' GLn(Fq). The contribution to
∫
H 1 generated by U is then

AθU =

∫
H

∞∑
n=0

[U⊕n] =

∞∑
n=0

q
n2

2

#GLn(Fq)
xnd = Eq(xd).

Suppose now that U ' S(U). Under the Z2-action determined by (S,Θ), End(U)
is either the sign or trivial representation. In the former case a self-dual struc-
ture on U⊕n is a non-singular skew-symmetric element in End(U⊕n). The self-
dual representations generated by U are {H(U⊕n)}n≥1. These are semistable with
AutS(H(U⊕n)) ' Sp2n(Fq) so that the contribution to

∫
M 1σ generated by U is

Asp,θ
U =

∫
M

∞∑
n=0

[H(U⊕n)] =

∞∑
n=0

q
n(2n+1)

2

qn#GLn(Fq2)
ξ2nd = Eq2(q−

1
2xd) ? ξ0.

When End(U) is the trivial representation, a self-dual structure on U⊕n is a non-
singular symmetric element in End(U⊕n) so that the self-dual representations gen-
erated by U are {U⊕n,ε}n≥1,ε∈{±}, each being semistable with AutS(U⊕n,ε) '
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Oεn(Fq). The contribution is

Ao,θ
U =

∫
M

∞∑
n=0

∑
ε∈{±}

[U⊕n,ε]

=

∞∑
n=0

q
n(2n−1)

2 qn

#GLn(Fq2)
ξ2nd +

∞∑
n=0

q
n(2n+1)

2 q−n

#GLn(Fq2)
ξ(2n+1)d

= Eq2(q
1
2xd) ? ξ0 + Eq2(q−

1
2xd) ? ξd.

In these calculations the factors Eq2(q•xd) represent the contributions of the

hyperbolics H(U⊕n) to
∫
M 1σ. The simple form of Asp,θ

U reflects that all self-dual
representations generated by U are hyperbolic. In particular, there are no σ-stable

representations. The form of Ao,θ
U is more interesting, consisting of two terms.

The first includes contributions from the hyperbolics H(U⊕n) and the non-split
representations H(U⊕n)⊕U⊕2,−. Note that over Fq the latter are also hyperbolic.
The second term consists of contributions from H(U⊕n)⊕ Uε. It is this term that
contains information about the absolutely σ-stable representations.

We now turn to the simplest case of Theorem 3.5.

Example. Let Q be the A2 Dynkin quiver

−1 1

The wall-crossing formula for ordinary quiver representations is the pentagon iden-
tity in T̂Q:

Eq(x1) · Eq(x−1) = Eq(x−1) · Eq(x(1,1)) · Eq(x1).

It is the simplest instance of the primitive wall-crossing formula for DT invariants
[11], [23]. The stabilities are θi = i and θ′i = −i on the left and right hand side of
this equation respectively.

For orthogonal representations Theorem 3.5 gives the ŜQ-identity

Eq(x1) ? ξ0 = Eq(x−1) ? Ao,ss,

the stabilities as above. The factor Ao,ss is generated by the non-simple indecom-
posable. As this representation does not admit an orthogonal structure we have
Ao,ss = Eq2(q−

1
2x(1,1)) ? ξ0. The wall-crossing formula for orthogonal representa-

tions therefore reads

Eq(x1) ? ξ0 = Eq(x−1) · Eq2(q−
1
2x(1,1)) ? ξ0.

On the other hand the non-simple indecomposable does admit a symplectic struc-
ture, making it absolutely σ-stable. The symplectic wall-crossing formula then takes
the form

Eq(x1) ? ξ0 = Eq(x−1) ·
(
Eq2(q

1
2x(1,1)) ? ξ0 + Eq2(q−

1
2x(1,1)) ? ξ(1,1)

)
.

/

According to Theorem 3.5 the product
←−∏

µ∈Q>0

Aθµ ? A
σ,θ

is independent of θ. We will say that a σ-compatible stability θ is σ-generic if
µ(d) = µ(d′) implies 〈d, d′〉 = 0 and if d is a semistable dimension vector of slope

zero, then d ∈ Λσ,+Q , cf. [20], [27] in the ordinary case. For such θ the DT series Aθµ
encodes the slope µ motivic DT invariants through the factorization

Aθµ =
∏

µ(d)=µ

∏
n∈Z

Eq((−q
1
2 )nxd)

(−1)nΩθd,n . (15)
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See [11], [23]. We would like to have an analogue of equation (15) in which the
orientifold DT invariants are defined by factorizations of Aσ,θ. Theorem 3.5 would
then give a wall-crossing formula for these invariants.

Let (Q, σ) be of Dynkin type A or a disjoint union of a quiver of Dynkin type
ADE with its opposite; all other finite type quivers with involutions are disjoint
unions of these. Then Ωθd,n = 0 if n 6= 0 so we write Ωθd for Ωθd,0. In fact Ωθd is
non-zero only if d is a positive root of the root system attached to Q, in which case
it is zero or one depending on θ. Note that all stable representations are absolutely
stable and that any duality structure is equivalent to either the orthogonal or
symplectic duality.

Let U be as above and let M be an absolutely σ-stable representation with
dimM = e and r regular summands. Proposition 2.6 implies AutS(M) ' Zr2.
When E(U) = 1 or U is a summand ofM , a modification of the previous calculations
shows the contribution of {H(U⊕n)⊕M}n≥0 to

∫
M 1σ to be

AσU,M =
1

2r
Eq2(q

1
2−χ(e,d)−E(d)xd) ? ξe.

If E(U) = 0 and U is not a summand of M , the same formula instead gives the
contribution of {U⊕2n,ε⊕M}n≥0,ε∈{±} to

∫
M 1σ. Here U⊕2n,+ and U⊕2n,− are the

hyperbolic, respectively non-hyperbolic self-dual structures on U⊕2n. Since E(d) is
zero or one when U does or does not admit a self-dual structure, respectively, this
formula specializes to those derived above. Varying U and M over all absolutely
(σ-)stable representations (including the 2r Fq-forms of M ⊗Fq Fq) shows that we
can write

Aσ,θ =
∑

e∈Λσ,+Q

Aθµ=0(q, {q 1
2−χ(e,d)−E(d)xd}d) ? Ωσ,θe ξe (16)

for some non-negative integers Ωσ,θe . We summarize our calculations as follows.

Theorem 3.6. Let Q be a finite type quiver with involution and let θ be a σ-generic
stability. The orientifold DT series Aσ,θ admits a factorization of the form (16).
Explicitly,

(1) for hyperbolic duality structures (disjoint unions, symplectic representations
of A2n+1 and orthogonal representations of A2n) Ωσ,θe = δe,0 for all e ∈
Λσ,+Q , and

(2) for non-hyperbolic duality structures Ωσ,θe = 1 if e = 0 or e = e1 + · · ·+ ek
for pairwise distinct ei ∈ Λσ,+Q with Ωθei = 1. Otherwise Ωσ,θe = 0.

Remarks. (1) The invariant Ωσ,θe defined by equation (16) is equal to the
stacky number of absolutely σ-stable self-dual Fq-representations of dimen-
sion vector e. Alternatively, Ωσ,θe is equal to the Euler characteristic of the
moduli space of σ-stable representations of dimension vector e, which is
either empty or consists of single point.

(2) The invariants Ωσ,θe satisfy the primitive wall-crossing formula (13). The
most basic instance of this is seen in the A2 example above.

(3) The form of equations (15) and (16) reflects the difference between ordinary
and σ-Jordan-Hölder filtrations: in the latter there is only one self-dual
factor, leading to the linear structure of equation (16).

(4) The factorization of Aσ by equations (15) and (16) encodes all ordinary
and orientifold DT invariants and can be regarded as a way of extracting
the pure orientifold invariants from Aσ. This is similar to the definition of
BPS invariants in topological string theory with orientifolds, cf. [35], [4],
[38], where the free energy is decomposed into its ordinary and orientifold
contributions.
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3.5. Quivers with potential. We consider briefly the extension of the Hall mod-
ule formalism to quivers with potential. A potential is an element W ∈ kQ/[kQ, kQ]
and a representation of (Q,W ) is a finite dimensional module over the Jacobian
algebra JQ,W = kQ/〈∂W 〉. For each d ∈ Λ+

Q the potential induces a trace function

w : Rd → k. Given a duality structure on Repk(Q), the potential W is called
S-compatible if its trace w is S-invariant. In this case there is an induced dual-
ity structure on the abelian category of finite dimensional JQ,W -modules. As the
homological dimension of this category is generally greater than one, Hall algebra
techniques cannot be applied directly to study its DT theory. Instead, we use the
equivariant approach of Mozgovoy [28].

Suppose we are given a weight map wt : Q1 → Z≥0. This defines a k×-action on
Rd as follows. Given M ∈ Rd and t ∈ k×, the representation t ·M has the same
underlying vector space as M but with structure maps twt(α)mα. Assume that W
is homogeneous of weight one with respect to wt, that is, w(t ·M) = tw(M). If
Q has an involution σ, we additionally assume that wt is σ-invariant. This implies
that Rσd ⊂ Rd is k×-stable.

Example. The quiver for C3 is a single node with three loops α, β, γ and potential
W = αβγ−αγβ. Give α weight one and the other arrows weight zero. Consider the
trivial involution and fix a duality structure. Then W is S-compatible if and only
if τατβτγ = −1. Self-dual representations describe N = 4 or N = 2 supersymmet-
ric gauge theories on the worldvolume of D3-branes placed on O3- or O7-planes.
These are gauge theories with orthogonal or symplectic gauge groups and matter
in the symmetric or exterior square of the defining representation. More generally,
examples arise from quivers with potential arising from consistent brane tilings that
admit an orientifold action, such as the conifold and C3/Z3 quivers [13]. /

Let k = Fq. The equivariant Hall algebra [28] is the subalgebra HeqQ ⊂ HQ
spanned by elements f =

∑
U aU [U ] satisfying aU = at·U for all representations U

and t ∈ F×q . For each t ∈ Fq, denote by ft =
∑
w(U)=t aU [U ]. In [28, Proposition

5.12] it was shown that the map∫ eq

H
: HeqQ → T̂Q, f 7→

∫
H
f0 −

∫
H
f1

is an algebra homomorphism. Analogously, we define the equivariant Hall module
Meq

Q , a HeqQ -submodule of MQ, and an equivariant integration map
∫ eq
M : Meq

Q →
ŜQ, a

∫ eq
H -morphism. Define the orientifold DT series of a quiver with S-compatible

potential and σ-compatible stability by

Aσ,θ =

∫ eq

M
1σ,θ ∈ ŜQ.

As in [28], this definition is motivated by the approach to DT theory via motivic
vanishing cycles [3], extended to non-generic stabilities.

Repeating the proofs from the sections above with equivariant instead of ordinary
integration maps, we find a recursive expression for Aσ,θ in terms of Ad and Aσd
and a wall-crossing formula relating the DT series {Aθµ}µ∈Q>0

and Aσ,θ for different
σ-compatible θ.
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