
Title A Randomized Algorithm for the Capacity of Finite-State
Channels

Author(s) Han, G

Citation IEEE Transactions on Information Theory, 2015, v. 61, p. 3651-
3669

Issued Date 2015

URL http://hdl.handle.net/10722/217072

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38080739?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 7, JULY 2015 3651

A Randomized Algorithm for the Capacity
of Finite-State Channels

Guangyue Han

Abstract— Inspired by ideas from the field of stochastic
approximation, we propose a randomized algorithm to compute
the capacity of a finite-state channel with a Markovian input.
When the mutual information rate of the channel is concave with
respect to the chosen parameterization, the proposed algorithm
proves to be convergent to the capacity of the channel almost
surely with the derived convergence rate. We also discuss the
convergence behavior of the algorithm without the concavity
assumption.

Index Terms— Finite-state channel, memory channel, capacity.

I. INTRODUCTION

D ISCRETE-TIME finite-state channels are a broad class
of channels which have attracted plenty of interest in

information theory; prominent examples of such channels
include partial response channels [52], [57], Gilbert-Elliott
channels [21], [44] and noisy input-restricted channels [63],
which are widely used in a variety of real-life applications,
such as magnetic and optical recording [43], and communica-
tions over channels with inter-symbol interference [19]. The
computation of the capacity of a finite-state channel is noto-
riously difficult and has been open for decades. For a discrete
memoryless channel with a discrete memoryless source at its
input, the classical Blahut-Arimoto algorithm (BAA) [3], [14]
can effectively compute the channel capacity, however,
for almost all nontrivial finite-state channels, little is
known about the channel capacity other than some bounds
(see [6], [53], [63] and references therein), which are numer-
ically computed using Monte Carlo approaches. The methods
in these work are believed to produce fairly precise numerical
approximations of the capacity of certain classes of finite-state
channels, however there are no general proofs to justify such
beliefs.

Recently, Vontobel et al. have proposed a generalized
Blahut-Arimoto algorithm (GBAA) [60] to maximize the
mutual information rate of a finite-state machine channel with
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a finite-state machine source at its input. This interesting
algorithm has attracted a great deal of attention due to the
observations that it fairly precisely approximates the channel
capacity for a number of practical channels. (Notably, some
results that were derived in the context of the GBAA have
proven to be useful for analyzing the Bethe entropy function
of some graphical models that appear in the context of
low-density parity-check codes [58] and for approximately
computing the permanent of a non-negative matrix [59].) For
a finite-state channel, let X denote the input Markov process
and Y its corresponding output process, which, by definition,
is a hidden Markov process [15]. In contrast to the BAA,
the proof of the convergence of the GBAA depends on the
extra assumption that I (X; Y ) and H (X |Y ) are both concave
with respect to a chosen parameterization, which has been
posed as Conjecture 74 in [60]. Example 1, however, shows
that the concavity conjecture is not true in general; for other
examples showing I (X; Y ) and H (X |Y ) fail to be concave,
see [37]. Here, we remark that the validity of Conjecture 74 is
only sufficient to prove the convergence of the GBAA, which,
however, may also converge even if the conjecture does not
hold.

One of the hurdles encountered in computing the finite-state
channel capacity is the problem of optimizing I (X; Y ) for a
given parameterization, which requires in-depth understanding
of the behavior of H (Y ) as a function of the given parameters.
More specifically, there has long been a lack of understanding
on the following two issues:

(I) How to effectively compute the entropy rate of hidden
Markov processes?

(II) How does the entropy rate of hidden Markov processes
vary as the underlying Markov processes and the
channels vary?

As elaborated below, recently, these two issues have been
partially addressed by the information theory community.

Related Work on (I): It is well known that H (X) has a
simple analytic formula; in stark contrast, there is no simple
and explicit formula of H (Y ) for most non-degenerate chan-
nels ever since hidden Markov processes (or, more precisely,
hidden Markov models) were formulated more than half a
century ago. Here, we remark that Blackwell [12] showed
that H (Y ) can be written as an integral of an explicit function
on a simplex with respect to the Blackwell Measure.
However, the Blackwell measure seems to be rather compli-
cated for effective computation of H (Y ). Since 2000, there has
been a rebirth of interest in computing and estimating H (Y )
in a variety of scenarios: the Blackwell measure has been
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used to bound H (Y ) [46], a variation on the classical Birch
bounds [11] can be found in [18] and a new numerical
approximation of H (Y ) has been proposed in [42]. General-
izing Blackwell’s idea, an integral formula for the derivatives
of H (Y ) has been derived in [51].

The celebrated Shannon-McMillan-Breiman theorem states
that the n-th order sample entropy − log p(Y n

1 )/n converges
to H (Y ) almost surely. Based on this, efficient Monte Carlo
methods for approximating H (Y ) were proposed indepen-
dently by Arnold and Loeliger [5], Pfister et al. [49],
Sharma and Singh [54]. However, more quantitative descrip-
tions of the convergence behavior of the proposed methods,
such as rate of convergence, asymptotic normality and so on,
are lacking in these work. Recently, a central limit
theorem (CLT) [50] for the sample entropy has been derived
as a corollary of a CLT for the top Lyapunov exponent of a
product of random matrices; a functional CLT has also been
established in [33]. To some extent, these two CLTs suggested
that the Monte Carlo methods are “accurate” for the purpose
of approximating H (Y ) in the sense that, roughly speaking,
the methods are more likely to yield values concentrated
around H (Y ). There are also other related work in different
contexts, such as [31], [32], and [35].

Recently, we have obtained [23] a number of limit theorems
for the sample entropy of Y . These limit theorems can be
viewed as further refinements of the Shannon-McMillian-
Breiman theorem, which is the backbone of information
theory. More specifically, [23, Th. 1.2] is a CLT with an
error-estimate, which can be used to characterize the rate of
convergence of the Monte Carlo methods in [5], [49], and [54],
and [23, Th. 1.5] is a large deviation result, which gives a
sub-exponential decaying upper bound on the probability of
the sample entropy − log p(Y n

1 )/n deviating from H (Y ).
Among many other applications, such as deriving
non-asymptotic coding theorems [62], these theorems
positively confirmed the effectiveness of using the
Shannon-McMillan-Breiman theorem to approximate H (Y ).

Related Work on (II): The behavior of H (Y ) (as a
function of the underlying Markov chain and the channel)
is of significance in a number of scientific disciplines;
particularly in information theory, it is of great importance
for computing/estimating the capacity of finite-state channels.
However, some of the basic problems, such as smoothness
(or even differentiability) of H (Y ), have long remained
unknown. Recently, asymptotical behavior of H (Y ) has been
studied in [4], [34], [45]–[48], [51], [64], and [65]. Particularly
in [64], for a special type of hidden Markov chain Y ,
the Taylor series expansion of H (Y ) is given under the
assumption that H (Y ) is analytic. Under mild assumptions,
analyticity of H (Y ) has been established in [25]; see also
related work in [2], [15], [42], [51], [64], [65], and refer-
ences therein. The framework in [25] has been generalized to
continuous-state settings and further provides useful tools and
techniques for our subsequent work, such as derivatives [26],
asymptotics [27], and concavity [28] of H (Y ).

Equipped with ideas and techniques from the
above-mentioned work on (I) and (II), we are more
prepared to make further progress towards the computation of

the channel capacity. In particular, the ideas and techniques
in [23] and [25] are vital to this paper. Roughly speaking,
[25] proves that the entropy rate of hidden Markov chains
is a “nicely behaved” function; and [23] confirms that it
can be “well-approximated” using Monte Carlo simulations.
The simulator of the derivative of I (X; Y ) as specified in
Section IV, which is crucial to this work, is an “offspring” of
the two schools of thoughts in [23] and [25].

Stochastic approximation methods refer to a family of
recursive stochastic algorithms, aiming to find zeroes or
extrema of functions whose values can only be estimated
via noisy observations. The extensive literature on stochastic
approximation has grown up around two prototyipcal
algorithms, the Robbins-Monro algorithm and the
Kiefer-Wolfowitz algorithm, mainly concerning the
convergence analysis on these two algorithms and their
variants; we refer the reader to [36] for an exposition to the
vast literature on stochastic approximation.

Inspired by ideas in stochastic approximation, we propose
a randomized algorithm to compute the capacity of a class
of finite-state channels with input Markov processes sup-
ported on some mixing finite-type mixing constraint. Bearing
the same spirit as the Robbins-Monro algorithm and the
Kiefer-Wolfowitz algorithm, the proposed algorithm, in many
subtle respects, differs from both of them. The main task
of this paper is to conduct a convergence analysis of the
proposed algorithm, which employs some established ideas
and techniques from the field of stochastic approximation.
In particular, the proofs in Section VIII are largely inspired
by [56], which has credited origins of some of its techniques
to earlier work, such as [8], [36], and [39]. However, neither
the results nor the proofs in [56] or any of previous work
imply our results; as a matter of fact, considerable amount of
simplification and adaptation of the techniques in [56] have
been incorporated into this work.

Although described in different languages, our settings are
essentially the same as in [60]. On the other hand, as opposed
to the GBAA, the concavity of I (X; Y ) alone is already
sufficient to guarantee the convergence of our algorithm.
Here, let us note that that for certain classes of channels
(see Example 1), I (X; Y ) is indeed concave with respect to
certain parameterization, whereas H (X |Y ) fails to be concave
with respect to the same parameterization.

Characterizing the maximal rate at which the information
can be transmitted through a given channel, the capacity
is the most fundamental notion in information theory. The
capacity-achieving (input) distribution will further provide
us insightful guidance towards designing coding schemes
that actually achieve the promised capacity. Apparently, our
proposed algorithm would be of fundamental significance to
both information theoretic research and practical applications
to tele-communications and data storage.

The organization of the paper is as follows. We first describe
our channel model in greater detail in Section II and we then
present our algorithm in Section III. In Section IV, we propose
a simulator for the derivative of I (X; Y ) and discuss its
convergence behavior. The convergence of the algorithm is
established in Section V, while the rate of convergence of the
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algorithm with and without concavity conditions are derived in
Sections VII and VIII, respectively. In Section IX, we discuss
the capacity-achieving distribution of a special class of finite-
state channels. Our proposed algorithm has been implemented
for a variety of input-constrained finite-state channels, and the
results of extensive numerical simulations for these channels
will be presented in Section X.

II. CHANNEL MODEL

In this section, we specify the channel model considered in
this paper in greater detail, which is essentially the same as
the one considered in [60].

Let X be a finite alphabet and let

X 2 = {(i, j) : i, j ∈ X }.
Let � denote the set of all stationary irreducible first-order
Markov chains over the alphabet X . For a given subset
F ⊂ X 2, define

�F = {X ∈ � : Xi, j = 0, (i, j) ∈ F},
where we have identified an irreducible first-order Markov
chain with its transition probability matrix (so, Xi, j represents
the probability of X transiting from state i to state j ).
Furthermore, for any ε > 0, define

�F,ε = {X ∈ �F : Xi, j ≥ ε, (i, j) �∈ F}.
Obviously, if some X ∈ �F,ε is primitive (namely, irreducible
and aperiodic), then any X ′ ∈ �F,ε is primitive; in this case,
we say F is a mixing finite-type constraint. Here, let us note
that a mixing finite-type constraint can be defined in a much
more general context [40].

The motivation for considering finite-type constraints
mainly comes from magnetic recording, where input sequences
are required to satisfy certain mixing finite-type constraints in
order to eliminate the most damaging error events [43]. The
best known example is the so-called (d, k)-RLL constraint
over the alphabet {0, 1}, which forbids any sequence with
fewer than d or more than k consecutive zeros in between
two successive 1’s.

In this paper, we are concerned with a discrete-time finite-
state channel with some input constraint. Let X,Y, S denote
the channel input, output and state processes over finite
alphabets X ,Y and S, respectively. Assume that
(II.a) For some mixing finite-type constraint F ⊂ X 2 and

some ε > 0, X ∈ �F,ε .
(II.b) (X, S) is a first-order stationary Markov chain whose

transition probabilities satisfy

p(xn, sn |xn−1, sn−1) = p(xn|xn−1)p(sn|xn, sn−1),

where p(sn|xn, sn−1) > 0 for any sn−1, sn, xn .
(II.c) the channel is stationary, which is characterized by

p(yn|yn−1
1 , xn

1 , sn−1
1 ) = p(yn|xn, sn−1) > 0,

that is, conditioned on the pair xn, sn−1, the output yn is
statistically independent of all outputs, inputs and states
prior to yn, xn and sn−1, respectively.

It will be clear later (see Remark 5) that the channel specified
as above is indecomposable [20], and its capacity can be
computed as

CF = sup I (X; Y ) = sup lim
n→∞ In(X; Y ),

where the supremum is over all X satisfying
Assupmptions (II.a) and

In(X; Y ) �
H (Xn

1)+ H (Y n
1 )− H (Xn

1,Y n
1 )

n
. (1)

The fact that Y and (X,Y ) are both hidden Markov processes
makes it apparent that solutions to (I) and (II) are essential for
computing CF .

Assume that �F,ε is analytically parameterized by
θ ∈ � ⊂ R

d , d ≥ 1, where � denote the entire parameter
space. Then, naturally, X = X (θ) and Y = Y (θ) are also
analytically parameterized by θ . Under this parameterization,
we would like to find θ∗ ∈ � that maximizes I (X (θ); Y (θ)).

Remark 1: The assumption that X is a first-order Markov
chain is for notional convenience only: through a usual
“reblocking” technique, the case for a Markov chain of any
order can be boiled down to the first-order case.

Remark 2: One natural goal is to find X ∈ �F that
maximizes I (X; Y ). However, in this paper, we will restrict
our attention to �F,ε for a given ε > 0; such restriction will
be justified in Section IX.

III. THE ALGORITHM

For a given 1/2 < a < 1, choose the so-called step sizes

an = 1

na
, n = 1, 2, . . . ; (2)

apparently, {an} satisfies
∞∑

n=0

an = ∞,

∞∑

n=0

a2
n < ∞,

which are the typical conditions imposed on step sizes in a
generic stochastic approximation method. Letting An denote
the event “θn +angnb(θn) �∈ �”, we propose to find θ∗ through
the following recursive procedure:

θn+1 =
{
θn, if An occurs,

θn + angnb(θn), otherwise;
(3)

here b > 0, the initial θ0 is randomly selected from �,
and gnb(θ) is a to-be-specified simulator (see Section IV)
for I ′(X (θ); Y (θ)), where ′ means the derivative taken with
respect to θ . Throughout the paper, we assume that

0 < β < α < 1/3, 2a + b − 3bβ > 1; (4)

here, α, β are some “hidden” parameters involved
in the definition of gnb(θ), which will be defined
in Section IV.

Remark 3: The idea of the algorithm is very
simple and can be roughly explained as follows: at
time n, the derivative I ′(X (θn); Y (θn)), which can be
“well-approximated” by gnb(θn), indicates whether the
function I (X (θ),Y (θ)) is monotone increasing or not at θn .
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Accordingly, while ensuring all θn stay within the region �,
θn will be updated to θn+1, most likely giving rise to a larger
value of I (X (θn+1),Y (θn+1)). The subtlety is that one has to
appropriately choose step sizes {an}: too small step sizes will
cause a premature convergence of {θn}, while too large step
sizes will likely lead to an eventual divergence of {θn}.

Remark 4: In our notation, one of the key differences
between our algorithm and the GBAA in [60] is that our
algorithm is meant to find θ∗ that maximizes the mutual
information rate I (X (θ); Y (θ)), whereas the GBAA to find
θ∗

n that maximizes the mutual information In(X (θ); Y (θ)) for
some arbitrary yet fixed n.

IV. A SIMULATOR OF I ′(X; Y )

As stated in Section I, albeit rather difficult to compute
analytically, In(X; Y ) can be well-approximated via
Monte Carlo simulations. In this section, we propose a
simulator for I ′(X; Y ). Needlessly to say, an effective
simulator guaranteeing an “accurate” approximation to
I ′(X; Y ) is crucial to our algorithm. To some extent, our
simulator is inspired by Bernstein’s blocking method [9],
which is a well-established tool in proving limit theorems for
mixing sequences [16].

Now, consider a stationary stochastic process Z = Z∞−∞
satisfying the following assumptions:

(IV.a) There exist strictly positive constants Ĉ1 < Ĉ2 such
that for all z0−n ,

Ĉ1 ≤ p(z0|z−1
n ) ≤ Ĉ2.

(IV.b) There exist C > 0, 0 < λ < 1 such that for all n,

ψZ (n) � sup
U∈B(Z−n∞ ),V∈B(Z∞

0 ),P(U ),P(V )>0

×|P(V |U)− P(V )|
P(V )

≤ Cλn,

where B(Z j
i ) denotes the σ -field generated by

{Zk : k = i, i + 1, · · · , j}.
(IV.c) There exist C > 0, 0 < ρ < 1 such that for any

two z0−m , ẑ0
−m̂ with z0−n = ẑ0−n (here m, m̂ ≥ n ≥ 0),

|p(z0|z−1−m)− p(ẑ0|ẑ−1
−m̂)| ≤ Cρn .

Remark 5: Conditions (IV.a)-(IV.c) are the same ones used
in [23, Sec. 2], which are essential for establishing the main
results in [23]. As observed in [23], Conditions (II.a)-(II.c)
imply that Y and (X,Y ) both satisfy Conditions (IV.a)-(IV.c),
and moreover, there exist C > 0, 0 < ρ < 1 such that for any
two initial states s′

0, s′′
0 ,

|p(sn|xn
1 , s′

0)− p(sn|xn
1 , s′′

0 )| ≤ Cρn .

This implies that, as claimed in Section II, the finite-state
channels considered in this paper are indecomposable.

Now, for 0 < β < α < 1/3, define

q = q(n) � nβ, r = r(n) � nα, k = k(n) � n/(nα + nβ),

where, to avoid notational cumbersomeness, we have omitted
rounding operators acting on nβ , nα and n/(nα + nβ),

which are not necessarily integers. For any j with
iq + (i − 1)r + 1 ≤ j ≤ ir + i p, define

W j = W j (Z
j
j−�q/2�) � − p′(Z j

j−�q/2�)

p(Z j
j−�q/2�)

log p(Z j |Z j−1
j−�q/2�),

(5)

and furthermore

ζi � Wiq+(i−1)r+1 + · · · + Wiq+ir , Sn �
k(n)∑

i=1

ζi . (6)

Remark 6: The rough idea behind the definition of Sn is as
follows: Note that each ζi only involves all Z j with j ∈ Ii �
{iq+(i−1)r+1−�q/2�, . . . , iq+ir}, and for any two j1 ∈ Ii1 ,
j2 ∈ Ii2 , where i1, i2 are distinct, we have | j1 − j2| ≥ �q/2�.
It then follows from Condition (IV.b) that for large enough n,
all ζi are “weakly dependent”, and furthermore, the arithmetic
mean of all ζi will converge to the mean of ζi , which can be
verified to be close to H ′(Z).

Now, we are ready to define our simulator for I ′(X; Y ).
Definition 1:

gn = gn(X
n
1 ,Y n

1 )

� H ′(X2|X1)+ Sn(Y
n
1 )/(kr)− Sn(X

n
1 ,Y n

1 )/(kr).

The following lemma, whose proof is somewhat similar to
that of [23, Lemma 3.3], gives an estimate of the variance
of Sn .

Lemma 1: For Z satisfying Conditions (IV.a), (IV.b)
and (IV.c),

E[(Sn − E[Sn])2] = O(krq3).

Proof: As in the proofs of [23, Lemmas 3.1 and 3.9],
using Condition (IV.a), (IV.b), we can deduce that for
some 0 < λ < 1,

E[(Sn − E[Sn])2] = E[(
k∑

i=1

ζi −
k∑

i=1

E[ζi ])2]

= k E[(ζ1 − E[ζ1])2] + O(k2λq/2).

So, to prove the lemma, it suffices to prove that

E[(ζ1 − E[ζ1])2] = O(rq3).

Note that

E[(ζ1−E[ζ1])2]=
r∑

j1, j2=1

E[(W j1 −E[W j1])(W j2 −E[W j2])].

(7)

It follows from Condition (IV.a) that for any j , W j −E[W j ] =
O(q), and therefore, for any j1, j2, we have

E[(W j1 − E[W j1])(W j2 − E[W j2])] = O(q2). (8)

Furthermore, similarly as in the proof of Part 2 of
[23, Lemma 3.1], one verifies, using Condition (IV.a), (IV.b),
that when | j1 − j2| > �q/2�,

E[(W j1 − E[W j1])(W j2 − E[W j2])] = O(q2λ| j1− j2|−�q/2�).
(9)
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Combining (7), (8) and (9), we then have

E[(ζ1 − E[ζ1])2]

=
⎛

⎝
∑

| j1− j2|≤�q/2�
+

∑

| j1− j2|>�q/2�

⎞

⎠ E[(W j1 − E[W j1])

× (W j2 − E[W j2])]
= O(rq3).

The proof is then complete. �
The following three theorems characterize the performance

of our simulator from different perspectives.
Using similar techniques as in [25, Proof of Theorem 1.1],

the first theorem shows that on average, our simulator sub-
exponentially converges to I ′(X; Y ).

Theorem 1: For some 0 < ρ0 < 1, we have

E[gn(X
n
1 ,Y n

1 )] − I ′(X; Y ) = O(ρ�q/2�
0 ).

Proof: Notice that for the Markov chain X , we have

H (X) = H (X2|X1).

So, by Remark 5, it suffices to prove that for any Z satisfying
Conditions (IV.a)-(IV.c), we have

E[Sn]
kr

− H ′(Z) = O(ρ�q/2�
1 ),

for some 0 < ρ1 < 1.
Note that for any j with iq + (i − 1)r + 1 ≤ j ≤ iq + ir ,

we have

E[W j ] = −
∑

z j
j−�q/2�

p(z j
j−�q/2�)

p′(z j
j−�q/2�)

p(z j
j−�q/2�)

log p(z j |z j−1
j−�q/2�)

= −
∑

z j
j−�q/2�

p′(z j
j−�q/2�) log p(z j |z j−1

j−�q/2�).

Then, as in [25, Proof of Theorem 1.1], we can prove that
for any small ε > 0,

∑

zn
1

|p′(zn |zn−1
1 )| = O((1 + ε)n).

This, together with Condition (IV.c), implies that for some
0 < ρ1 < 1,

E[W j ] − H ′(Z) = O(ρ�q/2�
1 ),

which further implies that for some 0 < ρ1 < 1

E[Sn]
kr

− H ′(Z) = E[Sn] − kr H ′(Z)
kr

=
∑

j (E[W j ] − H ′(Z))
kr

= O(ρ�q/2�
1 ).

�
The following large deviation type lemma gives a sub-

exponentially decaying upper bound on the tail probability of
gn(Xn

1 ,Y n
1 ) deviating from I ′(X; Y ).

Theorem 2: For any ε > 0, there exist some 0 < γ, δ < 1
such that

P
(∣∣gn(X

n
1 ,Y n

1 )− I ′(X; Y )
∣∣ ≥ ε

) ≤ γ nδ .

Proof: By Lemma 1 and Remark 5, it suffices to prove
that for any Z satisfying Conditions (IV.a)-(IV.c) and for any
ε > 0, there exist 0 < γ, δ < 1 such that

P

(∣∣∣∣
Sn − E[Sn]

kr

∣∣∣∣ ≥ ε

)
≤ γ nδ . (10)

By the Markov inequality, we have

P(Sn − E[Sn] ≥ krε) = P

(
t (Sn − E[Sn])

r2 ≥ tkrε

r2

)

≤ E[et (Sn−E[Sn])/r2]
etkε/r

. (11)

As in [23, Proof of Lemma 3.9], applying Conditions (IV.a)
and (IV.b), we then have

E[et (Sn−E[Sn])/r2 ]
= E[et

∑k−1
i=1 (ζi−E[ζi ])/r2

et (ζk−E[ζk ])/r2 ]
= (1 + O(λq(n)/2))E[et

∑k−1
i=1 (ζi−E[ζi ])/r2 ]E[et (ζk−E[ζk ])/r2],

(12)

for some 0 < λ < 1, where we have used the fact, as explained
in Remark 6, that for any two j1 ∈ Ii1 , j2 ∈ Ii2 , where i1, i2
are distinct, we have | j1− j2| ≥ �q/2�. A recursive application
of (12) yields that for any 0 < t < 1

E[et (Sn−E[Sn])/r2 ] = E[et
∑k

i=1(ζi−E[ζi ])/r2]
= (1+O(λq(n)/2))k−1(E[et (ζ1−E[ζ1])/r2 ])k,

(13)

as n goes to infinity. By Condition (IV.a), we have

ζ1 − E[ζ1] = O(rq),

and thus,

O((ζ1 − E[ζ1])2/r4) = O(q2/r2) = o(1).

It then follows that for any 0 < t < 1,

E[et (ζ1−E[ζ1])/r2] = 1 + o(1)t2.

Choosing t = n−(1−α)/2, then, by (11) and (13), we deduce
that

P

(
Sn − E[Sn]

kr
≥ ε

)

≤ E[et (Sn−E[Sn])/r2 ]
etkε/r

≤ (1 + O(λq(n)/2))k
(1 + o(1)t2)n

1−α

(1 + tε + O(1)t2)n
1−2α

= O(e−n1/2−3α/2
).

Noticing that 0 < α < 1/3 (and thus 1/2 − 3α/2 > 0), we
conclude that for any ε > 0, there exists 0 < γ, δ < 1 such
that

P

(
Sn − E[Sn]

kr
≥ ε

)
≤ γ nδ .
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With a parallel argument, one verifies that for any ε > 0, there
exists 0 < γ, δ < 1 such that

P

(
Sn − E[Sn]

kr
≤ −ε

)
≤ γ nδ ,

which immediately implies (10). The proof is then
complete. �

The following theorem states that our simulator is asymp-
totically unbiased.

Theorem 3: With probability 1,

gn(X
n
1 ,Y n

1 ) → I ′(X; Y ),

as n tends to ∞.
Proof: It immediately follows from Theorem 2 and the

Borel-Cantelli lemma. �
Remark 7: Other than confirming the effectiveness of the

proposed simulator gn in Definition 1, Theorems 1, 2 and 3
are of interest in their own right: For any stationary process Z
satisfying Conditions (IV.a), (IV.b) and (IV.c), the proofs of
these theorems reveals that the sample path of Z can be used
to effectively simulate the derivative of H (Z). This can be
viewed as an extension (for a special class of processes) of
the Shannon-Millan-Breiman theorem, which states that the
sample path of a stationary and ergodic process can be used
to simulate its entropy rate. For the proposed algorithm in
Section III, an alternative simulator can be defined as follows:
gn can be defined in the same way except that ζ2, ζ3, · · · , ζn

are taken as independent copies of ζ1. It can be easily checked
that Theorems 1, 2 and 3 also holds for the redefined gn. As a
consequence, the convergence results later in this paper also
hold for the redefined gn .

Remark 8: In our notation, the following expression has
been proposed in [60] as a simulator of I ′(X; Y ):

H ′(X2|X1) − p′(Y n
1 )

p(Y n
1 )
(log p(Y n

1 ))/n

+ p′(Xn
1 ,Y n

1 )

p(Xn
1 ,Y n

1 )
(log p(Xn

1 ,Y n
1 ))/n.

Extensive numerical experiments conducted in [60] suggest
that this simulator converges to I ′(X; Y ) almost surely as
n tends to infinity, however, there is no rigorous proof for
the convergence.

Remark 9: For the purpose of effective computation to
avoid accumulating round-off errors caused by multiplication,
W j can be rewritten as

W j = −
⎛

⎝ p′(Z j−�q/2�)
p(Z j−�q/2�)

+ p′(Z j−�q/2�+1|Z j−�q/2�)
p(Z j−�q/2�+1|Z j−�q/2�)

+ · · · + p′(Z j |Z j−1
j−�q/2�)

p(Z j |Z j−1
j−�q/2�)

⎞

⎠ log p(Z j |Z j−1
j−�q/2�).

Here, we remark that it is well known that all p(Zi |Zi−1
i−�q/2�)

(see [25, eqs. (4.6) and (4.14)]) and p′(Zi |Zi−1
i−�q/2�)

(see, e.g., the displayed equation after [26, eq. (2.5)]) can be
effectively computed in a recursive manner.

Remark 10: It is well known that by the
Shannon-McMillan-Breiman theorem, the following simulator
of I (X; Y ),

H (X2|X1)− log p(Y n
1 )/n + log p(Xn

1 ,Y n
1 )/n, (14)

converges to I (X; Y ) almost surely as n tends to infinity.
Bearing the same spirit as the simulator of I ′(X; Y ) in
Definition 1, an alternative simulator of I (X; Y ) can be
defined as follows: For any j with iq + (i − 1)r + 1 ≤ j ≤
ir + i p, define

Ŵ j = Ŵ j (Z
j
j−�q/2�) � − log p(Z j |Z j−1

j−�q/2�),

and furthermore

ζ̂i � Wiq+(i−1)r+1 + · · · + Wiq+ir , Ŝn �
k(n)∑

i=1

ζ̂i .

Then, the following expression gives an alternative simulator
of I (X; Y ):

ĝn = ĝn(X
n
1 ,Y n

1 )

� H (X2|X1)+ Ŝn(Y
n
1 )/(kr)− Ŝn(X

n
1 ,Y n

1 )/(kr).

It can be verified that analogs of Theorems 1, 2 and 3 hold for
the above alternative simulator; more precisely, following from
parallel arguments, these three theorems still hold with gn and
I ′(X; Y ) replaced with ĝn and I (X; Y ), respectively. Note that
the sub-exponential upper bound as in Theorem 2, which in
general does not hold for the simulator in (14), suggests that ĝn

is more effective. Indeed, the alternative simulator ĝn has been
implemented in our numerical simulations (See Section X)
for the computation of I (X; Y ) and faster convergence of this
simulator has been observed.

V. CONVERGENCE

Consider the following condition:

(V.a) P(∩∞
k=1 ∪∞

n=k An) = 0, that is, An, n ∈ N, only occurs
finitely many times,

which will be assumed throughout the convergence analysis
in the paper. Particularly, in this section, assuming (V.a),
we will show that {I (X (θn); Y (θn))} converges almost surely.
Obviously, if � = R

d , then Assumption (V.a) will be trivially
satisfied and the iteration in (3) can be simply written as

θn+1 = θn + angnb(θn). (15)

Note that Assumption (V.a) may not hold true when
� is bounded, though some other conditions, such as
Condition (VII.a), may imply (5.a). Unless specified otherwise,
we will simply assume that � = R in all the proofs in this
paper to avoid obscuring the main idea. The proofs of the same
results under Assumption (V.a) follow from parallel arguments
only with an increasing level of notational complexity.

Henceforth, we will write (for the definition of In , see (1))

f (θ) = I (X (θ); Y (θ)), fn(θ) = In(X (θ); Y (θ)).

Note that under Assumption (II.a), [25, Th. 1.1] implies that
f (θ) is analytic and each of its derivatives is uniformly
bounded over all θ ∈ �,
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a key fact that will be implicitly used throughout the paper.
Now, rewrite (15) as

θn+1 = θn + an f ′(θn)+ an Rn(θn), (16)

where

Rn(θn) � gnb(θn)− f ′(θn).

It can be easily verified that

f (θn+1)− f (θn)

=
∫ 1

0
f ′(θn + t (θn+1 − θn))(θn+1 − θn)dt

=
∫ 1

0
f ′(θn)(θn+1 − θn)dt

+
∫ 1

0
( f ′(θn + t (θn+1 − θn))− f ′(θn))(θn+1 − θn)dt

= an f ′(θn)( f ′(θn)+ Rn(θn))

+
∫ 1

0
( f ′(θn + t (θn+1 − θn))− f ′(θn))(θn+1 − θn)dt

= an f ′2(θn)+ R̂n(θn), (17)

where

R̂n(θn) � an f ′(θn)Rn(θn)

+
∫ 1

0
( f ′(θn+ t (θn+1− θn))− f ′(θn))(θn+1− θn)dt .

Lemma 2:
∑∞

n=0 R̂n(θn) converges almost surely.
Proof: Let

T1 =
∞∑

n=0

an f ′(θn)Rn(θn),

and

T2 =
∞∑

n=0

∫ 1

0
( f ′(θn + t (θn+1 − θn))− f ′(θn))(θn+1 − θn)dt .

It suffices to prove that T1, T2 both converge almost surely.
For T1, note that

T1 =
∞∑

n=0

an f ′(θn)(gnb(θn)− f ′(θn))

=
∞∑

n=0

an f ′(θn)(gnb(θn)− f ′
nb (θn))

+
∞∑

n=0

an f ′(θn)( f ′
nb (θn)− f ′(θn)).

It follows from the proof of Theorem 1.1 (more precisely, the
last displayed equation in the proof of Theorem 1.1, coupled
with Cauchy’s integral formula) that there exists 0 < ρ0 < 1
such that for all θ ∈ �,

|( f ′
nb (θ)− f ′(θ))| ≤ ρnb

0 ,

which immediately implies that
∞∑

n=0

an| f ′(θn)||( f ′
nb(θn)− f ′(θn))| ≤

∞∑

n=0

an| f ′(θn)|ρnb

0 <∞.

(18)

Then, using (2) and Lemma 1, one verifies that uniformly over
all θn ∈ �,

∞∑

n=0

E[{a2
n( f ′(θn))

2 R2
n(θn)}] =

∞∑

n=0

O

(
1

n2a+b(1−3β)

)
,

(19)

which converges since 2a + b − 3bβ > 1. Noting that
{an f ′(θn)Rn(θn),B(Xn

1 )} is a Martingale difference sequence
and applying Doob’s Martingale convergence theorem (see
[55, Th. 2.8.7]), we deduce that

∞∑

n=0

an f ′(θn)(gnb(θn)− f ′
nb (θn))

converges with probability 1. The almost sure convergence
of T1 then follows.

For T2, it is easy to check that
∣∣∣∣
∫ 1

0
( f ′(θn + t (θn+1 − θn))− f ′(θn))(θn+1 − θn)dt

∣∣∣∣

= O((θn+1 − θn)
2)

= O(a2
n( f ′(θn))

2)+ O(a2
n R2

n(θn)),

where the constants in the above O-terms are uniform over
all θn, θn+1. Similarly as in deriving (18) and (19), we have

∞∑

n=0

a2
n( f ′

nb (θn)− f ′(θn))
2 < ∞,

and
∞∑

n=0

E[a2
n(gnb(θn)− f ′

nb (θn))
2] < ∞,

and furthermore,
∞∑

n=0

a2
n(gnb(θn)− f ′

nb (θn))
2

converges almost surely. This, together with (18), further
implies that

∞∑

n=0

a2
n |(gnb(θn)− f ′

nb (θn))( f ′
nb (θn)− f ′(θn)|

converges almost surely. Recalling that

Rn(θn) = gnb(θn)− f ′
nb (θn)+ f ′

nb (θn)− f ′(θn),

we conclude that
∞∑

n=0

a2
n R2

n(θn) < ∞,

which further implies that

∞∑

n=0

∫ 1

0
( f ′(θn + t (θn+1 − θn))− f ′(θn))(θn+1 − θn)dt

converges almost surely. The proof is then complete. �
We are now ready for the following convergence theorem,

whose proof closely follows that of [56, Lemma 7],
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whose general ideas are reminiscent of the standard proof of
the Martingale convergence theorem [55].

Theorem 4: With probability 1, we have

lim
n→∞ f ′(θn) = 0 and lim

n→∞ f (θn) exists.

Proof: Recall that

f (θn+1)− f (θn) = an f ′2(θn)+ R̂n(θn),

a recursive application of which implies

f (θn) = f (θ0)+
n−1∑

i=0

ai ( f ′(θi ))
2 +

n−1∑

i=0

R̂i (θi ).

Applying Lemma 2, we deduce that with probability 1,
∞∑

i=0

ai( f ′(θi ))
2 < ∞,

which, in turn, implies that limn→∞ f (θn) exists and further-
more there is a subsequence {θn j } such that f ′(θn j ) converges
to 0 as j tends to infinity.

We now prove that

lim
n→∞ f ′(θn) = 0.

By way of contradiction, suppose otherwise. Then, there
exists ε > 0 such that there exist infinite sequences mk, nk ,
k = 1, 2, · · · , such that

| f ′(θmk )| ≤ ε, | f ′(θnk )| ≥ 2ε, | f ′(θi )| ≥ ε (20)

for all mk + 1 ≤ i ≤ nk . It then follows that

ε ≤ | f ′(θnk )− f ′(θmk )|
= O(|θnk − θmk |)

= O

⎛

⎝
nk−1∑

i=mk

ai | f ′(θi )|
⎞

⎠ + O

⎛

⎝

∣∣∣∣∣∣

nk−1∑

i=mk

ai Ri (θi)

∣∣∣∣∣∣

⎞

⎠

= O

⎛

⎝
nk−1∑

i=mk

ai

⎞

⎠ + O

⎛

⎝

∣∣∣∣∣∣

nk−1∑

i=mk

ai Ri (θi )

∣∣∣∣∣∣

⎞

⎠. (21)

As in the proof of Lemma 2, using the decomposition

Rn(θn) = gnb(θn)− f ′(θn)

= gnb(θn)− f ′
nb (θn)+ f ′

nb (θn)− f ′(θn),

we deduce that
∑∞

n=0 an Rn(θn) converges almost surely, and

hence
∣∣∣
∑nk−1

i=mk
ai Ri (θi )

∣∣∣ tends to 0 as k goes to ∞. On the
other hand, by (20), we have

ε2
nk−1∑

i=mk

ai ≤
∞∑

i=mk

ai ( f ′(θi ))
2.

This implies that as k tends to ∞,
∑nk−1

i=mk
ai tends to zero,

which, together with (21), further implies that

ε ≤ lim
k→∞ | f ′(θnk )− f ′(θmk )| = 0,

a contradiction. �
Remark 11: Apparently, the fact that { f (θn)} converges

almost surely does not necessarily imply that {θn} converges
almost surely. In the following sections, we will prove that,
under some assumptions, {θn} does converge almost surely.

VI. SOME ESTIMATIONS

In this section, assuming (V.a), we will derive some esti-
mations that will be used in the later sections for convergence
analysis.

For any j ∈ N, let

A j = a1 + a2 + · · · + a j−1,

and for any h > 0 and any n ∈ N, define

t (n, h) � min{k : an + an+1 + · · · + ak−1 ≥ h}.
Now, for any fixed n0 ∈ N, recursively define

nk+1 = t (nk, h).

One then verifies that for k sufficiently large,

Ank+1 − Ank = Ô(h), nk = Ô(k1/(1−a)), (22)

where by M = Ô(N), we mean that there exist positive
constants C1,C2 such that

C1 N ≤ M ≤ C2 N.

Now, an iterated application of

θn+1 − θn = an f ′(θn)+ an Rn(θn)

yields

θk = θn +
k−1∑

i=n

ai f ′(θi)+
k−1∑

i=n

ai Ri (θi )

= θn + (Ak − An) f ′(θn)+
k−1∑

i=n

ai Ri (θi )

+
k−1∑

i=n

ai ( f ′(θi )− f ′(θn))

= θn + Rn,k,

where

Rn,k =
k−1∑

i=n

ai Ri (θi )+
k−1∑

i=n

ai ( f ′(θi )− f ′(θn)). (23)

Similarly, an iterated application of

f (θn+1)− f (θn) = an f ′2(θn)+ R̂n(θn)

yields

f (θk)− f (θn)

=
∫ 1

0
f ′(θn + t (θk − θn))(θk − θn)dt (24)

=
∫ 1

0
f ′(θn)(θk − θn)dt

+
∫ 1

0
( f ′(θn + t (θk − θn))− f ′(θn))(θk − θn)dt

= f ′(θn)((Ak − An) f ′(θn)+ Rn,k)

+
∫ 1

0
( f ′(θn + t (θk − θn))− f ′(θn))(θk − θn)dt

= (Ak − An) f ′2(θn)+ f ′(θn)Rn,k

+
∫ 1

0
( f ′(θn + t (Ak − An))− f ′(θn))(Ak − An)dt

= (Ak − An) f ′2(θn)+ R̂n,k(θn), (25)
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where

R̂n,k(θn) = f ′(θn)Rn,k +
∫ 1

0
( f ′(θn + t (Ak − An))

− f ′(θn))(Ak − An)dt . (26)

The following lemma introduces a positive random
variable, C̃0, and a constant, τ , which will be referred to
throughout the rest of the paper.

Lemma 3: There exists a positive random variable C̃0 such
that for all n and for any τ > 0 with 2a + b − 3bβ − 2τ > 1,

sup
k≥n

∣∣∣∣∣

k∑

i=n

ai Ri (θi )

∣∣∣∣∣ ≤ C̃0n−τ a.s.

Proof: For any τ > 0 with 2a + b − 3bβ − 2τ > 1, as in
the proof of Lemma 2, we deduce that

∑∞
i=1 i τai Ri converges

almost surely. Letting

Tn �
n∑

i=1

i τai Ri (θi ),

we then have for any k ≥ n,

k∑

i=n

ai Ri (θi ) =
k∑

i=n

(i τai Ri (θi ))i
−τ

=
k∑

i=n

(Ti − Ti−1)i
−τ

=
k∑

i=n

Ti i
−τ −

k∑

i=n+1

Ti−1i−τ

=
k∑

i=n

Ti i
−τ −

k−1∑

i=n

Ti (i + 1)−τ

= Tkk−τ +
k−1∑

i=n

(i−τ − (i + 1)−τ )Ti

≤ (k−τ +
k−1∑

i=n

(i−τ − (i + 1)−τ )) sup
i

Ti

= n−τ sup
i

Ti ,

which immediately implies the lemma. �
In the following, to avoid notational cumbersomeness, we

will use C to denote a positive constant, which may not carry
the same value upon each of its appearances.

Lemma 4: Let 0 < h < 1 and C̃0, τ be as in Lemma 3,
then we have

(1) there exists a constant C > 0 such that

| f ′(θt (n,h))| ≤ C(C̃0n−τ + | f ′(θn)|).
(2) there exists a constant C > 0 such that

|θt (n,h) − θn| ≤ C(C̃0n−τ + h| f ′(θn)|).
(3) there exists a constant C > 0 such that

|Rn,t (n,h)| ≤ C(C̃0n−τ + h2| f ′(θn)|).

(4) there exists a constant C > 0 such that

|R̂n,t (n,h)|≤C(C̃2
0 n−2τ+ C̃0n−τ | f ′(θn)| + h2| f ′(θn)|2).

(5) there exists a constant C > 0 such that

f (θn)− f (θt (n,h)) ≤ −(3/4 − 3Ch/2)h| f ′(θn)|2
+CC̃2

0 n−2τ (1 + 1/(2h2)).

(6) there exists C > 0 such that for sufficiently small h

2( f (θn)− f (θt (n,h)))+ | f ′(θn)||θt (n,h) − θn|
≤ (C + 1/(2h2))C̃2

0 n−2τ .

(7) for any τ ′ < τ , there exists a positive constant C such
that for sufficiently small h, we have

|θt (n,h) − θn| ≤ Cnτ
′
( f (θt (n,h))− f (θn))+ CC̃2

0 n−τ ′
.

Proof: In this proof, for notational simplicity, we will
write t (n, h) as k.

Note that there exists a positive constant C such that

| f ′(θk)| ≤ | f ′(θn)| + | f ′(θk)− f ′(θn)|
≤ | f ′(θn)| + C|θk − θn|
≤ | f ′(θn)| + C

k−1∑

i=n

ai | f ′(θi )| + C|
k−1∑

i=n

ai Ri (θi )|,

where we have applied (16). Applying Lemma 3, we then have

| f ′(θk)| ≤ CC̃0n−τ + | f ′(θn)| + C
k−1∑

i=n

ai | f ′(θi )|.

Applying Gronwall’s lemma [22], we then have for n suffi-
ciently large

| f ′(θk)| ≤ (CC̃0n−τ+| f ′(θn)|) exp(C(an +an+1+· · ·+ ak−1))

≤ exp(C)(CC̃0n−τ + | f ′(θn)|),
where we have used the fact that for n large enough

an + an+1 + · · · + ak−1 ≈ h < 1.

We then have established (1).
It then follows from (1) that for some C

|θk − θn | ≤
k−1∑

i=n

ai | f ′(θi )| + |
k−1∑

i=n

ai Ri (θi )|

≤ (Ak − An)(CC̃0n−τ + C| f ′(θn)|)+ C̃0n−τ ,

which immediately implies (2).
Now, by (23) and (2), we have for some C

|Rn,k | ≤ C̃0n−τ + C
k−1∑

i=n

ai |θi − θn|

≤ C̃0n−τ+ C2(Ak − An)(C̃0n−τ+ (Ak − An)| f ′(θn)|),
which establishes (3).

Furthermore, by (26), (2) and (3), we have

|R̂n,k | ≤ | f ′(θn)||Rn,k | + C|θk − θn |2
≤ CC̃0n−τ | f ′(θn)| + C(Ak − An)

2| f ′(θn)|2
+2C3(C̃2

0 n−2τ + (Ak − An)
2| f ′(θn)|2),

which establishes (4).
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It then follows from (24), (III) and (IV) and that for
sufficiently large n

f (θn)− f (θk)

≤ −(Ak − An)| f ′(θn)|2 + |R̂n,k |
≤ −3h/4| f ′(θn)|2 + C(C̃2

0 n−2τ

+ C̃0n−τ | f ′(θn)| + h2| f ′(θn)|2)
≤ −3h/4| f ′(θn)|2 + C(C̃2

0 n−2τ + C̃2
0 n−2τ /(2h2)

+ h2| f ′(θn)|2/2 + h2| f ′(θn)|2)
≤ −3h/4| f ′(θn)|2 + C(C̃2

0 n−2τ (1 + 1/(2h2))

+ 3h2/2| f ′(θn)|2)
≤ −(3/4 − 3Ch/2)h| f ′(θn)|2 + CC̃2

0 n−2c(1 + 1/(2h2)),

which establishes (5).
It follows from (24), (3) and (4) that

f (θk)− f (θn)

= | f ′(θn)||(Ak − An) f ′(θn)| + R̂n,k

= | f ′(θn)||θk − θn + Rn,k | + R̂n,k

≥ | f ′(θn)|(|θk − θn| − |Rn,k |)− R̂n,k

≥ | f ′(θn)||θk − θn| − C(C̃2
0 n−2τ + C̃0n−τ | f ′(θn)|

+ (Ak − An)
2| f ′(θn)|2),

which implies that

f (θn)− f (θk)+ | f ′(θn)||θk − θn|
≤ C(C̃2

0 n−2τ + C̃0n−τ | f ′(θn)| + (Ak − An)
2| f ′(θn)|2)

≤ C(C̃2
0 n−2τ (1 + 1/(2h2))+ 3h2/2| f ′(θn)|2).

Applying (V), we then have for sufficiently small h,

f (θn)− f (θk)+ | f ′(θn)||θk − θn|
≤ 2C(1 + 1/(2h2))C̃2

0 n−2τ + f (θk − f (θn)),

which can be rewritten as

2( f (θn)− f (θk))+ | f ′(θn)||θk − θn|
≤ 2C(1 + 1/(2h2))C̃2

0 n−2τ ,

which establishes (6).
We next prove (7). If | f ′(θn)| ≤ n−τ ′

, applying (II),
we deduce that

|θk − θn | ≤ CC̃0n−τ ′ + Ch2n−τ ′
. (27)

It follows from (24) and (4) that

| f (θk)− f (θn)|
≤ (Ak − An) f ′2(θn)+ |R̂n,k(θn)|
≤ (Ak − An) f ′2(θn)+ C(C̃2

0 n−2τ + C̃0n−τ | f ′(θn)|
+ h2| f ′(θn)|2)

≤ (Ak − An) f ′2(θn)+ C(C̃2
0 n−2τ ′ + C̃0n−τ ′ | f ′(θn)|
+ h2| f ′(θn)|2)

≤ C(C̃2
0 n−2τ ′

(1 + 1/(2h2)))+ (h + 3Ch2/2)| f ′(θn)|2,

which, together with (27), immediately implies that for
some C ,

|θk − θn| ≤ nτ
′
( f (θk)− f (θn))+ nτ

′ | f (θk)− f (θn)|
+CC̃0n−τ ′ + Ch2n−τ ′

≤ nτ
′
( f (θk)− f (θn))+ C(C̃2

0 n−2τ ′
(1 + 1/(2h2)))

+(h + 3Ch2/2)| f ′(θn)|2 + CC̃0n−τ ′ + Ch2n−τ ′
.

(28)

On the other hand, if | f ′(θn)| ≥ n−τ ′
, applying (6), we deduce

that

|θk − θn| ≤ 2| f ′(θn)|−1( f (θk − f (θn)))

+(C + 1/(2h2))| f ′(θn)|−1C̃2
0 n−2τ

≤ 2nτ
′
( f (θk − f (θn)))+ (C + 1/(2h2))C̃2

0 n−τ ′
.

(29)

Combining (28) and (29), we then have established (7). �

VII. RATE OF CONVERGENCE WITH CONCAVITY

In this section, we assume that

(VII.a) f (θ) is strictly concave with respect to θ . More
precisely, there exists ε̂ > 0 such that for any θ1,
θ2 ∈ �,

f ′′
t (tθ1 + (1 − t)θ2) ≥ ε̂,

for all 0 ≤ t ≤ 1.

Here, let us note that (VII.a), together with Theorem 2,
implies (V.a), which, together with Theorem 4, further implies
that, with probability 1, θn converges to the unique global
maximum θ∗ as n tends to ∞. With Assumption (VII.a),
which, as argued in Section IX, can be satisfied for a class
of finite-state channels, we will derive the convergence rate
of {θn}. Again, for notational convenience only, we assume
that � = R in the proofs.

From

θn+1 − θn = an f ′(θn)+ an Rn(θn),

trivially we have

�n+1 −�n = −an f ′(θn)− an Rn(θn),

where

�n � (θ∗ − θn).

It immediately from the above two conditions that for θ
sufficiently close to θ∗

f (θ) = Ô(|θ∗ − θ |2), f ′(θ) = Ô(|θ∗ − θ |). (30)

So, if θn is sufficiently close to θ∗, we will have

f (θn) = Ô(�2
n), f ′(θn) = Ô(|�n|).

Throughout the paper, by M = Õ(N), we mean
that there exists a positive random variable C̃ such that
with probability 1,

|M| ≤ C̃ N.
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In this section, we will prove that �n is at most of
order Õ(n−τ ).

We first prove the following lemma.
Lemma 5: There exists l ∈ N such that

lim inf
n→∞ nτ |�n| ≤ lC̃0.

Proof: Suppose, by way of contradiction, that for any l,

nτ |�n| ≥ lC̃0, (31)

as long as n is sufficiently large. First, pick n0 sufficiently
large such that (31) is satisfied and then recursively define

nk+1 = t (nk, h).

for some 0 < h < 1. We then have, for any feasible k,

θnk+1 = θnk + (Ank+1 − Ank ) f ′(θnk )+ Rnk ,nk+1 .

It then follows from Lemma 4 (3) and (30) that Rnk ,nk+1 is
dominated by | f ′(θnk )| as long as l is chosen sufficiently large
and h is chosen sufficiently small. Noticing that due to the
concavity of f , �n always has the same sign as f ′(θn), then
we have

|�nk+1 | ≤ |�nk | − h/2|�nk | ≤ |�nk |e−h/2,

a recursive application of which would yield

�nk ≤ �n0 e−kh/2.

It then follows that for any k

�n0 nτk e−kh/2 ≥ nτk�nk ≥ lC̃0.

This, together with the fact that (see (22))

nk = Ô(k1/(1−a)),

as k tends to infinity, implies that

C̃0 ≤ 0,

which is a contradiction. �
Theorem 5:

|�n| = Õ(n−τ ).

Proof: It is enough to prove that there exists an integer l
such that for all n sufficiently large,

nτ |�n| ≤ lC̃0.

By way of contradiction, suppose otherwise. Then, by
Lemma 5, for any l and arbitrarily large N , we can find
k0 > m0 > N such that

mτ
0�m0 ≤ 2lC̃0, kτ0�k0 ≥ 3lC̃0,

min
m0<n≤k0

nτ�n > 2lC̃0, max
m0≤n<k0

nτ�n ≤ 3lC̃0. (32)

Now, for some 0 < h < 1, let m1 = t (m0, h). Then, for any
m0 ≤ n ≤ m1, it follows from (32),

θn − θm0 = (An − Am0) f ′(θm0)+ Rm0,n,

and

|Rm0,n| ≤ C(m−τ
0 C̃0 + (An − Am0)

2| f ′(θm0)|)

that

|�n −�m0 | = O(m−τ
0 )C̃0.

Applying (32), we then deduce that for sufficiently
small h

|nτ�n − mτ
0�m0 | ≤ nτ |�n −�m0 | + (nτ − mτ

0)�m0

≤ O(mτ
0)O(m

−τ
0 )C̃0 + o(mτ

0)2lm−τ
0 C̃0,

where we have used the fact that

nτ = O(mτ
0), nτ − mτ

0 = o(mτ
0).

It then follows that, with l large enough and h small enough,
we have

|nτ�n − mτ
0�m0 | ≤ lC̃0.

In particular, we have

|(m0 + 1)τ�m0+1 − mτ
0�m0 | ≤ lC̃0 and |mτ

1�m1 − mτ
0�m0 |

≤ lC̃0,

which further implies that

mτ
0�m0 ≥ lC̃0 and m1 < k0,

respectively.
Now, for some 0 < h < 1, we have

θm1 = θm0 + (Am1 − Am0) f ′(θm0)+ Rm0,m1 ,

and

|Rm0,m1 | ≤ C(m−τ
0 C̃0 + (Am1 − Am0)

2| f ′(θm0)|).
As in the proof of Lemma 5, if l is chosen large enough, then
| f ′(θm0)| will dominate |Rm0,m1 |. Again, due to the concavity
of f (Assumption (VII.a)), �m0 always has the same sign
as f ′(θm0), then for sufficiently small h > 0, we have

|�m1 | ≤ |�m0 | − h/2|�m0 |.
Then, for m0 sufficiently large such that

mτ
1 < mτ

0/(1 − h/2),

we have

mτ
1 |�m1 | ≤ mτ

1 |�m0 |(1 − h/2) < mτ
0 |�m0 | ≤ 2lC̃0,

which is a contradiction to (32). �

VIII. RATE OF CONVERGENCE WITHOUT CONCAVITY

Throughout this section, we will assume (V.a) and (VIII.a)
with probability 1, θn ∈ Q for all n, where Q is a compact
subset of �, and we will derive the rate of convergence of our
algorithm under these two assumptions. Again, for notational
convenience only, we assume that � = R.

As one of the main results in real algebraic geometry, the
Lojasiewicz inequality [10], among many other applications,
has been widely applied to the convergence analysis of a
broad class of dynamical systems. In this section, we will
first use the “function” version of the Lojasiewicz inequality
(Lemma 6) to prove that { f (θn)} converges almost surely and
derive the convergence rate, which can be further used to
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derive the convergence rate of {θn}. Then, using the “variable”
version of the Lojasiewicz inequality (Lemma 10), the rate of
convergence can be refined. The above-mentioned framework
is essentially due to Tadic [56], however, a comprehensive
adaptation to our settings has been done in this section.

Following [56], we state the “function” version of the
Lojasiewicz inequality as below.

Lemma 6: For any compact set Q ⊂ � and real number
z ∈ f (Q), there exist real numbers δQ,z ∈ (0, 1), μQ,z ∈ (1, 2]
and MQ,z ∈ [1,∞) such that

| f (θ)− z| ≤ MQ,z | f ′(θ)|μQ,z

for all θ ∈ Q satisfying | f (θ)− z| ≤ δQ,z.
From now on, we will set f̂ = limn→∞ f (θn) and write

μ = μQ, f̂ . Define

�̂n � f̂ − f (θn).

We first prove the following lemma.
Lemma 7: There exists a positive integer l such that for all

n sufficiently large,

nμτ �̂n ≥ −lC̃μ
0 .

Proof: Suppose, by way of contradiction, that for any l,
there exists some n0,

nμτ0 �̂n0 < −lC̃μ
0 . (33)

Then, by Lemma 4 (5), we have, for some 0 < h < 1,

f (θn0)− f (θt (n0,h)) ≤ −(3/4 − 3Ch/2)h| f ′(θn0)|2
+CC̃2

0 n−2τ
0 (1 + 1/(2h2)),

which implies for h sufficiently small,

�̂θt (n0,h)
)− �̂n0

≤ −(3/4 − 3Ch/2)h| f ′(θn0)|2 + CC̃2
0 n−2τ

0 (1 + 1/2h2)

≤ −h/2| f ′(θn0)|2 + CC̃2
0 n−2τ

0 (1 + 1/(2h2)).

Choosing l sufficiently large, then by Lemma 6 and (33), we
deduce that for n large enough,

−h/2| f ′(θn0)|2 + CC̃2
0 n−2τ

0 ≤ −h/4| f ′(θn0)|2,
and therefore

�̂t (n0,h) − �̂n0 ≤ −h/4| f ′(θn0)|2. (34)

We then have

�̂t (n0,h) ≤ �̂n0 ≤ −lC̃μ
0 n−μτ

0 ≤ −lC̃μ
0 t (n0, h)−μτ .

Henceforth, recursively define

nk+1 = t (nk, h).

It then follows that for any k,

�̂nk ≤ �̂n0 ≤ −lC̃μ
0 n−μτ

0 < 0,

which is a contradiction to the fact that almost surely

lim
k→∞ �̂nk = 0.

�

In the remainder of this section, define

τ̂ = min(μτ,μ(1 − a)/(2 − μ)).

Lemma 8: There exists a positive integer l such that

lim inf
n→∞ nτ̂ �̂n ≤ lC̃μ

0

almost surely.
Proof: Suppose, by way of contradiction, that for any l,

we have

nτ̂ �̂n ≥ lC̃μ
0 , (35)

for all n sufficiently large. By Lemma 4 (5), for any 0 < h < 1,
we have for n0 large enough,

f (θn0)− f (θt (n0,h)) ≤ −(3/4 − 3Ch/2)h| f ′(θn0)|2
+CC̃2

0 n−2τ
0 (1 + 1/(2h2)),

which implies that for h sufficiently small

�̂t (n0,h) − �̂n0 ≤ −(3/4 − 3Ch/2)h| f ′(θn0)|2
+CC̃2

0 n−2τ
0 (1 + 1/(2h2))

≤ −h/2| f ′(θn0)|2 + CC̃2
0 n−2τ

0 (1 + 1/(2h2)).

Choosing l sufficiently large, then by Lemma 6 and (33),
we deduce that sufficiently large n,

−h/2| f ′(θn0)|2 + CC̃2
0 n−2τ

0 ≤ −h/4| f ′(θn0)|2,
and therefore

�̂t (n0,h) − �̂n0 ≤ −h/4| f ′(θn0)|2. (36)

Now, recursively define

nk+1 = t (nk, h).

An iterated application of (36) yields for some constant C1,

�̂nk+1 − �̂nk ≤ −C1h�̂2/μ
nk .

We then have two cases:
Case μ = 2: For this case, we have,

�̂nk+1 ≤ (1 − C1h)�̂nk .

Recursively, we deduce that

�̂nk ≤ �̂n0(1 − C1h)k ≤ �̂n0 e−C1hk,

which implies that for any k,

�̂n0 nμτk e−C1hk ≥ nμτk �̂nk ≥ lC̃μ
0 .

This, however, will yield C̃0 ≤ 0 when we take k to ∞, which
is a contradiction.

Case μ < 2: For this case, it follows from

�̂nk − �̂nk+1 ≥ C1h�̂2/μ
nk .

that
∫ �̂nk

�̂nk+1

1

u2/μ du ≥
∫ �̂nk

�̂nk+1

1

�̂
2/μ
nk

du = �̂nk − �̂nk+1

�̂
2/μ
nk

≥ Ch,

which implies that for some positive constant C2

�̂
−2/μ+1
nk+1 − �̂

−2/μ+1
nk ≥ C2h.
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Recursively, we deduce that

�̂
−2/μ+1
nk ≥ �̂

−2/μ+1
n0 + C2hk,

and furthermore

nτ̂ (−2+μ)/μ
k �̂

(−2+μ)/μ
nk ≥ nτ̂ (−2+μ)/μ

k �̂
−2/μ+1
n0

+C2nτ̂ (−2+μ)/μ
k kh.

It then follows from (35) and (22) that

C̃−2+μ
0 l(−2+μ)/μ ≥ nτ̂ (−2+μ)/μ

k �̂
(−2+μ)/μ
nk

≥ O(knτ̂ (−2+μ)/μ
k )

≥ O(k τ̂ (−2+μ)/(−a+1)μ+1).

Now, one verifies that this gives us an contradiction if we take
k, l to ∞, as long as

τ̂ ≤ μ(1 − a)/(2 − μ),

or, equivalently,

τ̂ (−2 + μ)/(−a + 1)μ+ 1 ≥ 0.

�
Lemma 9: There exists an integer l such that for all n

sufficiently large,

nτ̂ �n ≤ lC̃2
0 .

Proof: By way of contradiction, suppose otherwise. Then,
by Lemma 8, for any l and arbitrarily large N , we can find
k0 > m0 > N such that

m τ̂
0�m0 ≤ 2lC̃2

0 , k τ̂0�k0 ≥ 3lC̃2
0 ,

min
m0<n≤k0

nτ̂�n > 2lC̃2
0 , max

m0≤n<k0
nτ̂�n ≤ 3lC̃2

0 . (37)

For some 0 < h < 1, let m1 = t (m0, h). For any
m0 ≤ n ≤ m1, as in the proof of Theorem 7, we derive

�̂n − �̂m0 ≤ −h/4| f ′(θm0)|2, (38)

which, together with Theorem 7 and (37), implies that

f ′(θm0)
2 ≤ 4/hC̃2

0 O(m−τ̂
0 )+ C̃2

0 O(m−μτ
0 ),

which, together with (24), further implies that for some C > 0,

|�̂n − �̂m0 | ≤ Ch| f ′(θm0)|2 + CC̃2
0 m−2τ

0

≤ C̃2
0 O(m−τ̂

0 )+ C̃2
0 O(m−μτ

0 )+ CC̃2
0 m−2τ

0 .

It then follows that for sufficiently small h

|nτ̂ �̂n − m τ̂
0�̂m0 | ≤ nτ̂ |�̂n − �̂m0 | + (nτ̂ − m τ̂

0)�̂m0

= O(m τ̂
0)(�̂n − �̂m0)+ o(m τ̂

0)�̂m0

≤ lC̃2
0 ,

where we have used the fact that

nτ̂ = O(m τ̂
0), nτ̂ − m τ̂

0 = o(m τ̂
0).

In particular, we have

|(m0 + 1)τ̂ �̂m0+1 − m τ̂
0�̂m0 | ≤ lC̃0,

and

|m τ̂
1�̂m1 − m τ̂

0�̂m0 | ≤ lC̃2
0 ,

which further implies that

m τ̂
0�̂m0 ≥ lC̃2

0 and m1 < k0,

respectively.
Setting n = m1 and rewriting (38), we have for some

constant C1,

�̂m1 − �̂m0 ≤ −C1h�̂2/μ
m0 .

We then consider two cases:
Case μ = 2: For this case, we have for some positive

constant C1,

�̂m1 ≤ (1 − C1h)�̂m0 .

Then for m0 large enough,

m τ̂
1�̂m1 ≤ (1 − C1h)m τ̂

1�̂m0

= (1 − C1h)m τ̂
0(1 + o(1))�̂m0

≤ 2lC̃2
0 ,

which yields a contradiction.
Case μ < 2: For this case, as in the proof of Lemma 8, we

have for some positive constant C2,

�̂
−2/μ+1
m1 ≥ �̂

−2/μ+1
m0 + C2h.

It then follows from (37) and (22) that for l sufficiently large

�̂
(−2+μ)/μ
m1 ≥ (2lC̃2

0 )
(−2+μ)/μm−a+1

0 + C2h

≥ (2lC̃2
0 )
(−2+μ)/μm−a+1

1 ,

which implies that

m τ̂
1�̂m1 ≤ 2lC̃2

0 ,

a contradiction. �
The following theorem characterizes the rate of convergence

of { f (θn)}.
Theorem 6: With probability 1, we have

|�̂n| = Õ(n−τ̂ ).

Proof: It immediately follows from Lemmas 8 and 9. �
In the rest of this section, besides (V.a) and (VIII.a),

we further assume (VIII.b) μτ ≥ (1 − a), and we
will prove {θn} converges almost surely. Here, let us note
that (VIII.b) can always be satisfied if a, b, β are appropriately
chosen such that τ is sufficiently large.

The following theorem proves that when further
assuming (VIII.b), {θn} converges almost surely, and
moreover, it characterizes the rate of convergence of {θn}.

Theorem 7: Further assuming (VIII.b), we have

sup
k≥n

|θk − θn| = Õ(n−(τ̂−(1−a)/2)).

Proof: In this proof, we set

τ ′ = (τ̂ + (1 − a))/2.

For some 0 < h < 1, starting from a fixed n0, recursively
define

nk+1 = t (nk, h).
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Then, to prove the theorem, it suffices to prove that

sup
k≥m

|θnk − θnm | = Õ(n−(τ̂+(1−a)/2)
m ). (39)

Now, applying Lemma 4 (7), we deduce that for some
C > 0

|θni+1 − θni | ≤ Cnτ
′

i ( f (θni+1)− f (θni ))+ CC̃2
0 n−τ ′

i .

It then follows that for any m ≤ k,

|θnk − θnm |

≤
k−1∑

i=m

|θni+1 − θni |

≤ CC̃2
0

k−1∑

i=m

n−τ ′
i + C

k−1∑

i=m

(u(θni )− u(θni+1))n
τ ′
i

≤ CC̃2
0

k−1∑

i=m

n−τ ′
i + C

k∑

i=m+1

(nτ
′

i − nτ
′

i−1)|u(θni )|

+Cnτ
′

m |u(θnm )| + Cnτ
′

k |u(θnk )|.
Applying (22), we deduce that

k−1∑

i=m

n−τ ′
i =

k−1∑

i=m

O(i−τ ′/(1−a))

= O(m−τ ′/(1−a)+1),

and
k∑

i=m+1

(nτ
′

i − nτ
′

i−1)|u(θni )|

=
k∑

i=m

O((i − 1)y/(1−a)−1i−τ̂ /(1−a))

= O(my/(1−a)−τ̂/(1−a)),

and

nτ
′

m |u(θnm )| = O(mτ ′/(1−a)m−τ̂ /(1−a))

= O(m(τ ′−τ̂ )/(1−a)),

and

nτ
′

k |u(θnk )| = O(kτ
′/(1−a)k−τ̂ /(1−a))

= O(k(τ
′−τ̂ )/(1−a)).

We then deduce that

|θnk − θnm | = O(n(τ
′−τ̂ )

m ),

which immediately implies (39). �
The following “variable” version of the Lojasiewicz inequal-

ity will be used to refine the rates of convergence of
{θn} and { f (θn)}.

Lemma 10: For each θ ∈ �, there exist real numbers
δθ ∈ (0, 1), μθ ∈ (1, 2], Mθ ∈ [1,∞) such that

| f (θ ′)− f (θ)| ≤ Mθ‖ f ′(θ ′)‖μθ
for all θ ′ ∈ � satisfying ‖θ ′ − θ‖ ≤ δθ .

From now on, let θ̂ = limn→∞ θn and set μ = μθ̂ .
Then, with this redefined μ, going through exactly the same
arguments as in the proof of Theorems 6 and 7, we have the
following two theorems.

Theorem 8: For the above redefined μ, Theorems 6 holds,
that is, with probability 1,

|�̂n| = Õ(n−τ̂ ).

Theorem 9: Further assuming (VIII.b) for the above rede-
fined μ, Theorem 7 holds, that is,

|θn − θ̂ | = Õ(n−(τ̂−(1−a)/2)).

IX. CAPACITY-ACHIEVING DISTRIBUTIONS

OF A SPECIAL CLASS OF CHANNELS

In this section, we restrict our attention to a special class
of input-restricted finite-state channels with certain parameter-
ization and we prove that for such channels operating at high
SNR regime, the capacity will only be achieved at the interior
of the parameter space and our algorithm converges almost
surely.

More specifically, recalling that X,Y denote the input,
output processes of the channel over finite alphabets X , Y ,
respectively, we consider a class of parameterized memoryless
channels such that
(IX.a) the channel only has one state; in other words, at

any time slot, the channel is characterized by the
conditional probability p(y|x).

(IX.b) for some mixing finite-type constraint F ⊂ X 2,
X ∈ �F .

(IX.c) the channel is parameterized by ε ≥ 0 such that for
each x and y, p(y|x)(ε) is an analytic function of
ε ≥ 0, which is not identically 0.

(IX.d) there is a one-to-one (not necessarily onto) map-
ping � : X → Y , such that for any x ∈ X ,
p(�(x)|x)(0) = 1.

(IX.e) X is parameterized as in [60], that is,

θ = (p(X1 = w1, X2 = w2) : (w1, w2) �∈ F).

Under the above assumptions, ε can be regarded as a
parameter that quantifies noise, and �(x) is the noiseless
output corresponding to input x . The regime of “small ε”
corresponds to high SNR. Note that the output process
Y = Y (X, ε) depends on the input process X and the
parameter value ε; we will often suppress the notational
dependence on ε or X , when it is clear from the context.
Prominent examples of such families include input-restricted
versions of the binary symmetric channel with crossover
probability ε, and the binary erasure channel with erasure
probability ε.

General SNR Regime: By using an asymptotic formula of
I (X; Y ), we show that for the above-mentioned channels, the
capacity-achieving X must be primitive.

Assume that X has period e with period classes
D1, D2, . . . , De. Then, by the classical Perron-Frobenius
theory, after necessary reindexing, its transition probability
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matrix � can be written as

⎛

⎜⎜⎜⎜⎝

D1 D2 D3 · · · De

D1 0 B1 0 · · · 0
D2 0 0 B2 · · · 0
...

...
...

...
. . .

...
De−1 0 0 0 · · · Be−1
De Be 0 0 · · · 0

⎞

⎟⎟⎟⎟⎠
, (40)

where we used the period classes to index the sub-blocks.
In the following, let B denote the set of all entry indices
of � corresponding to some Bk , that is,

B = {(i, j) : i ∈ Dk, j ∈ Dk+1, for k = 1, · · · , e − 1}
∪ {(i, j) : i ∈ De, j ∈ D1}.

Now, consider an analytic perturbation �(δ) of �, δ ≥ 0,
where

(IX.f) �(0) = �;
(IX.g) for some (i, j) ∈ B, �i j (δ) is not identically 0;
(IX.h) for any δ ≥ 0, �(δ) is still a stochastic matrix.

In other words, some non-B-entries in � are analytically
perturbed; as a result, Y is perturbed from Y (0) to Y (δ). The
following theorem describes the asymptotic behavior of H (Y )
under such a perturbation.

Theorem 10: Under the aboved-mentioned perturbation as
in (IX.f)-(IX.h), there exist C1,C2 > 0 such that

C1δ log 1/δ ≤ H (Y (δ))− H (Y (0)) ≤ C2δ
1/2.

Proof: The proof is postponed to Appendix. �
Remark 12: It follows from Condition (IX.a) that H (Y |X)

is linear with respect to �p. Theorem 10, together with this fact,
implies that there exist C1,C2 such that

C1δ log 1/δ ≤ I (X (δ); Y (δ))− I (X (0); Y (0)) ≤ C2δ
1/2,

which implies that, for any irreducible but not primitive X ,
any perturbation of X as in (IX.f)-(IX.h) will strictly increase
the mutual information. So, we conclude that the capacity-
achieving X must be primitive, and thus for the purpose of
computing the capacity, we can strengthen Condition (IX.b)
to Condition (II.a), that is, X ∈ �F,ε for some ε > 0.

High SNR Regime: At the high SNR regime, that is, when
ε is close to 0, it has been established in [29] that there exists
ε̂ > 0 such that

(IX.i) I (X; Y ) is strictly concave with respect to θ ∈ �,
where � corresponds to �F,ε̂

(IX.j) the capacity of the channel can be uniquely achieved
within �F,ε̂ .

As a consequence, we have the following theorem.
Theorem 11: For the channel as in (IX.a)-(IX.d) operating

at the high SNR regime and sufficiently small ε̂, under the
iteration in (3) with � set to correspond to �F,ε̂ , {θn}
converges almost surely and its limit corresponds to the
capacity-achieving distribution.

Proof: Note that Condition (IX.i) and Theorem 4 imply
Conditions (VII.a), which further implies that {θn} converges
to a limit θ∗; Condition (IX.j) implies that θ∗ indeed cor-
responds to the capacity-achieving distribution. The theorem
then immediately follows. �

Example 1: Consider the binary symmetric channel with
crossover probability ε > 0. Let X be a binary input Markov
chain with the transition probability matrix

[
1 − π π

1 0

]
, (41)

where 0 ≤ π ≤ 1. Apparently, X is supported on the so-called
(1,∞)-RLL constraint [40], which simply means that the
string “11” is forbidden. Let Y denote the corresponding
output process. Assume that X is parameterized by
θ = (p(00), p(01), p(10)), where p(10) = 1 is in fact
a constant. It can be checked that Conditions (IX.a)-(IX.d)
are all satisfied, so when ε is sufficiently small,
Conditions (IX.i)-(IX.j) are satisfied and thus Theorem 11
holds.

On the other hand, it has been shown that for the output
process Y , as ε → 0,

H (Y ) = H (X)+ π(2 − π)

1 + π
ε log(1/ε)+ O(ε), (42)

where the O(ε)-term is analytic with respect to p
(see [29, Th. 2.18]). It then follows that

H (X |Y ) = H (X)+ H (Y |X)− H (Y )

= H (ε)− π(2 − π)

1 + π
ε log(1/ε)+ O(ε),

where H (ε) = ε log 1/ε + (1 − ε) log 1/(1 − ε). One can
readily verify that −π(2 − π)/(1 + π) is strictly convex
with respect to θ , which implies the strict convexity (rather
than concavity) of H (X |Y ) when ε is small enough. So, the
concavity conjecture in [60] is not true in general, and thus
the conditions guaranteeing the convergence of the GBAA are
not satisfied.

X. NUMERICAL SIMULATIONS

Extensive numerical simulations of the algorithm have been
conducted for a number of practical channels, (typically) fast
convergence of { f (θn)} and {θn} have been observed.

Example 2: Consider a binary symmetric channel with
crossover probability ε > 0 as in Example 1, denote
by BSC(ε). Let X be a binary input Markov chain sup-
ported on the so-called (1,∞)-RLL constraint [40] and
assume the transition probability matrix of X takes the
following form:

[
1 − π π

1 0

]
, (43)

where 0 ≤ π ≤ 1. The capacity of such a channel has been
computed using the GBAA in [60]. For any fixed ε > 0, setting
θ = π , our algorithm is observed to yield a sequence {θn}
convergent to a limit θ∗. As shown in Figure 1, computations
employing our algorithm yield essentially the same curve of
the channel capacity C (as a function of ε) as the GBAA; the
curve of θ∗ is also plotted against ε in Figure 1.

Example 3: Consider a binary erasure channel with erasure
probability ε > 0, denoted by BEC(ε). Again, let X be a binary
input Markov chain supported on the (1,∞)-RLL constraint
and assume the transition probability matrix of X takes the
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Fig. 1. BSC(ε): capacity C and capacity-achieving π versus ε.

Fig. 2. BEC(ε): capacity C and capacity-achieving π versus ε.

same form as in (43). Such a channel has been examined
in [38] and the authors show that I (X; Y ) is concave with
respect to π , which implies that, when setting θ = π , our
algorithm yields an almost surely convergent sequence {θn}
with a limit θ∗, which corresponds to the capacity achieving
distribution. Indeed, the convergence of our algorithm has been
observed [38], and the channel capacity C and the limit θ∗ are
plotted as functions of ε in Figure 2.

Example 4: The classical Gilbert-Elliott channel is a special
kind of finite-state channel with two channel states, which,

independent from the binary channel inputs, will evolve
according to a Markovian law. For the Gilbert-Elliott channel
without any input constraint, it has been shown [44] that the
capacity-achieving input is an i.i.d. Bernoulli(1/2) process.
For testing purpose, we have implemented our algorithm
for such Gilbert-Elliot channels and fast convergence of our
algorithm to the capacity and its achieving distribution has
been observed.

Example 5: The classical trapdoor channel was introduced
by Blackwell [13] as a simple two-state channel whose behav-
ior can be described as follows: At time 0, the channel starts
with a ball, labeled “0” or “1”. Then, at each subsequent time
slot: 1) a ball labeled “0” or “1” is inserted into the channel
by the transmitter; 2) and the receiver receives one of the
two balls in the channel with equal probability; 3) and the
ball that does not exit the channel remains inside for the next
channel use.

Apparently the above-mentioned trapdoor channel can be
interpreted as a finite-state channel as follows: At each time
slot, the state of the trapdoor channel is the label of the
ball that is in the channel before the transmitter inserts a
new ball. At time t , letting St−1 ∈ {0, 1} be the channel
state, and Xt ∈ {0, 1} be channel input (the label of the
ball that is inserted) and Yt be the corresponding output
(the label of the ball that is received), the channel then can
be characterized by the transition probabilities as tabulated
below:

Computations employing our algorithm yields 0.4100 as a
local maximum of I (X; Y ) over all binary Markov chains X
with states “0” and “1”, and 0.5000 as a local maximum over
all Markov chains X with states “00”, “01”, “10” and “11”.
Here, we remark that when the Markovian restriction on the
channel input is lifted, the capacity of the trapdoor channel
is lower bounded [1] by 0.5 bits per channel use, and upper
bounded [41] by 0.6610 bits per channel use.

Example 6: For any 0 ≤ α ≤ 1, the so-called POST(α)
channels were first introduced in [61], which are simple finite-
state channels where the state of the channel is the previous
output. More precisely, the binary inputs {Xi }i≥1 and the
binary outputs {Yi }i≥1 of the POST(α) channel are related
in the following way: if Xi = Yi−1, then Yi = Xi , else
Yi = Xi ⊕Zi , where Zi ∼ Bernoulli(α). It has been shown that
for such a channel, the feedback does not increase the capacity,
which can be explicitly computed as log2(1 + (1 − α)α

α
1−α ).

As shown in Figure 3, when plotted against α, the capacity
curve by our algorithm essentially coincides with the real
capacity curve, and fast convergence of our algorithm has been
observed for such channels.

Remark 13: While fast convergence of our algorithm has
been typically observed in most of channels we have
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Fig. 3. POST(α) Channel: capacity C versus α (the solid curve represents
the real capacity, while the dashed one is by our algorithm).

examined, there are some issues for the algorithm and its
implementations:

• When the strict concavity of I (X; Y ) is absent, the
algorithm may deliver a rather slow convergence. For
instance, for the binary symmetric channel as in
Example 2 operating at the low SNR regime (meaning
ε is close to 0.5), compared to the high SNR regime
(meaning ε is close to 0), the behavior of our algorithm
is somewhat erratic and very low convergence has been
observed.

• While the rate of convergence of our algorithm can be
proven to be independent of choice of parameters, the
speed of convergence in practice is affected by choices
of the algorithm parameters, such as the starting point, θ0,
the step sizes, an , and other parameters, a, b, α, β.

• Our algorithm is randomized in nature and its conver-
gence is in the almost sure sense. So, the “capacity” com-
puted using the algorithm can only be, at best, interpreted
as “close” to the real capacity with high probability,
which, will be of discounted significance when a definite
value (or bounds) of the real capacity is needed.

• To compute the capacity of a finite-state channel with
finite-type input constraints but without the Markovian
assumption on the channel input, one can concatenate our
algorithms implemented with Markov inputs of increas-
ing orders. It is not surprising, however, that for some
channels, the capacity achieving distribution can only be
approximated by Markov chains with prohibitively large
order, which may render the implementation/execution of
our algorithm infeasible. In this regard, we have observed
that our algorithm implemented for the trapdoor channel
as in Example 5 with 4-state Markov chains converges
considerably slower than that with 2-state Markov chains.

APPENDIX

PROOF OF THEOREM 10

First of all, we define

Z(δ)

= Z(Xn
1 (δ))

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 (Xi (δ), Xi+1(δ))∈B for all i ∈{1, · · · , n−1}
1 (Xi (δ), Xi+1(δ)) �∈B for exactly one i ∈{1, · · · , n−1}
2 (Xi (δ), Xi+1(δ)) �∈B for more than one

i ∈{1, · · · , n−1}.

Next, applying the Birch bound [11], we derive the
following key inequality for this proof:

H (Y n
m+1(δ)|Y m

1 (δ), X0(δ), Z(δ))

n − m
≤ H (Y )

≤ H (Y n
1 |X0(δ), Z(δ))

n
+ H (Z(δ))

n
+ H (X0(δ))

n
, (44)

for any m ≤ n.
The Lower Bound Part: We first prove that there exists

C1 > 0 such that

H (Y (δ)) ≥ H (Y (0))+ C1δ log 1/δ,

which immediately implies the lower bound part of the
theorem. In this part, we set

n = √
log δ and m = n/2. (45)

By definition, we have

H (Y n
m+1(δ)|Y m

1 (δ), X0(δ), Z(δ))/(n − m)

=
∑

x0

pδ(x0, Z = 0)H (Y n
m+1(δ)|Y m

1 (δ), X0(δ),

Z(δ) = 0)/(n − m)

+
∑

x0

pδ(x0, Z = 1)H (Y n
m+1(δ)|Y m

1 (δ), X0(δ),

Z(δ) = 1)/(n − m)

+
∑

x0

pδ(x0, Z = 2)H (Y n
m+1(δ)|Y m

1 (δ), X0(δ),

Z(δ) = 2)/(n − m).

� T1 + T2 + T3

where pδ(x0, Z = 0) means P(X0(δ) = x0, Z(δ) = 0).
We next give estimates for the each of three terms defined

as above.
For T3, notice that nδ < 1 for sufficiently small δ and then

∑

x0

pδ(x0, Z = 2) ≤ n2(C0δ)
2 + n3(C0δ)

3 + · · ·

≤ C2
0

1 − nC0δ
n2δ2,

for some C0 > 0. It then follows that

T3 =
∑

x0

pδ(x0, Z = 2)
H (Y n

m+1(δ)|Y m
1 (δ), X0(δ), Z(δ) = 2)

n − m

≤
∑

x0

pδ(x0, Z = 2)
H (Y n

m+1(δ))

n − m

≤
∑

x0

pδ(x0, Z = 2) log |Y|

= O(n2δ2). (46)

For T2, one verifies that for any x0, there exist constants
C1,C2 > 0, 0 < λ1 < λ2 < 1 such that

C1nδλn
1 ≤ pδ(yn

1 |x0, Z = 1) ≤ C2nδλn
2 .

Similarly, for any x0, there exist C3,C4 > 0, and the same
0 < λ1 < λ2 < 1 as above such that

C3mλm
1 ≤ pδ(ym

1 |x0, Z = 1) ≤ C4mλm
2 .
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It then follows that for any x0,

C5δλ
n
2/λ

m
1 ≤ pδ(yn

m+1|ym
1 , X0, Z = 1) ≤ C6δλ

n
2/λ

m
1 ,

which, together with (45), implies that

H (Y n
m+1(δ)|Y m

1 (δ), X0(δ), Z(δ) = 1)

= Ô(log 1/δ)+ O(n logλ2)+ O(m log λ1).

This, together with the fact

p(x0, Z = 1) = Ô(nδ),

implies that

T2 = Ô(δ log 1/δ)+ O(nδ logλ2)+ O(mδ logλ1). (47)

For T1, notice that it can be rewritten as

T1 =
∑

pδ(yn
1 , x0, Z = 0) log pδ(yn

m+1|ym
1 , x0, Z = 0)

n − m
.

One then verifies that
∣∣∣pδ(yn

1 , x0, Z = 0)− p0(yn
1 , x0, Z = 0)|δ=0

∣∣∣

= O(nδ)p0(yn
1 , x0, Z = 0),

which implies that
∣∣∣∣∣

∑
p0(yn

1 , x0, Z = 0) log pδ(yn
m+1|ym

1 , x0, Z = 0)

n − m

−
∑

pδ(yn
1 , x0, Z =0) log pδ(yn

m+1|ym
1 , x0, Z =0)

n − m

∣∣∣∣∣= O(nδ).

When fixing x0 and assuming Z = 0, the analyticity argument
in [25] can be used to prove that
∑

p0(yn
1 , x0, Z = 0) log pδ(yn

m+1|ym
1 , x0, Z = 0)/(n − m)

exponentially converges to an analytic function of δ. It then
follows that for some 0 < ρ < 1

T1 = H (Y (0))+ O(ρm)+ O(δ). (48)

Combining (46), (47) and (48), we then have

H (Y n
m+1(δ)|Y m

1 , X0(δ), Z(δ))/(n − m)

= H (Y (0))+ Ô(δ log 1/δ).

The Upper Bound Part: We then prove that there exists
C2 > 0,

H (Y (δ)) ≤ H (Y (0))+ C2δ
1/2,

which immediately implies the upper bound part of the
theorem. For this part, setting

n = δ−1/2 and m = 0. (49)

Using a parallel argument as in the lower bound part, we can
still derive (46), (47) and (48) and then

H (Y n
1 |X0(δ), Z(δ))/n = H (Y )δ=0,0 + O(δ1/2).

It can verified that

p(Z(δ) = 1) = O(nδ), p(Z(δ) = 2) = O(n2δ2),

which, together with the straightforward observation that
H (X0(δ))/n = O (1/n), implies that

H (Z(δ)) = −
2∑

i=0

p(Z(δ) = i) log p(Z(δ) = i)

= O(nδ log δ)+ O(nδ log n),

and consequently

H (Z(δ))

n
= O(δ log δ)+ O(δ log n).

The upper bound part then follows from all the above
estimates and (44).
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