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Analyticity of Entropy Rate of Hidden Markov
Chains With Continuous Alphabet

Guangyue Han and Brian Marcus, Fellow, IEEE

Abstract— We first prove that under certain mild assumptions,
the entropy rate of a hidden Markov chain, observed when
passing a finite-state stationary Markov chain through a discrete-
time continuous-output channel, is analytic with respect to the
input Markov chain parameters. We then further prove, under
strengthened assumptions on the channel, that the entropy rate
is jointly analytic as a function of both the input Markov chain
parameters and the channel parameters. In particular, the
main theorems establish the analyticity of the entropy rate
for two representative channels: 1) Cauchy and 2) Gaussian.
The analyticity results obtained are expected to be helpful in
computation/estimation of entropy rate of hidden Markov chains
and capacity of finite-state channels with continuous output
alphabet.

Index Terms— Hidden Markov chain, entropy rate, analyticity,
continuous alphabet, Hilbert metric.

I. MAIN RESULTS AND RELATED WORK

A. Introduction and Background

CONSIDER a discrete-time channel with a finite input
alphabet Y = {1, 2, · · · , l} and the continuous output

alphabet Z = R. We assume that the input process is a
Y-valued first-order stationary Markov chain Y with transition
probability matrix � = (πi j )l×l and stationary vector
π = (πi )1×l (here we assume Y is first-order only for
simplicity; a standard “blocking” approach can be used to
reduce higher order cases to the first-order case). We assume
that the channel is memoryless in the sense that at each time,
the distribution of the output z ∈ Z , given the input y ∈ Y , is
independent of the past and future inputs and outputs, and is
distributed according to a probability density function q(z|y).

The corresponding output process of this channel is a hidden
Markov chain, which will be denoted by Z throughout the
paper. The entropy rate h(Z) is defined as

h(Z) = lim
n→∞

1

n + 1
h(Z0−n), (1)
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when the limit exists, where1

h(Z0−n) = −
∫
Zn+1

p(z0−n) log p(z0−n)dz0−n;

here z0−n � (z−n, z−n+1, · · · , z0) denotes an instance of
Z0−n � (Z−n, Z−n+1, · · · , Z0), and p(z0−n) denotes the
probability density of z0−n . It is well-known (e.g., see page 60
of [19]) that if h(Z0−n) is finite for all n, then the limit in (1)
exists and can be written as

h(Z) = lim
n→∞ hn(Z),

where

hn(Z) = −
∫
Zn+1

p(z0−n) log p(z0|z−1−n)dz0−n; (2)

here p(z0|z−1−n) denotes the conditional density of z0 given z−1−n .
Since the channels considered in this paper are memoryless
and Y is stationary, we have

h(Z0−n|Y 0−n) = (n + 1)h(Z0|Y0),

where

h(Z0|Y0) = −
∑
y∈Y

πy

∫
Z

q(z|y) log q(z|y)dz.

It then follows from

h(Z0−n|Y 0−n) ≤ h(Z0−n) ≤ h(Y 0−n) + h(Z0−n|Y 0−n)

that if
∫

z∈Z
q(z|y) log q(z|y)dz is finite for all y, (3)

so is h(Z0|Y0) and then h(Z0−n), which implies that h(Z) as
in (1) is well-defined and finite.

Unless specified otherwise, we will assume that
� = ��ε = (π �ε

i j ) is analytically parameterized by �ε ∈ �1,
where �1 denotes a bounded domain in R

m1 (a domain is an
open and connected set), and for any (y, z) ∈ Y ×Z , q �θ (z|y)
is analytically parameterized by �θ ∈ �2, where �2 denotes a
bounded domain in R

m2 .

1Throughout the paper, since all the integrands are at least continuous and
most are analytic, all the integrals should be interpreted as Riemann integrals.
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B. Main Results

We are now ready to state our main results. Here, we
remark that all our results in this paper can be straightfor-
wardly translated to the setting where Z is finite or countably
infinite.

Under some mild regularity condition, we prove the
following theorem, which establishes the analyticity of h(Z)
as a function of the underlying Markov chain parameters.

Theorem 1: Assume that for any y ∈ Y , q(z|y) is positive
and continuous on Z , and the following two integrals∫
Z

q(z|y)| log min
y′ q(z|y ′)|dz,

∫
Z

q(z|y)| log max
y′ q(z|y ′)|dz

(4)

are finite. If � is strictly positive at �ε0, then h(Z) is analytic
around �ε0.

Remark 1: Theorem 1 has been announced in [14], where
Condition (3) has been assumed. Unfortunately, we have
found that, at least for the rigorous proof in this paper,
Condition (3) is not strong enough. More specifically, as in
the proof of Theorem 1, we need to use (4), a strengthened
version of Condition (3), to establish the analyticity of
h�ε

n(Z0|Z−1−n) on C
m1
�ε0

(r1); here and throughout the paper,
C

m1
�ε0

(r1) denotes the r1-ball of �ε0 in C
m1 with respect to the

Euclidean metric.
Remark 2: When Z is finite, the analyticity of h(Z) has

been established under mild positivity assumptions in [11].
Due to the fact that for any y, q(z|y) can be arbitrarily close
to 0, the complexfication and uniform convergence arguments
in [11] do not carry over to Theorem 1. As elaborated in
Sections V and VI, the proof of Theorem 1 requires a critical
use of the complex Hibert metric in Section V.

We will also prove analyticity of h(Z) as a function of
both the Markov chain parameters and channel parameters.
Simple examples show that h(Z) can fail to be analytic as
a function of the channel parameter alone; see Example 3
and Remark 5. Our positive results require several technical
regularity conditions, which we describe as follows. These
conditions involve the complexification of the channel den-
sity functions (by definition, any real analytic function, such
as q �θ (z|y) as above, at a given point can be uniquely extended
to a complex analytic function on some complex neighborhood
of the given point; we will continue to use the same notation,
such as q �θ (z|y), for this complex extension). We require
these technical conditions, which abstract the properties of
commonly used probability density functions (e.g., Cauchy
and Gaussian), in order to make our proofs work. There may
be more general conditions that suffice. On a first reading, the
reader may want to skip directly to the statements of results
below.

Before listing our regularity conditions, we remind the
reader that a family of functions { f (�θ, z)}z of �θ is
equicontinuous if for any ε > 0, there exists δ > 0 such that
| f (�θ1, z) − f (�θ2, z)| ≤ ε for all z as long as ‖�θ1 − �θ2‖ ≤ δ.
Note that uniform boundedness (over all feasible z) of
the derivatives of f (�θ, z) with respect to �θ will imply its
equicontinuity.

The regularity conditions are as follows: For given
( �ε0, �θ0) ∈ �1 × �2,

(a) � is strictly positive at �ε0;
(b) for all y ∈ Y , q �θ0(z|y) is positive on Z;
(c) there exists r2 > 0 such that

(i) for any (y, z) ∈ Y × Z , q �θ (z|y) is analytic
on C

m2
�θ0

(r2),

(ii) for any y ∈ Y , q �θ (z|y) is jointly continuous on
Z × C

m2
�θ0

(r2),
(iii) the following three integrals∫

q̆(z, r2)dz,
∫

q̆(z, r2) log q̂(z, r2)dz,
∫

q̆(z, r2) log q̆(z, r2)dz, (5)

are all finite, where

q̆(z, r2) � sup
(y,�θ)∈Y×C

m2
�θ0

(r2)

|q �θ (z|y)|,

q̂(z, r2) � inf
(y,�θ)∈Y×C

m2
�θ0

(r2)
|q �θ (z|y)|;

(d) for some I ∈ {1, 2, . . . , l},
(i) there exist r2 > 0 such that for all j , the family

of functions {q �θ (z| j)/q �θ(z|I )}z on �θ ∈ C
m2
�θ0

(r2) is
equicontinuous,

(ii) there exists r2 > 0 such that for each z, the real
log q �θ (z|I ) can be analytically extended to C

m2
�θ0

(r2)

and for all j ,∫
Z

sup
�θ∈C

m2
�θ0

(r2)

∣∣∣q �θ (z| j) log q
�θ (z|I )

∣∣∣ dz < ∞. (6)

It is easily seen that the most commonly used channel models,
including Cauchy and Gaussian channels, satisfy all of these
conditions; see Examples 1 and 2.

The following theorem is our first result on the joint
analyticity of h(Z).

Theorem 2: For given ( �ε0, �θ0) ∈ �1 × �2, assume
Conditions (a), (b), (c) and (d). If, in addition, one of the
following two conditions holds,

• there exist C ′, C ′′ > 0 such that for all i, j and all z ∈ Z ,

C ′ ≤
∣∣∣∣∣
q �θ0(z| j)

q �θ0(z|i)

∣∣∣∣∣ ≤ C ′′; (7)

• for the same I as in Condition (d), there exists r2 > 0
such that for any ε > 0, there exists a compact subset
� ⊂ Z such that for all z 
∈ �, all j 
= I and
all �θ ∈ C

m2
�θ0

(r2)

∣∣∣∣∣
q �θ (z| j)

q �θ (z|I )

∣∣∣∣∣ ≤ ε, (8)

then h(Z) is analytic around ( �ε0, �θ0).
Remark 3: Conditions (7) and (8) are in fact mutually

exclusive in the sense that if one of them holds, then the
other one must fail. The reader should also note that while
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Theorem 2 requires Condition (7) to hold only at one given
parameter value, �θ0, Condition (8) needs to hold for all
parameter values �θ in a complex neighborhood of the given �θ0.
On the other hand, if Condition (8) holds only at �θ0, then one
can conclude that h(Z) is analytic with respect to �ε at �ε0.
Theorem 1, however, says that a condition as simple as (4) is
already sufficient to imply the analyticity of h(Z) with respect
to �ε alone.

In the following example, we show that Conditions (b)-(d)
and (7) are satisfied for additive Cauchy channels.

Example 1: Consider an additive Cauchy channel with
channel transition probability function taking the following
form:

q
�θ (z|i) = 1

π

γi

(z − μi )2 + γ 2
i

, γi > 0, i = 1, 2, . . . , l, (9)

which is parameterized by �θ ∈ �2, where

�2 � {(γ1, μ1, γ2, μ2, . . . , γl , μl)

∈ R
2l : γi > 0, i = 1, 2, . . . , l}.

Let �θ0 ∈ �2.
Obviously, Condition (b) is trivially satisfied.
Now, for Condition (c), note that since γi > 0 for

each i , each (z − μi )
2 + γ 2

i is bounded away from 0 for all
�θ ∈ C

2l
�θ0
(r2) if r2 is sufficiently small. The existence of r2 for

(i) and (ii) then immediately follows. As for (iii), notice that
for sufficiently small r2, both q̆(z, r2) and q̂(z, r2) are of order
O(1/z2) for large z and are uniformly bounded below away
from 0 for all z; this implies that the three integrals in (5) are
all finite.

We now check Condition (d) with I set to be 1
(here I can be chosen arbitrarily). For (i), observe that
for sufficiently small r2, the derivative of q �θ (z| j)/q �θ(z|1)
with respect to �θ ∈ C

m2
�θ0

(r2) is bounded uniformly over all
j and z ∈ Z . As for (ii), observe that for sufficiently small r2,
the imaginary part of q �θ (z|1) is dominated by the real part,

which implies that log q �θ (z|1) can be analytically extended
to C

m2
�θ0

(r2), and the finiteness of the integral in (6) follows

from the fact that for large z, each q �θ (z|i) is of order O(1/z2).
For Condition (7), it can be easily checked that for all i, j ,

lim
z→∞

q �θ0(z| j)

q �θ0(z|i) = 1,

which immediately implies Condition (7).
So, for an additive Cauchy channel, if � is strictly

positive at �ε0 ∈ �1, then h(Z) is analytic around
( �ε0, (γ1, μ1, γ2, μ2, . . . , γl, μl )).

In the following example, we show that Conditions (b)-(d)
and (8) are satisfied for additive Gaussian channels.

Example 2: Consider an additive Gaussian channel with
channel transition probability function taking the following
form:

q
�θ (z|i) = 1√

2πσi
e−(z−μi )

2/(2σ 2
i ), σi > 0, i = 1, 2, . . . , l,

and all σi are distinct, (10)

which is parameterized by �θ ∈ �2, where

�2 � {(σ1, μ1, σ2, μ2, . . . , σl , μl)

∈ R
2l : σi > 0, i = 1, 2, . . . , l}.

Let �θ0 ∈ �2.
Obviously, Condition (b) is trivially satisfied.
Now, for Condition (c), note that (i) and (ii) hold for any r2

with 0 < r2 < mini {σi }. And for any such fixed r2, there
exists C1, C ′

1, C2, C ′
2 > 0, which are independent of z, such

that

C1e−C ′
1z2 ≤ q̆(z, r2), q̂(z, r2) ≤ C2e−C ′

2z2
,

which immediately implies (iii).
We now check Condition (d) with I set to be the index i

corresponding to the largest σi . For (i), observe that for

sufficiently small r2, the derivative of q �θ (z| j)/q �θ(z|I ) with
respect to �θ is bounded on �θ ∈ C

m2
�θ0

(r2) uniformly over all
j and z ∈ Z , which immediately implies the equicontinuity.
As for (ii), observe that

log q
�θ (z|I ) = − log(

√
2πσI ) − (z − μI )

2

2σ 2
I

,

which can be analytically extended to C
m2
�θ0

(r2) for sufficiently

small r2. And the finiteness of the integral in (6) follows from
the fact that for large z, q �θ (z| j) is of order e−O(z2) for all j .

For Condition (8), it can be easily checked that for all i, j ,

lim
z→∞

q �θ0(z| j)

q �θ0(z|I ) = 0,

which immediately implies Condition (8).
So, for an additive Gaussian channel, if � is strictly

positive at �ε0 ∈ �1, then h(Z) is analytic around
( �ε0, (σ1, μ1, σ2, μ2, · · · , σl , μl)).

Our second result on joint analyticity deals with the case
when for all i , the real part of qθ (z|i) “dominates” the
imaginary part of the complex extension.

Theorem 3: For given ( �ε0, �θ0) ∈ �1 × �2, assume
Conditions (a), (b) and (c). If, in addition, for any δ > 0,
there exists r2 > 0 such that for all (y, z) ∈ (Y,Z) and
all �θ ∈ C

m2
�θ0

(r2)

(i) |�(q
�θ (z|y))| < δ|(q

�θ (z|y))|,
(i i)

∣∣∣∣∣log
q �θ (z|y)

q �θ0(z|y)

∣∣∣∣∣ ≤ δ, (11)

then h(Z) is analytic around ( �ε0, �θ0).
Theorem 3 applies to Cauchy channels (9) roughly because
small complex perturbations of the parameters will have small
effect on the imaginary part of q �θ (z|i) uniformly over z and i .
However, it need not apply to Gaussian channels (10) because
a small imaginary perturbation of a variance may overwhelm
the real part of q �θ (z|i) for large z. Theorem 3 also applies to
other channels for which Conditions (7) and (8) fail. Roughly
speaking, Condition (7) says that all q �θ (z|i) are in some
sense “comparable” with one another at given point �θ0, and
Condition (8) says that one of q �θ (z|i) dominates all the others.
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It is not surprising that one can find channels that do not satisfy
both conditions, however satisfy (11). A simple yet somewhat
artificial example of such channels with channel parameter
�θ = (μ1, γ1, μ2, γ2) is defined as follows:

q
�θ (z|i) = 1

π

γi

(z − μi )2 + γ 2
i

, γi > 0, i = 1, 2,

and

q(z|3) = 1√
2π

e−z2/2.

It is easy to see that q �θ (z|1) is comparable to q �θ (z|2), however
not to q(z|3); and clearly, none of the three distributions
dominates. On the other hand, such a channel satisfies the
assumptions in Theorem 3, and therefore h(Z) is analytic with
respect to (μ1, γ1, μ2, γ2) for the same reason as Theorem 3
applies to Cauchy channels in Example 1.

Theorems 2 and 3 can be regarded as extensions
of [11, Th. 1.1], which deals with the case where Z is finite.
In particular, the flow of the proof of Theorem 2 follows
closely that of this case. However, new techniques are needed
to deal with the continuous case. The extension to Theorems 3
is less direct, where the use of a complex Hilbert metric [15]
to replace the classical real Hilbert metric, is critical. This
metric was also used in the proof of Theorem 1. It is not
needed for Theorem 2, because it assumes stronger conditions
on the channel density functions.

We remark that in [11, Th. 1.1], zero values are allowed for
some transition probabilities. It seems more difficult to handle
this phenomena in the continuous-alphabet setting; this is the
subject of forthcoming work.

To the best of our knowledge, the results in this
paper, together with those in [14], are among the first
results establishing analyticity of the entropy rate of hidden
Markov chains with continuous alphabet. Nevertheless,
following the approach in [11], the analyticity of the expected
log-likelihood for certain hidden Markov models has been
established in [40]. Our paper has some similarities with [40].
Specifically, the entropy rate of a hidden Markov chain
corresponding to parameter θ is exactly the expected value
of the log-likelihood when both the expectation and the
log-likelihood are taken with the same parameter value. So, to
prove analyticity of the entropy rate, we must let the expecta-
tion and log-likelihhod vary together. In contrast, in [40], the
expectation is taken with respect to a fixed parameter value.

C. Related Work in Finite Alphabet

As opposed to continuous alphabet, the entropy rate of
hidden Markov chains with finite alphabet has been
extensively studied. Next, we briefly review the related results
in the literature. In the remainder of this section, unless
specified otherwise, we assume Z is a finite alphabet and
X is a finite-state stationary Markov chain with transition
probability matrix � and stationary vector π ; then, the output
process Z is a finite-state hidden Markov chain.

It is well known that h(X), the entropy rate of X , has a
simple analytic formula in terms of � and π ; in stark contrast,

there is no simple and explicit formula of h(Z) for most
non-degenerate channels ever since hidden Markov chains
(or, more precisely, hidden Markov models) were formulated
half a century ago. Here, we remark that Blackwell [4] showed
that h(Z) can be written as an integral of an explicit function
on a simplex with respect to the Blackwell Measure. However,
the Blackwell measure seems to be rather complicated for
effective computation of h(Z).

Recently there has been a rebirth of interest in com-
puting and estimating h(Z) in a variety of scenarios, and
many approaches have been adopted to tackle this problem:
the Blackwell measure has been used to bound h(Z) [27],
a variation on the classical Birch bounds [3] can be found
in [7] and a new numerical approximation of h(Z) has been
proposed in [25]. Generalizing Blackwell’s idea, an integral
formula for the derivatives of h(Z) has been derived in [36].
In another direction, [2], [8], [18], [21], [26], [27], [29], [33],
[36], [42], [43] have studied the variation of the entropy rate as
parameters of the underlying Markov chain vary. Particularly
in [42], for a special type of hidden Markov chain Z , the
Taylor series expansion of h(Z) is given, under the assumption
that h(Z) is analytic.

Under mild positivity assumptions, we prove [11] that,
h(Z) is an analytic function of �, thereby confirming the
analyticity assumption in [42]. Aside from its significance
in mathematics (see [5], [22], [31], [32]), this analyticity
result is of interest to a wide range of applications (see
[1], [25], [36], [40], [42], [43]). In particular, the analyticity
result and techniques employed in [11], such as complexifica-
tion and exponential convergence, are rather useful in many
aspects of information theory as well. Using the ideas for
proving the analyticity result, we derive [16] an asymptotic
formula of h(Z) at so-called “weak Black Holes”, rather
general settings which include “Black Holes” [12] and the
input-restricted channels in [13] as special cases. These results
provide much insight for characterizing [13] the asymptotic
behavior (as ε tends to zero) of capacity of a class of
input-restricted channels and deriving [17] concavity of the
mutual information rate for such channels. Here, we remark
that the concavity result in [17] confirms the concavity
conjecture in [30] in a special scenario; on the other hand,
the conjecture in the general setting has been disproved
in [24] by counter-examples constructed based on the results
in [12]. It turns out the result and techniques in [11] are
instrumental in terms of computing the mutual information
rate and the channel capacity of finite-state channel as well.
Recently, employing analyticity in a critical way, we have
established refinements of the Shannon-McMillan-Breiman
theorem which sheds light on effective computation of the
mutual information rate of a class of finite-state channels
and we further proposed [10] a randomized algorithm to
compute the capacity of a class of finite-state channels, whose
convergence behavior is analyzed using the analyticity result.

In this paper, we will establish the analyticity of the entropy
rate of hidden Markov chains with continuous alphabet. Given
the implications of the counterpart results in the discrete
setting, we expect that the results in this paper will be of
great interest and significance in relevant areas.
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D. Organization of the Paper

The remainder of this paper is organized as follows.
In Section II, we review the (real) Hilbert metric, outline
the framework of the proofs of our theorems and highlight
the differences among the proofs. We prove Theorem 2
in Section III; on the other hand, we show that analyticity
fails for the Gaussian channel with uniform i.i.d. inputs
in Section IV. Section V is devoted to reviewing the complex
Hilbert metric, which is of critical use to the proofs
of Theorem 1 in Section VI and Theorem 3 in Section VII.

II. THE MAIN IDEA OF THE PROOFS

We first briefly review the classical (real) Hilbert metric. The
real Hilbert metric will be used in the proof of Theorem 2.

Let W be the standard simplex in the l-dimensional real
Euclidean space,

W = {w = (w1, w2, · · · , wl) ∈ R
l : wi ≥ 0,

∑
i

wi = 1},

and let W ◦ denote its interior, consisting of the vectors with
positive coordinates. For any two vectors v,w ∈ W ◦, the
Hilbert metric [38] is defined as

dH (w, v) = max
i, j

log

(
wi/w j

vi/v j

)
. (12)

Remark 4: It immediately follows from the definition that
for any diagonal matrix A with strictly positive diagonal
entries, we have

dH (w, v) = dH (wA, v A).
For an l × l positive matrix T = (ti j ) (i.e., each ti j > 0),

the mapping fT induced by T on W is defined by

fT (w) = wT

wT 1
, (13)

where 1 is the all 1’s column vector. The following theorem
is well-known (see [38]).

Theorem 4: For a positive T , fT is a contraction mapping
on the entire W ◦ under the Hilbert metric and the contraction
coefficient (often referred to as the Birkhoff coefficient), is
given by

τ (T ) = sup
v 
=w

dH (vT, wT )

dH (v,w)
= 1 − √

φ(T )

1 + √
φ(T )

, (14)

where φ(T ) = mini, j,k,l
tik t jl
t jk til

.
We will also need a complex version of W ,

W̃ = {w = (w1, w2, · · · , wl) ∈ C
l :

∑
i

wi = 1}.

Now, for each z ∈ Z , define ��ε,�θ (z) as an l × l matrix with
the entries

��ε,�θ (z)i j = π �ε
i j q

�θ (z| j), for all i, j. (15)

By (13), ��ε,�θ (z) will induce a mapping f �ε,�θ
z � f

��ε,�θ (z) from

W to W . For any fixed n and z0−n , define

x �ε,�θ
i = x �ε,�θ

i (zi−n) = p�ε,�θ (yi = · |zi , zi−1, · · · , z−n), (16)

(here · represent the states of the Markov chain Y ) then similar

to Blackwell [4], {x �ε,�θ
i } satisfies the random dynamical system

x �ε,�θ
i+1 = f �ε,�θ

zi+1
(x �ε,�θ

i ), (17)

starting with

x �ε,�θ
−n−1 = π �ε, (18)

where π �ε is the stationary vector for ��ε . And it can be verified
that

p�ε,�θ (z0|z−1−n) = x �ε,�θ
−1 ��ε,�θ (z0)1, (19)

and

p�ε,�θ (z0−n) = π �ε��ε,�θ (z−n)��ε,�θ (z−n+1) · · · ��ε,�θ (z0)1. (20)

Evidently x �ε,�θ
i , p�ε,�θ (z0|z−n) and p�ε,�θ (z0−n) all depend on

the real vector ( �ε, �θ) ∈ �1 × �2. In what follows, we shall
show that they can be “complexified”. For any �ε ∈ C

m1
�ε0

(r1),
one checks that for r1 > 0 small enough, the stationary
vector π �ε is unique and analytic on C

m1
�ε0

(r1) as a function of �ε
(because it is the unique solution of π �ε��ε = π �ε,

∑
y π �ε

y = 1).

Then through (18) and (17), x �ε,�θ
i can be analytically

extended to C
m1
�ε0

(r1) × C
m2
�θ0

(r2); furthermore, through

(19) and (20), p�ε,�θ (z0|z−n) and p�ε,�θ (z0−n) can be analytically

extended to C
m1
�ε0

(r1) × C
m2
�θ0

(r2). Ultimately h�ε,�θ
n (Z) (which is

defined by (2) with real superscripts ( �ε, �θ) on p(z0−n) and
p(z0|z−1−n)) can be analytically extended to C

m1
�ε0

(r1)×C
m2
�θ0

(r2)

as well.
The framework for the proofs of the main theorems can be

outlined as follows:
(I) If necessary, we consecutively re-block the Z process to

a Ẑ process such that Ẑi is of the form Zk(i)
j (i).

(II) We then show that there exists a complex neighborhood

of a subset of W such that each complexified f �ε,�θ
ẑ is a

contraction mapping, with respect to some metric, and

moreover the complexified x̂ �ε,�θ
i (ẑi

−n̂) stays within the
neighborhood.

(III) It then follows that the complexified x �ε,�θ
i (zi−n) and thus

the complexified p�ε,�θ (z0|z−n) exponentially forget their
initial conditions.

(IV) This, together with bounding arguments, will further
imply that the complexified h�ε,�θ

n (Z) uniformly converges
to a complex analytic function, which is necessarily
the complexified h�ε,�θ (Z), on a complex domain, and
therefore h�ε,�θ (Z) is analytic.

The proofs of Theorem 1 and 3 are somewhat parallel, while
the latter requiring extra attention to address the technical
issues arising in proving joint analyticity. On the other hand,
despite the fact that the proofs of Theorems 2 and Theorems 3
all fit in the same above-mentioned framework, there does not
seem to be a natural way to unify them. Among numerous
differences, the most essential one is the way we establish (II):

• To establish (II), we will use the fact that each real f �ε,�θ
z

is a contraction on W ◦, with respect to the Hilbert metric.
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Then we use the “equivalence” between the Euclidean
metric and the Hilbert metric, and equicontinuity in
Condition (d(i)) to establish the contractiveness
(with respect to the Euclidean metric) of the complexified

f �ε,�θ
ẑ on a complex neighborhood of W .

• For Theorem 3, to establish (II), the complex
Hilbert metric in Section V is employed to directly
show the contractiveness, with respect to the complex
Hilbert metric, of the complexified f �ε,�θ

z on a complex
neighborhood of W ◦.

III. PROOF OF THEOREM 2

The following lemma says that f �ε,�θ
z does not change much

under a small complex perturbation of ( �ε, �θ).
Lemma 1: For any δ > 0, there exist r1, r2 > 0 such that

for any ( �ε, �θ) ∈ C
m1
�ε0

(r1) × C
m2
�θ0

(r2), any z ∈ Z and any
x ∈ W, we have

‖ f �ε,�θ
z (x) − f �ε0,�θ0

z (x)‖ ≤ δ

where ‖·‖ means the Euclidean norm.
Proof: We first note that

f �ε,�θ
z (x) = x��ε,�θ (z)

x��ε,�θ (z)1
= x(��ε,�θ (z)/q �θ (z|I ))

x(��ε,�θ (z)/q �θ (z|I ))1 .

Assuming (7): The lemma immediately follows from (7) and
Condition (d(i)).

Assuming (8): It follows from (8) that for sufficiently small
r1, r2 > 0, there exists a compact subset � ⊂ Z such that for
any ( �ε, �θ) ∈ C

m1
�ε0

(r1) × C
m2
�θ0

(r2), any z 
∈ � and any x ∈ W ,

x(��ε,�θ (z)/q �θ (z|I ))1 is bounded away from 0. On the other
hand, by the compactness of �, we deduce that there exist
r1, r2 > 0 such that for any ( �ε, �θ) ∈ C

m1
�ε0

(r1) × C
m2
�θ0

(r2), any

z ∈ Z and any x ∈ W , x(��ε,�θ (z)/q �θ (z|I ))1 is bounded away
from 0. The lemma then follows from Condition (d(i)). �

Now, define

W̃W (δ) = {w̃ ∈ W̃ : ‖w̃ − w‖ < δ for some w ∈ W }.
We need the following lemma.

Lemma 2: Given any ( �ε0, �θ0) ∈ �1 × �2, there exist
r1, r2, δ > 0, 0 < ρ1 < 1 and a positive integer n0 such
that, for all z j

i with j ≥ i + n0 and all ( �ε, �θ) ∈ C
m1
�ε0

(r1) ×
C

m2
�θ0

(r2), f �ε,�θ
z j

i

is a ρ1-contraction mapping on W̃W (δ) under

the Euclidean metric.
Proof: For any z ∈ Z and sufficiently small r1, r2 > 0,

it follows from Remark 4 that for any u, v ∈ W , we have

dH (u��ε0,�θ0(z), v��ε0,�θ0(z)) = dH (u��ε0, v��ε0 ). (21)

It then follows that for any z j
i ,

dH ( f �ε0,�θ0

z j
i

(u), f �ε0,�θ0

z j
i

(v)) ≤ τ (��ε0) j−i dH (u��ε0, v��ε0 ),

where τ (��ε0), the Birkhoff coefficient of ��ε0 as defined
in (14), is strictly less than 1. It then follows from
[23, Lemma 4] (the mixing assumption is satisfied due to (15)

and Condition (a)) that there exists C > 0 such that for any
z j

i and any u, v ∈ W ,

‖ f �ε0,�θ0

z j
i

(u) − f �ε0,�θ0

z j
i

(v)‖ ≤ Cτ (��ε0) j−i‖u − v‖.

For n0 sufficiently large, ρ0 := Cτ (��ε0)n0 < 1. Thus,
for j ≥ i + n0,

‖∇ f �ε0,�θ0

z j
i

(w)‖ ≤ ρ0 < 1

for all w ∈ W . From this and Condition (d(i)), it follows that
there exists r1, r2, δ > 0, 0 < ρ1 < 1 such that

‖∇ f �ε,�θ
z j

i

(w)‖ ≤ ρ1 < 1

for all w ∈ W̃W (δ) and ( �ε, �θ) ∈ C
m1
�ε0

(r1) × C
m2
�θ0

(r2). The
lemma then follows. �

The following lemma essentially follows from the frame-
work in [11, Proof of Theorem 1.1]. We briefly outline the
proof for completeness.

We first introduce some notation. Let

p̊�ε,�θ (z0|z−1−n) � p�ε,�θ (z0|z−1−n)/q
�θ (z0|I ),

where I is the same as in Condition (d).
Lemma 3: 1) For any δ > 0, there exist r1, r2 > 0 such

that for any ( �ε, �θ) ∈ C
m1
�ε0

(r1) × C
m2
�θ0

(r2) and for all

z0−n ∈ Zn+1 and −n − 1 ≤ i ≤ −1,

x �ε,�θ
i (zi−n) ∈ W̃W (δ). (22)

2) There exist r1, r2 > 0 such that for all z0−n ∈ Zn+1,

p�ε,�θ (z0|z−1−n) is analytic on C
m1
�ε0

(r1) × C
m2
�θ0

(r2).

3) There exist r1, r2 > 0, 0 < ρ1 < 1 and L1 > 0 such
that for any two Z-valued sequences {a0−n1

} and {b0−n2
}

with a0−n = b0−n and for all ( �ε, �θ) ∈ C
m1
�ε0

(r1)×C
m2
�θ0

(r2),
we have

| p̊�ε,�θ (a0|a−1−n1
) − p̊�ε,�θ (b0|b−1−n2

)| ≤ L1ρ
n
1 . (23)

Proof: 1. For a fixed n0 > 0, we will consecutively reblock

z−1−n into ẑ−1
−n̂ such that each ẑi is of the form zk(i)

j (i), where
k(i) − j (i) + 1 = n0 (n0 is determined below).

By (17), for any z0−n and i , x �ε0,�θ0
i (and thus x̂ �ε0,�θ0

i )
belongs to W ◦. By Lemma 2, we can choose
r1, r2, δ > 0 sufficiently small, n0 sufficiently large and
0 < ρ1 < 1 such that for all ( �ε, �θ) ∈ C

m1
�ε0

(r1) ×
C

m2
�θ0

(r2), f �ε,�θ
ẑ is a ρ1-contraction on W̃W (δ) under the

Euclidean metric.
To prove (22), it is enough to prove the version

of (22) with x �ε,�θ
i (zi−n) replaced by x̂ �ε,�θ

i (ẑi−n) (with perhaps
smaller r1, r2).

To see this, note that by Lemma 1, for sufficiently
small r1, r2 > 0, for all ẑ, x ∈ W , and ( �ε, �θ) ∈ C

m1
�ε0

(r1) ×
C

m2
�θ0

(r2),

‖ f �ε,�θ
ẑ (x) − f �ε0,�θ0

ẑ (x)‖ ≤ δ(1 − ρ1), (24)

and for all �ε ∈ C
m1
�ε0

(r1)

‖π �ε − π( �ε0)‖ ≤ δ(1 − ρ1). (25)
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Thus,

‖x̂ �ε,�θ
i − x̂ �ε0,�θ0

i ‖ = ‖ f �ε,�θ
ẑi

(x̂ �ε,�θ
i−1) − f �ε0,�θ0

ẑi
(x̂ �ε0,�θ0

i−1 )‖
≤ ‖ f �ε,�θ

ẑi
(x̂ �ε,�θ

i−1) − f �ε,�θ
ẑi

(x̂ �ε0,�θ0
i−1 )‖

+ ‖ f �ε,�θ
ẑi

(x̂ �ε0,�θ0
i−1 ) − f �ε0,�θ0

ẑi
(x̂ �ε0,�θ0

i−1 )‖.
(26)

Then by (24) and (25), and (26), we have

‖x̂ �ε,�θ
i − x̂ �ε0,�θ0

i ‖ ≤ ρ1‖x̂ �ε,�θ
i−1 − x̂ �ε0,�θ0

i−1 ‖ + δ(1 − ρ1).

So, for all i ,

‖x̂ �ε,�θ
i − x̂ �ε0,�θ0

i ‖ ≤ δ,

and thus for all i , we have x̂ �ε,�θ
i ∈ W̃W (δ), as desired.

2. It follows from Condition (d(i)) that for sufficiently small

r1, r2, δ > 0 and any z ∈ Z , f �ε,�θ
z (x) is analytic with

respect to ( �ε, �θ, x) ∈ C
m1
�ε0

(r1) × C
m2
�θ0

(r2) × W̃W (δ). It then

follows from this fact and the iterative nature of x �ε,�θ
i (see (17))

and Part 1 that for sufficiently small r1, r2 > 0, each x �ε,�θ
i is

analytic on C
m1
�ε0

(r1)×C
m2
�θ0

(r2). Part 2 then immediately follows
from (19).

3. Applying the same reblocking as in Part 1, we write

x̂ �ε,�θ
i,â = x̂ �ε,�θ

i (âi
−n̂1

) = p�ε,�θ (yk(i) = · |âi
−n̂1

),

x̂ �ε,�θ
i,b̂

= x̂ �ε,�θ
i (b̂i

−n̂2
) = p�ε,�θ (yk(i) = · |b̂i

−n̂2
).

Evidently we have

x̂ �ε,�θ
i+1,â = f �ε,�θ

âi+1
(x̂ �ε,�θ

i,â ), x̂ �ε,�θ
i+1,b̂

= f �ε,�θ
b̂i+1

(x̂ �ε,�θ
i,b̂

).

Note that there exists a positive constant L ′
1 such that for all

( �ε, �θ) ∈ C
m1
�ε0

(r1) × C
m2
�θ0

(r2),

‖x̂ �ε,�θ
−n̂,â − x̂ �ε,�θ

−n̂,b̂
‖ ≤ L ′

1,

for all ( �ε, �θ) ∈ C
m1
�ε0

(r1) × C
m2
�θ0

(r2), where r1, r2 > 0 are

chosen sufficiently small. Since f �ε,�θ
ẑ is a ρ1-contraction on

W̃W (δ), we have, by Part 1,

‖x̂ �ε,�θ
−1,â − x̂ �ε,�θ

−1,b̂
‖ ≤ L ′

1ρ
n̂−1
1 .

This implies that there exists L1 > 0, independent of n1, n2,
such that for all ( �ε, �θ) ∈ C

m1
�ε0

(r1) × C
m2
�θ0

(r2),

‖ p̊�ε,�θ (a0|a−1−n1
) − p̊�ε,�θ (b0|b−1−n2

)‖ ≤ L1ρ
n
1 . (27)

The proof of the following lemma is straightforward.
Nonetheless, we sketch the proof for completeness.

Lemma 4: Let n1 and n2 be positive integers and D a
compact domain in C

n1 . Let f (θ, z) be a jointly continuous
function on D × R

n2 . Assume that∫
Rn2

sup
θ∈D

| f (θ, z)|dz < ∞. (28)

Then

1)
∫
Rn2 f (θ, z)dz is continuous on D.

2) If, for each z ∈ Z , f is analytic on D, then∫
Rn2 f (θ, z)dz is analytic on D.

Proof: Let � be a compact domain in R
n2 . Let

δi , i = 1, 2, . . . be a sequence of positive numbers converging
to 0. Consider a sequence of partitions of �:

� = ∪mn
i=1�n,i ,

where diam(�n,i) ≤ δn for all 1 ≤ i ≤ mn . Evidently, the
corresponding Riemann sum

Rn =
mn∑
i=1

f (θ, zi )vol(�n,i )

(here zi ∈ �n,i ) is continuous in θ . Then

∫
�

f (θ, z)dz − Rn =
mn∑
i=1

∫
�n,i

( f (θ, z) − f (θ, zi ))dz.

By the compactness of D and �, we deduce that for any
ε0 > 0, there exists N0 such that for all n ≥ N0 and all
i = 1, 2, . . . , mn

| f (θ, z) − f (θ, zi )| ≤ ε0, for any θ ∈ D and any z ∈ �n,i ,

which implies that for any ε > 0, there exists N1 such that
for all n ≥ N1 and all θ ∈ D,∣∣∣∣

∫
�

f (θ, z)dz − Rn

∣∣∣∣ ≤ ε.

In other words, Rn uniformly (in θ ∈ D) converges to∫
�

f (θ, z)dz,

and so
∫
� f (θ, z)dz is continuous in θ ∈ D.

Now, take any increasing sequence of compact sets �i

whose union is R
n2 . By (28),

∫
�i

f (θ, z)dz converges uni-
formly, in θ ∈ D, to

∫
Rn2 f (θ, z)dz, which is therefore

continuous on D. This gives Part 1.
Part 2 follows in the same way with analyticity replacing

continuity. �
We are now ready for the proof of Theorem 2.
Proof of Theorem 2: We first show that there exist r1, r2 > 0

such that for any n, h�ε,�θ
n (Z) is analytic on C

m1
�ε0

(r1)×C
m2
�θ0

(r2).
For a fixed n, recall that

h�ε,�θ
n (Z) = −

∫
Zn+1

p�ε,�θ (z0−n) log p�ε,�θ (z0|z−1−n)dz0−n,

where

p�ε,�θ (z0−n) =
∑
y0−n

p�ε(y0−n)

0∏
i=−n

q
�θ (zi |yi) (29)

and

p�ε,�θ (z0|z−1−n) = x �ε,�θ
−1 (z−1−n)��ε,�θ (z0)1.

Now, it follows from (29) and the fact that
∑

y0−n
p�ε(y0−n) is

continuous and therefore bounded as a function of �ε ∈ C
m1
�ε0

(r1)
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that there is a constant K > 0 such that

sup
( �ε,�θ)∈C

m1
�ε0

(r1)×C
m2
�θ0

(r2)

|p�ε,�θ (z0−n)|

≤ K
0∏

i=−n

sup
(y,�θ)∈Y×C

m2
�θ0

(r2)

|q �θ (zi |y)|. (30)

It also follows from Part 1 of Lemma 3 and
(Condition (7) or (8)) that for sufficiently small r1, r2 > 0,
there exist C1, C2 > 0 such that for any z0−n ,

C1 ≤ | p̊�ε,�θ (z0|z−1−n)| ≤ C2, (31)

which implies that for some C3 > 0,

| log p̊�ε,�θ (z0|z−1−n)| ≤ C3. (32)

We then deduce that for any ( �ε, �θ) ∈ C
m1
�ε0

(r1) × C
m2
�θ0

(r2),
∫
Zn+1

sup
( �ε,�θ)∈C

m1
�ε0

(r1)×C
m2
�θ0

(r2)

∣∣∣p�ε,�θ (z0−n) log p�ε,�θ (z0|z−1−n)
∣∣∣ dz0−n

=
∫
Zn+1

sup
( �ε,�θ)∈C

m1
�ε0

(r1)×C
m2
�θ0

(r2)

∣∣∣p�ε,�θ (z0−n) log q
�θ (z0|I )

+p�ε,�θ (z0−n) log p̊�ε,�θ (z0|z−1−n)
∣∣∣ dz0−n

≤
∫
Zn+1

sup
�θ∈C

m2
�θ0

(r2)

K

∣∣∣∣∣
0∏

i=−n

q
�θ (zi |yi )

∣∣∣∣∣
∣∣∣log q

�θ (z0|I )
∣∣∣ dz0−n

+
∫
Zn+1

sup
( �ε,�θ)∈C

m1
�ε0

(r1)×C
m2
�θ0

(r2)

|p�ε,�θ (z0−n)|| log p̊�ε,�θ (z0|z−1−n)|dz0−n

< ∞. (33)

(for the first term we have used (5(i)) and (6); for the second
term, we have used (5(i)), (30) and (32)). By lemma 4 (Part 2),

h�ε,�θ
n (Z0|Z−1−n) =

∫
Zn+1

p�ε,�θ (z0−n) log p�ε,�θ (z0|z−1−n)dz0−n,

is analytic on C
m1
�ε0

(r1) × C
m2
�θ0

(r2).
Now, to prove the theorem, we only need to prove that

there exist r1, r2 > 0 such that h�ε,�θ
n (Z) uniformly converges

on C
m1
�ε0

(r1) × C
m2
�θ0

(r2) as n → ∞. First, we observe that

|h�ε,�θ
n+1(Z) − h�ε,�θ

n (Z)|
=

∣∣∣∣
∫
Zn+2

p�ε,�θ (z0−n−1) log p�ε,�θ (z0|z−1
−n−1)dz0−n−1

−
∫
Zn+1

p�ε,�θ (z0−n) log p�ε,�θ (z0|z−1−n)dz0−n

∣∣∣∣
=

∣∣∣∣
∫
Zn+2

p�ε,�θ (z0−n−1) log p̊�ε,�θ (z0|z−1
−n−1)dz0−n−1

−
∫
Zn+1

p�ε,�θ (z0−n) log p̊�ε,�θ (z0|z−1−n)dz0−n

∣∣∣∣
=

∣∣∣∣
∫
Zn+2

p�ε,�θ (z0−n−1)(log p̊�ε,�θ (z0|z−1
−n−1)

− log p̊�ε,�θ (z0|z−1−n))dz0−n−1

∣∣∣ .

Fix ( �ε, �θ) ∈ C
m1
�ε0

(r1)×C
m2
�θ0

(r2). Then, by (23), (31), (32), we

have, for some 0 < ρ1 < 1, L ′
1, L1 > 0,

|p�ε,�θ (z0−n−1)(log p̊�ε,�θ (z0|z−1
−n−1) − log p̊�ε,�θ (z0|z−1−n))|

≤ L ′
1

∣∣∣p�ε,�θ (z0−n−1)( p̊�ε,�θ (z0|z−1
−n−1) − p̊�ε,�θ (z0|z−1−n))

∣∣∣
≤ L ′

1|p�ε,�θ (z0−n−1)|L1ρ
n
1 .

Notice that for any given δ > 0, there exist r1, r2 > 0 such
that for all �ε ∈ C

m1
�ε0

(r1),

‖π �ε
y−n

‖ ≤ (1 + δ)π �ε0
y−n

, ‖π �ε
yi yi+1

‖ ≤ (1 + δ)π �ε0
yi yi+1

,

and for any y ∈ Y and all �θ ∈ C
m2
�θ0

(r2),
∫
Z

|q �θ (z|y)|dz ≤ (1 + δ)

∫
Z

q
�θ0(z|y)dz = 1 + δ,

(here we have used the fact that
∫
Z |q �θ (z|y)|dz is a continuous

function of �θ ∈ C
m2
�θ0

(r2); this follows from Lemma 4 (Part 1)).
It then follows from (30) that∫

Zn+1
|p�ε,�θ (z−1

−n−1)|dz−1
−n−1 ≤ (1 + δ)2(n+2).

By choosing δ > 0 sufficiently small, we can combine all
the relevant inequalities above to obtain some L > 0 and some
0 < ρ < 1 such that for all ( �ε, �θ) ∈ C

m1
�ε0

(r1) × C
m2
�θ0

(r2),

|h�ε,�θ
n+1(Z) − h�ε,�θ

n (Z)|
≤

∫
Zn+2

|p�ε,�θ (z0−n−1)(log p̊�ε,�θ (z0|z−1
−n−1)

− log p̊�ε,�θ (z0|z−1−n))|dz0−n−1

≤ Lρn ,

which implies the uniform convergence of h�ε,�θ
n (Z) on

C
m1
�ε0

(r1) × C
m2
�θ0

(r2) as n tends to infinity, and thus the

analyticity of h�ε,�θ (Z) around ( �ε0, �θ0). �

IV. FAILURE OF ANALYTICITY

With the following example, we show that for Gaussian
channels, h(Z) need not be analytic even as a function of the
channel parameters alone, when the largest σi is not unique.

Example 3: Consider an additive Gaussian channel
parameterized as in (10) with the binary input alphabet
Y = {1, 2}. Assume that the input Y is an i.i.d. process with

P(Y1 = 1) = P(Y1 = 2) = 1/2;
and assume that

q(z|1) = 1√
2πσ1

e−(z+1)2/σ 2
1 , q(z|2) = 1√

2πσ2
e−(z−1)2/σ 2

2 .

We then have

p(z) = P(Y = 1)q(z|1) + P(Y = 2)q(z|2)

= 1

2

1√
2πσ1

e−(z+1)2/σ 2
1 + 1

2

1√
2πσ2

e−(z−1)2/σ 2
2 .

We claim that for any fixed σ > 0, analyticity of h(Z) as
a function of (σ1, σ2) fails at (σ1, σ2) = (σ, σ ). To see this,
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we fix σ1 = σ , and we show that h(Z) is not analytic with
respect to σ2 at σ2 = σ . Note that for any real σ2,

h(Z) = −
∫ ∞

−∞
p(z) log p(z)dz

= −
∫ ∞

0
p(z)

(
log

1

2

1√
2πσ2

e−(z−1)2/σ 2
2

)
dz

−
∫ 0

−∞
p(z)

(
log

1

2

1√
2πσ

e−(z−1)2/σ 2
)

dz (34)

−
∫ ∞

0
p(z) log (1 + �z(σ2)) dz

−
∫ 0

−∞
p(z) log

(
1 + �−1

z (σ2)
)

dz, (35)

where

�z(σ2) � σ2

σ
e(z−1)2/σ 2

2 −(z+1)2/σ 2
and �−1

z (σ2) � 1

�z(σ2)
.

(36)

We note that (34) is analytic as a function of σ2 at σ2 = σ .
To see this, observe that the first term of (34) can be further
computed as

− log(2
√

2πσ2)

∫ ∞

0
p(z)dz

−
∫ ∞

0

1

2
√

2πσσ 2
2

(z − 1)2e−(z+1)2/σ 2
dz

−
∫ ∞

0

1

2
√

2πσ 3
2

(z − 1)2e−(z−1)2/σ 2
2 dz,

which is analytic at σ2 = σ since each of the three terms above
is analytic at σ2 = σ (for the second or third term, regard σ2 as
a complex variable and use the exponentially-decaying tail of
the integrand). With a similar argument applied to the second
term of (34), we can then establish the analyticity of (34).
So, to prove h(Z) is not analytic at σ2 = σ , it suffices to
show that (35) is not analytic at σ2 = σ .

Suppose, by way of contradiction, that (35) is analytic at σ ,
or equivalently, the following function of ω
∫ ∞

0

(
1

2

σ−1

√
2π

e−(z+1)2σ−2 + 1

2

ω√
2π

e−(z−1)2ω2
)

log (1 + �z(1/ω)) dz

+
∫ 0

−∞

(
1

2

σ−1
√

2π
e−(z+1)2σ−2+1

2

ω√
2π

e−(z−1)2ω2
)

log
(

1 + �−1
z (1/ω)

)
dz (37)

is analytic at σ−1 ∈ Cσ−1(r) (the closure of the
r -neighborhood of σ−1 in C) for some r > 0, where, recalling
from (36),

�z(1/ω) = σ−1

ω
e(z−1)2ω2−(z+1)2σ−2

.

Then, by uniqueness, the analytic extension of (37) to Cσ−1(r)
would agree with any analytic extension along the circle
{σ−1 + reiα : α ∈ [−π/2, 3π/2]} (from α = −π/2 to
α = 3π/2). Such an analytic extension is obtained
by regarding ω as a complex variable on the circle

(this is a valid analytic extension by virtue of the
exponentially-decaying tails of the integrands in (37)). Here,
we remark that for any r > 0 and α, there are at most two
“singular” z (note that the following inequality boils down to
a system of two quadratic equations in z) such that

�z(1/(σ−1 + reiα)) = −1,

which means log
(
1 + �z(1/(σ−1 + reiα))

)
or

log
(
1 + �−1

z (1/(σ−1 + reiα))
)

would “blow up” at such z.
However, an easy bounding argument (roughly speaking, the
two “blowing up” terms will only do so “slowly”) yields that
during the analytic extension, (37) is still well-defined with
the presence of such singular z, and so the above analytic
extension is indeed valid.

Next, we will find a contradiction by showing that the
analytic extension of (37) disagrees at α = −π/2 and
α = 3π/2. Setting ω = σ−1 + reiα , we then have

σ−1

w
= σ−1

σ−1 + r cos α + ir sin α

= σ−2 + σ−1r cos α − iσ−1r sin α

σ−2 + 2σ−1r cos α + r2 � ea(r,α)+ib(r,α),

where one can easily check that

a(r, α) = O(r), b(r, α) = O(r),
∂b(r, α)

∂α
= O(r).

Then, some straightforward computations yield that

�z(1/ω) = eA(z,r,α)ei B(z,r,α),

where

A(z, r, α) � 2(z − 1)2σ−1r cos α + (z − 1)2r2 cos 2α

− 4zσ−2 + a(r, α),

and

B(z, r, α) � 2(z − 1)2σ−1r sin α

+ (z − 1)2r2 sin 2α + b(r, α).

Now, for some small yet fixed ε > 0, choose N > 0 large
enough and then r > 0 small enough such that

(I) for all 0 ≤ z ≤ N and all α ∈ [−π/2, 3π/2], B(z, r, α) ∈
(−π, π);

(II) for all z ≥ N and all α ∈ [−π/2 + ε, π/2 − ε] ∪ [π/2 +
ε, 3π/2 − ε],

4zσ−2 � |a(r, α)|,
|2(z − 1)2σ−1r cos α| � |(z − 1)2r2 cos 2α + a(r, α)|

and ∣∣∣∣ ∂

∂α
(2(z − 1)2σ−1r sin α)

∣∣∣∣
�

∣∣∣∣ ∂

∂α
((z − 1)2r2 sin 2α + b(r, α))

∣∣∣∣ .
Note that for all 0 ≤ z ≤ N , by (I), �z(1/ω) will not

go around −1 (in any direction) for one complete round as
α increases from −π/2 to 3π/2. Next, we consider the case
when z ≥ N . Notice that, by (II), for any fixed z ≥ N , as
α increases from −π/2 + ε to π/2 − ε, B(z, r, α) increases
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as well. If, for some z ≥ N and α0 ∈ [−π/2,−π/2 + ε] ∪
[π/2 − ε, π/2],

A(z, r, α0) > 0,

it then follows from (II) that there exists � = �(ε) > 0
such that � → ∞ as ε → 0 and for the same z and any
α ∈ [−�ε, �ε],

A(z, r, α) > 0.

On the other hand, it follows from (II) that for any z ≥ N and
for any α ∈ [π/2 + ε, 3π/2 − ε],

A(z, r, α) < 0;
straightforward computations also yield that for any z ≥ N
and for any α ∈ [π/2, π/2 + ε] ∪ [3π/2 − ε, 3π/2],

A(z, r, α) < 0.

It then follows that �z(1/ω) will not go around −1 (in any
direction) for one complete round as α increases from
π/2 to 3π/2.

We are now ready to conclude that as α increases from
−π/2 to 3π/2, for any z ≥ N with �z(1/(σ−1+reiα)) 
= −1,
�z(1/ω) will go around −1 anti-clockwise k(z) times, where
k(z) is a non-negative integer; meanwhile, one checks that
when z is large enough, k(z) is strictly positive. The idea
can be roughly described as follows. Consider the “trajectory”
of �z(1/ω) as α increases from −π/2 to 3π/2. Obviously,
A(z, r, α) > 0 means the magnitude of the corresponding
“location” is strictly bigger than 1; B(z, r, α) > 0 means at the
corresponding “location”, �z(1/ω) is going anti-clockwise.
The above argument shows that given sufficiently small ε
(and thus � sufficiently large), for all the time when the “loca-
tion” is at least 1 away from the origin, “more often” �z(1/ω)
goes around −1 anti-clockwise (for any α ∈ [−π/2,−π/2 +
ε] ∪ [π/2 − ε, π/2], �z(1/ω) may go around −1 clockwise,
whereas for all α ∈ [−�ε, �ε], �z(1/ω) must go around −1
anti-clockwise).

So, for any analytic extension along the circle {σ−1 +reiα :
α ∈ [−π/2, 3π/2]} (from α = −π/2 to α = 3π/2), we have
proven that for any z ≥ 0 with �z(1/(σ−1 + reiα)) 
= −1,

�
(

lim
α→(3π/2)− log

(
1 + �z(1/(σ−1 + reiα))

))

= �
(

lim
α→(−π/2)+ log

(
1 + �z(1/(σ−1 + reiα))

))
+ 2k(z)π i,

where k(z) is a non-negative integer for all z and a strictly
positive integer for all sufficiently large z. Using a similar
argument, we can also prove that for any z ≤ 0 with
�−1

z (1/(σ−1 + reiα)) 
= −1,

�
(

lim
α→(3π/2)−

log
(

1 + �−1
z (1/(σ−1 + reiα))

))

= �
(

lim
α→(−π/2)+ log

(
1 + �−1

z (1/(σ−1 + reiα))
))

+ 2k(z)π i,

where k(z) is a non-negative integer for all z and a strictly
positive integer for all sufficiently large |z|. This, however,

implies that for the above analytic extension, (37) disagrees at
α = −π/2 and α = 3π/2, which is a contradiction.

Remark 5: The previous example shows that for fixed
σ1 = σ , h(Z) is not analytic with respect to σ2 at σ2 = σ .
On the other hand, when σ1, σ2 are both equal to σ > 0 and
vary together keeping σ1 = σ2, h(Z) is in fact analytic with
respect to σ . To see this, note that when σ1 = σ2 = σ > 0,
we have

p(z) = 1

2

1√
2πσ

(
e−(z+1)2/σ 2 + e−(z−1)2/σ 2

)
,

and furthermore,

h(Z) = −
∫ ∞

−∞
p(z) log p(z)

= − log(2
√

2πσ) +
∫ ∞

−∞
p(z)(z + 1)2/σ 2dz

−
∫ ∞

−∞
p(z) log(1 + e−4z/σ 2

)dz

= − log(2
√

2πσ) +
∫ ∞

−∞
p(z)(z + 1)2/σ 2dz

− σ 2
∫ ∞

−∞
p(σ 2z) log(1 + e−4z)dz. (38)

Note that it is easy to check that all the three terms in (38)
are analytic with respect to σ , which immediately implies that
h(Z) is analytic with respect to σ .

V. A COMPLEX HILBERT METRIC

In this section, we briefly review the complex Hilbert metric
that will be of critical use in the proofs of Theorem 1 and 3.
Several useful properties of this metric will be stated/proved
as well.

Recall that W̃ denote the complex version of W ,

W̃ = {w = (w1, w2, · · · , wl ) ∈ C
l :

∑
i

wi = 1}.

Let

W̃+ = {v ∈ W̃ : (vi/v j ) > 0 for all i, j}.
For v,w ∈ W̃+, define

d̃H (v,w) = max
i, j

∣∣∣∣log

(
wi/w j

vi/v j

)∣∣∣∣, (39)

where log is taken as the principal branch of the complex log(·)
function (i.e., the branch whose branch cut is the negative real
axis). Since the principal branch of log is additive on the
right-half plane, d̃H is a metric on W̃+, which we call
a complex Hilbert metric (for alternative complex Hilbert
metrics, see [6], [37]).

Let M denote the set of all l × l stochastic matrices, i.e.,

M = {� = (πi j ) ∈ R
l×l : πi j ≥ 0,

l∑
j=1

πi j = 1},

and let M̃ denote the complex version of M , defined as

M̃ = {� = (πi j ) ∈ C
l×l :

l∑
j=1

πi j = 1, for all i}.
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For a given positive � ∈ M and a small δ1 > 0,
let M̃�(δ1) denote the δ1-neighborhood, under the
Euclidean metric, around � within M̃ . For an element
�̃ ∈ M̃�(δ1), similar to (13), �̃ will induce a mapping
f�̃ on W̃ . For a small δ2 > 0, let W̃W ◦,H (δ2) denote the
δ2-neighborhood of W ◦ within W̃+ under the complex
Hilbert metric, i.e.,

W̃W ◦,H (δ2) = {v = (v1, v2, · · · , vl ) ∈ W̃+ : d̃H (v, u) ≤ δ2,

for some u ∈ W ◦}.
The main result of [15] states:

Theorem 5: Let � be a positive matrix in M. For
sufficiently small δ1, δ2 > 0, there exists 0 < ρ1 < 0 such
that for any �̃ ∈ M̃�(δ1), f�̃ is a ρ1-contraction mapping on
W̃W ◦,H (δ2) under the complex Hilbert metric in (39).

For δ > 0, let CR+[δ] denote the “δ-cone” of R
+

within C, i.e.,

CR+[δ] = {x + yi ∈ C : x > 0,−δx ≤ y ≤ δx}.
The following Lemma can be easily checked.

Lemma 5: For sufficiently small δ1 > 0, there exists a
positive constant L1 such that for any α, β ∈ CR+[δ1]

| log α − log β| ≤ L1 max

( |α − β|
|α| ,

|α − β|
|β|

)
.

The following lemma essentially follows from [15, Proof of
Part 2 of Lemma 2.3] (in particular, its Part 1 is just a rephrased
version of Part 2 of that lemma), allows us to connect the
complex Hilbert metric and the Euclidean metric. We give a
proof for completeness.

Lemma 6: 1) For any δ > 0, there exists ξ > 0 such
that for any x̃ ∈ W̃+, x ∈ W ◦ with d̃H (x̃, x) ≤ ξ , we
have x̃i ∈ W̃W ◦,H (δ) for all i .

2) For any ζ > 0, there exists a constant C > 0 such that
for any x̃, ỹ ∈ W̃+ with ‖x̃ − x‖, ‖ỹ − y‖ ≤ ζ for some
x, y ∈ W ◦, we have

‖x̃ − ỹ‖ ≤ Cd̃H (x̃, ỹ).
Proof: We only prove Part 2. Let ξ = d̃H (x̃, ỹ). Then we

have for all i, j , ∣∣∣∣log

(
x̃i/ỹi

x̃ j/ỹ j

)∣∣∣∣ ≤ ξ.

There exists C1 > 0 such that for ξ sufficiently small, and for
all i, j ,

∣∣∣ x̃i/ ỹi
x̃ j/ ỹ j

− 1
∣∣∣ ≤ C1ξ . Let α j = x̃ j/ỹ j . Then for all i, j ,

|x̃i − α j ỹi | ≤ C1ξ |α j ||ỹi |,
and so

|1 − α j | =
∣∣∣∣∣

n∑
i=1

(x̃i − α j ỹi)

∣∣∣∣∣ ≤
n∑

i=1

|x̃i − α j ỹi |

≤ C1ξ |α j |
n∑

i=1

|ỹi | = C1(1 + Bζ )ξ |α j |.

It follows that

|x̃ j − ỹ j | ≤ C1(1 + Bζ )ξ |x̃ j | ≤ C1(1 + Bζ )ξ(x j + ζ ),

which implies Part 2, if ξ is sufficiently small. �

VI. PROOF OF THEOREM 1

The following lemma is an analog of Lemma 1.
Lemma 7: For any δ > 0, there exists r1 > 0 such that for

any �ε ∈ C
m1
�ε0

(r1), any z ∈ Z and any x ∈ W, we have

d̃H ( f �ε
z (x), f �ε0

z (x)) ≤ δ.
Proof: Since all πi j ( �ε0) are strictly positive, for any

δ1 > 0, there exists r1 > 0 such that for all i, j and all
�ε ∈ C

m1
�ε0

(r1),

|π �ε
i j − πi j ( �ε0)|
πi j ( �ε0)

≤ δ1.

Now, for any x = (x1, x2, · · · , xl) ∈ W , any j and any �ε ∈
C

m1
�ε0

(r1), we have

∣∣∣∣∣
∑l

i=1 xi (π
�ε
i j − πi j ( �ε0))∑l

i=1 xiπi j ( �ε0)

∣∣∣∣∣
=

∣∣∣∣∣
∑l

i=1 xiπi j ( �ε0)(π
�ε
i j − πi j ( �ε0))/πi j ( �ε0)∑l

i=1 xiπi j ( �ε0)

∣∣∣∣∣ ≤ δ1.

Thus, for any δ2 > 0, choosing δ1 sufficiently small, we have
∣∣∣∣∣log

∑l
i=1 xiπ

�ε
i j∑l

i=1 xiπi j ( �ε0)

∣∣∣∣∣
=

∣∣∣∣∣log

(
1 +

∑l
i=1 xi (π

�ε
i j − πi j ( �ε0))∑l

i=1 xiπi j ( �ε0)

)∣∣∣∣∣ ≤ δ2.

Notice that

d̃H ( f �ε
z (x), f �ε0

z (x))

= max
j,k

∣∣∣∣∣log

∑l
i=1 xiπ

�ε
i j q(z| j)∑l

i=1 xiπi j ( �ε0)q(z| j)

− log

∑l
i=1 xiπ

�ε
ikq(z|k)∑l

i=1 xiπik( �ε0)q(z|k)

∣∣∣∣∣
= max

j,k

∣∣∣∣∣log

∑l
i=1 xiπ

�ε
i j∑l

i=1 xiπi j ( �ε0)
− log

∑l
i=1 xiπ

�ε
ik∑l

i=1 xiπik( �ε0)

∣∣∣∣∣ .

It then follows that for any δ > 0, there exists r1 > 0 such
that for any �ε ∈ C

m1
�ε0

(r1) and any x ∈ W , we have

d̃H ( f �ε
z (x), f �ε0

z (x)) ≤ δ.

�
The following lemma, roughly speaking, says that when we

perturb �ε0 “a bit” to �ε, f �ε
z is still a contraction mapping on a

complex neighborhood of W ◦, and the contraction coefficient
is uniform over all the values of z. More precisely, recalling
W̃W ◦,H (δ) denote the δ-neighborhood of W ◦ of W̃ under the
complex Hilbert metric, we have

Lemma 8: For sufficiently small r1, δ > 0, there exists
0 < ρ1 < 1 such that for any �ε ∈ C

m1
�ε0

(r1) and any z ∈ Z , f �ε
z

is a ρ1-contraction mapping on W̃W ◦,H (δ) under the complex
Hilbert metric in (39).
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Proof: It can be easily checked that there exist some
r1, δ > 0 such that for any �ε ∈ C

m1
�ε0

(r1), any u, v ∈ W̃W ◦,H (δ)
and any z ∈ Z ,

d̃H (u��ε(z), v��ε(z)) = d̃H (u��ε, v��ε). (40)

The lemma then immediately follows from Theorem 5. �
The following lemma is also needed.
Lemma 9: 1) For any δ > 0, there exist r1 > 0 such

that for any �ε ∈ C
m1
�ε0

(r1) and for any z0−n ∈ Zn+1 and
−n − 1 ≤ i ≤ −1,

x �ε
i (zi−n) ∈ W̃W ◦,H (δ), (41)

and

p�ε(z0|z−1−n) ∈ CR+[δ]. (42)

2) There exist r1 > 0 such that for all z0−n ∈ Zn+1,
p�ε(z0|z−1−n) is analytic on C

m1
�ε0

(r1).
3) For sufficiently small r1 > 0, there exist 0 < ρ1 < 1 and

a positive constant L1 such that for any two Z-valued
sequences {a0−n1

} and {b0−n2
} with a0−n = b0−n and for

all �ε ∈ C
m1
�ε0

(r1), we have

|p�ε(a0|a−1−n1
) − p�ε(b0|b−1−n2

)| ≤ L1ρ
n
1 max

y′∈Y
q(a0|y ′).

Proof:

1. By Lemma 8, we can choose r1, δ > 0 sufficiently small
such that there exists 0 < ρ1 < 1 such that for all
�ε ∈ C

m1
�ε0

(r1), f �ε
z is a ρ1-contraction mapping on

W̃W ◦,H (δ) under the complex Hilbert metric.
Now, choose r1 > 0 so small (the existence of r1 is
guaranteed by Lemma 7) such that for any z ∈ Z , for
all x ∈ W , all �ε ∈ C

m1
�ε0

(r1)

d̃H ( f �ε
z (x), f �ε0

z (x)) ≤ δ(1 − ρ1), (43)

and for all �ε ∈ C
m1
�ε0

(r1),

d̃H (π �ε, π( �ε0)) ≤ δ(1 − ρ1). (44)

We then deduce that

d̃H (x �ε
i+1, x �ε0

i+1) = d̃H ( f �ε
zi+1

(x �ε
i ), f �ε0

zi+1
(x �ε0

i ))

≤ d̃H ( f �ε
zi+1

(x �ε
i ), f �ε

zi+1
(x �ε0

i ))

+ d̃H ( f �ε
zi+1

(x �ε0
i ), f �ε0

zi+1
(x �ε0

i )). (45)

Then, by (43), (44) and (45), for i > −n − 1, we have

d̃H (x �ε
i+1, x �ε0

i+1) ≤ ρd̃H (x �ε
i , x �ε0

i ) + δ(1 − ρ1).

So, for all i ,

d̃H (x �ε
i+1, x �ε0

i+1) ≤ δ,

and thus for all i , we have x �ε
i+1 ∈ W̃W ◦,H (δ), as

desired. This, together with (19) and Lemma 6 (Part 2),
implies (42).

2. It follows from Part 1 of Lemma 6 that for sufficiently
small r1, δ > 0 and any z ∈ Z , f �ε

z (x) is analytic with
respect to ( �ε, x) ∈ C

m1
�ε0

(r1) × W̃W ◦,H (δ). It follows

from this fact, the iterative nature of x �ε,�θ
i (see (17))

and Part 1 that for sufficiently small r1 > 0, each x �ε
i

is analytic on C
m1
�ε0

(r1). Part 2 then immediately follows
from (19).

3. For all �ε ∈ C
m1
�ε0

(r1), we write

x �ε
i,a = x �ε

i (ai−n1
) = p�ε(yi = · |ai−n1

),

x �ε
i,b = x �ε

i (bi−n2
) = p�ε(yi = · |bi−n2

).

Apparently we have

x �ε
i+1,a = f �ε

ai+1
(x �ε

i,a), x �ε
i+1,b = f �ε

bi+1
(x �ε

i,b).

Note that there exists a positive constant L ′
1 such that

d̃H (x �ε−n,a, x �ε
−n,b) ≤ L ′

1,

for all �ε ∈ C
m1
�ε0

(r1), where r1 > 0 are chosen sufficiently
small. Then from (52), we have

d̃H (x �ε−1,a, x �ε
−1,b) ≤ L ′

1ρ
n−1
1 .

Therefore, by Lemma 6, there exists a positive
constant L ′′

1 independent of n1, n2 such that for
any �ε ∈ C

m1
�ε0

(r1), we have

‖x �ε−1,a − x �ε−1,b‖ ≤ L ′′
1ρn

1 . (46)

Now, using (19) and the fact that

p�ε(a0) =
∑

y

π �ε
y q(a0|y),

we conclude that there is a positive constant L1, inde-
pendent of n1, n2 such that

|p�ε(a0|a−1−n1
) − p�ε(b0|b−1−n2

)| ≤ L1ρ
n
1 max

y′∈Y
q(a0|y ′).

(47)

We then have finished the proof. �
We are now ready for the proof of Theorem 1.
Proof of Theorem 1: We first prove that there exist r1 > 0

such that for any n, h�ε
n(Z) is analytic on C

m1
�ε0

(r1).
For a fixed n, recall that

h�ε
n(Z) = −

∫
Zn+1

p�ε(z0−n) log p�ε(z0|z−1−n)dz0−n,

where

p�ε(z0−n) =
∑
y0−n

p�ε(y0−n)

0∏
i=−n

q(zi |yi )

and

p�ε(z0|z−1−n) = x �ε−1(z
−1−n)��ε(z0)1.

Now, for any �ε ∈ C
m1
�ε0

(r1), we have

|p�ε(z0−n)| ≤
∑
y0−n

|p�ε(y0−n)|
0∏

i=−n

q(zi |yi )

≤
∑
y0−n

|p�ε(y0−n)|
0∏

i=−n

max
y′∈Y

q(zi |y ′). (48)
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And, by (41), for sufficiently small r1 > 0, there exist
C1, C2 > 0 such that for all �ε ∈ C

m1
�ε0

(r1)

C1 min
y′∈Y

q(z0|y ′) ≤ |p�ε(z0|z−1−n)| ≤ C2 max
y′∈Y

q(z0|y ′), (49)

which, together with (42), implies that for some C3 > 0,

| log p�ε(z0|z−1−n)| ≤ C3 + max{| log max
y′∈Y

q(z0|y ′)|,
| log min

y′∈Y
q(z0|y ′)|}.

This, together with (4), implies that on C
m1
�ε0

(r1),∫
Zn+1

sup
�ε∈C

m1
�ε0

(r1)

∣∣∣p�ε(z0−n) log p�ε(z0|z−1−n)
∣∣∣ dz0−n < ∞ (50)

By Lemma 4 (Part 2), h�ε
n(Z0|Z−1−n) is analytic on C

m1
�ε0

(r1).
Now, to prove the theorem, we only need to prove that

there exist r1 > 0 such that the h�ε
n(Z), as n → ∞, uniformly

converges on C
m1
�ε0

(r1). Note that

|h�ε
n+1(Z) − h�ε

n(Z)|
=

∣∣∣∣
∫
Zn+2

p�ε(z0−n−1) log p�ε(z0|z−1
−n−1)dz0−n−1

−
∫
Zn+1

p�ε(z0−n) log p�ε(z0|z−1−n)dz0−n

∣∣∣∣
=

∣∣∣∣
∫
Zn+2

p�ε(z0−n−1)(log p�ε(z0|z−1
−n−1)

− log p�ε(z0|z−1−n))dz0−n−1

∣∣∣∣ .
Fix �ε ∈ C

m1
�ε0

(r1). Then, by Lemmas 5 and 9, either we have,
for some 0 < ρ1 < 1, L ′

1 > 0 and some δ1 with (1+δ1)ρ1 < 1

|p�ε(z0−n−1)(log p�ε(z0|z−1
−n−1) − log p�ε(z0|z−1−n))|

≤ L ′
1

∣∣∣∣∣p�ε(z0−n−1)
p�ε(z0|z−1

−n−1) − p�ε(z0|z−1−n)

p�ε(z0|z−1
−n−1)

∣∣∣∣∣
≤ L ′

1|p�ε(z−1
−n−1)|L1ρ

n
1 max

y′∈Y
q(z0|y ′),

or we have, for some 0 < ρ1 < 1, L ′
1 > 0 and some δ1 with

(1 + δ1)ρ1 < 1,

|p�ε(z0−n−1)(log p�ε(z0|z−1
−n−1) − log p�ε(z0|z−1−n))|

≤ L ′
1

∣∣∣∣∣p�ε(z0−n−1)
p�ε(z0|z−1

−n−1) − p�ε(z0|z−1−n))

p�ε(z0|z−1−n)

∣∣∣∣∣
≤ L ′

1|p�ε(z−1−n)||p�ε(z−n−1|z0−n)|L1ρ
n
1 max

y′∈Y
q(z0|y ′).

Notice that for any given δ > 0, there exist r1, r2 > 0 such
that for all �ε ∈ C

m
�ε0

(r1),

|π �ε
y−n

| ≤ (1 + δ)π �ε0
y−n

, |π �ε
yi yi+1

| ≤ (1 + δ)π �ε0
yi yi+1

.

It then follows from the first inequality sign of (48) that∫
Zn

|p�ε,�θ (z−1−n)|dz−1−n ≤ (1 + δ)n,
∫
Zn+1

|p�ε,�θ (z−1
−n−1)|dz−1

−n−1 ≤ (1 + δ)n+1.

Moreover, similar to (49), we have for some C4,
C5 > 0,

C4 min
y′∈Y

q
�θ ′
(z−n−1|y ′) ≤ |p�ε,�θ (z−n−1|z0−n)|

≤ C5 max
y′∈Y

q(z−n−1|y ′).

By choosing δ > 0 sufficiently small, we can combine all
the relevant inequalities above to obtain some L > 0 and some
0 < ρ < 1 such that for all �ε ∈ C

m1
�ε0

(r1),

|h�ε
n+1(Z) − h�ε

n(Z)|

≤
∫
Zn+2

|p�ε(z0−n−1)(log p�ε(z0|z−1
−n−1)

− log p�ε(z0|z−1−n))|dz0−n−1 ≤ Lρn,

which implies the analyticity of h�ε(Z) around �ε0. �

VII. PROOF OF THEOREM 3

The proof of Theorem 3 follows from a parallel flow
as in that of Theorem 1. We will only give a sketch of
the proof, while highlighting the parts requiring the extra
conditions (b), (c) and (11).

The following lemma is an analog of Lemma 7.
Lemma 10: For any δ > 0, there exist r1, r2 > 0 such that

for any ( �ε, �θ) ∈ C
m1
�ε0

(r1) × C
m2
�θ0

(r2), any z ∈ Z and any
x ∈ W, we have

d̃H ( f �ε,�θ
z (x), f �ε0,�θ0

z (x)) ≤ δ.
Proof: Since all πi j ( �ε0) are strictly positive, for any

δ1 > 0, there exists r1 > 0 such that for all i, j and all
�ε ∈ C

m1
�ε0

(r1),

|π �ε
i j − πi j ( �ε0)|
πi j ( �ε0)

≤ δ1.

Now, for any x = (x1, x2, · · · , xl) ∈ W , any j and any �ε ∈
C

m1
�ε0

(r1), we have

∣∣∣∣∣
∑l

i=1 xi (π
�ε
i j − πi j ( �ε0))∑l

i=1 xiπi j ( �ε0)

∣∣∣∣∣

=
∣∣∣∣∣
∑l

i=1 xiπi j ( �ε0)(π
�ε
i j − πi j ( �ε0))/πi j ( �ε0)∑l

i=1 xiπi j ( �ε0)

∣∣∣∣∣ ≤ δ1.

Thus, for any δ2 > 0, choosing δ1 sufficiently small,
we have

∣∣∣∣∣log

∑l
i=1 xiπ

�ε
i j∑l

i=1 xiπi j ( �ε0)

∣∣∣∣∣

=
∣∣∣∣∣log

(
1 +

∑l
i=1 xi (π

�ε
i j − πi j ( �ε0))∑l

i=1 xiπi j ( �ε0)

)∣∣∣∣∣ ≤ δ2.
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Notice that

d̃H ( f �ε,�θ
z (x), f �ε0,�θ0

z (x))

= max
j,k

∣∣∣∣∣∣log

∑l
i=1 xiπ

�ε
i j q �θ (z| j)∑l

i=1 xiπi j ( �ε0)q
�θ0(z| j)

− log

∑l
i=1 xiπ

�ε
ikq �θ (z|k)∑l

i=1 xiπik( �ε0)q
�θ0(z|k)

∣∣∣∣∣

= max
j,k

∣∣∣∣∣log

∑l
i=1 xiπ

�ε
i j∑l

i=1 xiπi j ( �ε0)
+ log

q �θ (z| j)

q �θ0(z| j)

− log

∑l
i=1 xiπ

�ε
ik∑l

i=1 xiπik( �ε0)
− log

q �θ (z|k)

q �θ0(z|k)

∣∣∣∣∣ .
It then follows from the second inequality of (11) that for
any δ > 0, there exist r1, r2 > 0 such that for any ( �ε, �θ) ∈
C

m1
�ε0

(r1) × C
m2
�θ0

(r2) and any x ∈ W , we have

d̃H ( f �ε,�θ
z (x), f �ε0,�θ0

z (x)) ≤ δ.

�
The following lemma is an analog of Theorem 8.
Lemma 11: For sufficiently small r1, r2, δ > 0, there exists

0 < ρ1 < 1 such that for any ( �ε, �θ) ∈ C
m1
�ε0

(r1)×C
m2
�θ0

(r2) and

any z ∈ Z , f �ε,�θ
z is a ρ1-contraction mapping on W̃W ◦,H (δ)

under the complex Hilbert metric in (39).
Proof: By (11), we can choose r1, r2, δ > 0 sufficiently

small such that for any z ∈ Z , any ( �ε, �θ) ∈ C
m1
�ε0

(r1)×C
m2
�θ0

(r2)

and any u, v ∈ W̃W ◦,H (δ),

d̃H (u��ε,�θ (z), v��ε,�θ (z))

is well-defined. Moreover, it can be easily checked that

d̃H (u��ε,�θ (z), v��ε,�θ (z)) = d̃H (u��ε, v��ε). (51)

The lemma then immediately follows from Theorem 5. �
The following lemma is an analog of Theorem 9.
Lemma 12: 1) For any δ > 0, there exist r1, r2 > 0 such

that for any ( �ε, �θ) ∈ C
m1
�ε0

(r1) × C
m2
�θ0

(r2) and for any

z0−n ∈ Zn+1 and −n − 1 ≤ i ≤ −1,

x �ε,�θ
i (zi−n) ∈ W̃W ◦,H (δ), (52)

and

p�ε,�θ (z0|z−1−n) ∈ CR+[δ]. (53)

2) There exist r1, r2 > 0 such that for all z0−n ∈ Zn+1,

p�ε,�θ (z0|z−1−n) is analytic on C
m1
�ε0

(r1) × C
m2
�θ0

(r2).
3) For sufficiently small r1, r2 > 0, there exist 0 < ρ1 < 1

and a positive constant L1 such that for any two
Z-valued sequences {a0−n1

} and {b0−n2
} with a0−n = b0−n

and for all ( �ε, �θ) ∈ C
m1
�ε0

(r1) × C
m2
�θ0

(r2), we have

|p�ε,�θ (a0|a−1−n1
) − p�ε,�θ (b0|b−1−n2

)| ≤ L1ρ
n
1

sup
(y′,�θ ′)∈Y×C

m2
�θ0

(r2)

|q �θ ′
(a0|y ′)|.

Proof:

1. It follows from a parallel argument as in the proof of
Part 1 of Theorem 9.

2. It follows from (11(i)) and Part 1 of Lemma 6 that for
sufficiently small r1, r2, δ > 0 and any z ∈ Z , f �ε,�θ

z (x) is
analytic with respect to ( �ε, �θ, x) ∈ C

m1
�ε0

(r1)×C
m2
�θ0

(r2)×
W̃W ◦,H (δ). It follows from this fact, the iterative nature

of x �ε,�θ
i (see (17)) and Part 1 that for sufficiently small

r1, r2 > 0, each x �ε,�θ
i is analytic on C

m1
�ε0

(r1) × C
m2
�θ0

(r2).
Part 2 then immediately follows from (19).

3. It follows from a parallel argument as in the proof of
Part 3 of Theorem 9. �

We are now ready for the proof of Theorem 3.
Proof of Theorem 3: We first prove that there exist r1, r2 > 0

such that for any n, h�ε,�θ
n (Z) is analytic on C

m1
�ε0

(r1)×C
m2
�θ0

(r2).
For a fixed n, recall that

h�ε,�θ
n (Z) = −

∫
Zn+1

p�ε,�θ (z0−n) log p�ε,�θ (z0|z−1−n)dz0−n,

where

p�ε,�θ (z0−n) =
∑
y0−n

p�ε(y0−n)

0∏
i=−n

q
�θ (zi |yi)

and

p�ε,�θ (z0|z−1−n) = x �ε,�θ
−1 (z−1−n)��ε,�θ (z0)1.

Now, for any ( �ε, �θ) ∈ C
m1
�ε0

(r1) × C
m2
�θ0

(r2), we have

|p�ε,�θ (z0−n)| ≤
∑
y0−n

|p�ε(y0−n)|
0∏

i=−n

|q �θ (zi |yi)|

≤
∑
y0−n

|p�ε(y0−n)|
0∏

i=−n

sup
(y′,�θ ′)∈Y×C

m2
�θ0

(r2)

|q �θ ′
(zi |y ′)|.

(54)

And, by (52), for sufficiently small r1, r2 > 0, there exist
C1, C2 > 0 such that

C1 inf
(y′,�θ ′)∈Y×C

m2
�θ0

(r2)
|q �θ ′

(z0|y ′)|

≤ |p�ε,�θ (z0|z−1−n)| ≤ C2 sup
(y′,�θ ′)∈Y×C

m2
�θ0

(r2)

|q �θ ′
(z0|y ′)|, (55)

which, together with (53), implies that for some C3 > 0,

| log p�ε,�θ (z0|z−1−n)|
≤ C3 + max{| log sup

(y′,�θ ′)∈Y×C
m2
�θ0

(r2)

|q �θ ′
(z0|y ′)|,

log inf
(y′,�θ ′)∈Y×C

m2
�θ0

(r2)
|q �θ ′

(z0|y ′)|}.
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This, together with (5), implies that on C
m1
�ε0

(r1) × C
m2
�θ0

(r2),

∫
Zn+1

sup
( �ε,�θ)∈C

m1
�ε0

(r1)×C
m2
�θ0

(r2)

×
∣∣∣p�ε,�θ (z0−n) log p�ε,�θ (z0|z−1−n)

∣∣∣ dz0−n < ∞ (56)

By Lemma 4 (Part 2), h�ε,�θ
n (Z0|Z−1−n) is analytic

on C
m1
�ε0

(r1) × C
m2
�θ0

(r2).

Now, to prove the theorem, we only need to prove that there

exist r1, r2 > 0 such that the h�ε,�θ
n (Z), as n → ∞, uniformly

converges on C
m1
�ε0

(r1) × C
m2
�θ0

(r2). Note that

|h�ε,�θ
n+1(Z) − h�ε,�θ

n (Z)|

=
∣∣∣∣
∫
Zn+2

p�ε,�θ (z0−n−1) log p�ε,�θ (z0|z−1
−n−1)dz0−n−1

−
∫
Zn+1

p�ε,�θ (z0−n) log p�ε,�θ (z0|z−1−n)dz0−n

∣∣∣∣
=

∣∣∣∣
∫
Zn+2

p�ε,�θ (z0−n−1)(log p�ε,�θ (z0|z−1
−n−1)

− log p�ε,�θ (z0|z−1−n))dz0−n−1

∣∣∣∣ .
Fix ( �ε, �θ) ∈ C

m1
�ε0

(r1) × C
m2
�θ0

(r2). Then, by Lemmas 5 and 12,

either we have, for some 0 < ρ1 < 1, L ′
1 > 0 and some δ1

with (1 + δ1)ρ1 < 1

|p�ε,�θ (z0−n−1)(log p�ε,�θ (z0|z−1
−n−1) − log p�ε,�θ (z0|z−1−n))|

≤ L ′
1

∣∣∣∣∣p�ε,�θ (z0−n−1)
p�ε,�θ (z0|z−1

−n−1) − p�ε,�θ (z0|z−1−n)

p�ε,�θ (z0|z−1
−n−1)

∣∣∣∣∣
≤ L ′

1|p�ε,�θ (z−1
−n−1)|L1ρ

n
1 sup

(y′,�θ ′)∈Y×C
m2
�θ0

(r2)

|q �θ ′
(z0|y ′)|,

or we have, for some 0 < ρ1 < 1, L ′
1 > 0 and some δ1 with

(1 + δ1)ρ1 < 1,

|p�ε,�θ (z0−n−1)(log p�ε,�θ (z0|z−1
−n−1) − log p�ε,�θ (z0|z−1−n))|

≤ L ′
1

∣∣∣∣∣p�ε,�θ (z0−n−1)
p�ε,�θ (z0|z−1

−n−1) − p�ε,�θ (z0|z−1−n))

p�ε,�θ (z0|z−1−n)

∣∣∣∣∣
≤ L ′

1|p�ε,�θ (z−1−n)||p�ε,�θ (z−n−1|z0−n)|L1ρ
n
1

sup
(y′,�θ ′)∈Y×C

m2
�θ0

(r2)

|q �θ ′
(z0|y ′)|.

Notice that for any given δ > 0, there exist r1, r2 > 0 such
that for all �ε ∈ C

m
�ε0

(r1),

|π �ε
y−n

| ≤ (1 + δ)π �ε0
y−n

, |π �ε
yi yi+1

| ≤ (1 + δ)π �ε0
yi yi+1

,

and for any y ∈ Y and all �θ ∈ C
m2
�θ0

(r2),

∫
Z

|q �θ (z|y)|dz ≤ (1 + δ)

∫
Z

q
�θ0(z|y)dz = 1 + δ,

(here we have used the fact that
∫
Z |q �θ (z|y)|dz is a continuous

function of �θ ∈ C
m2
�θ0

(r2); this follows from Lemma 4 (Part 1)).
It then follows from the first inequality sign of (54) that∫

Zn
|p�ε,�θ (z−1−n)|dz−1−n ≤ (1 + δ)2n,

∫
Zn+1

|p�ε,�θ (z−1
−n−1)|dz−1

−n−1 ≤ (1 + δ)2(n+1).

Moreover, similar to (55), we have for some C4, C5 > 0,

C4 inf
(y′,�θ ′)∈Y×C

m2
�θ0

(r2)
|q �θ ′

(z−n−1|y ′)| ≤ |p�ε,�θ (z−n−1|z0−n)|

≤ C5 sup
(y′,�θ ′)∈Y×C

m2
�θ0

(r2)

|q �θ ′
(z−n−1|y ′)|.

By choosing δ > 0 sufficiently small, we can combine all
the relevant inequalities above to obtain some L > 0 and some
0 < ρ < 1 such that for all ( �ε, �θ) ∈ C

m1
�ε0

(r1) × C
m2
�θ0

(r2),

|h�ε,�θ
n+1(Z) − h�ε,�θ

n (Z)|
≤

∫
Zn+2

|p�ε,�θ (z0−n−1)(log p�ε,�θ (z0|z−1
−n−1)

− log p�ε,�θ (z0|z−1−n))|dz0−n−1 ≤ Lρn,

which implies the analyticity of h�ε,�θ (Z) around ( �ε0, �θ0). �

VIII. CONCLUDING REMARKS

Under certain mild assumptions, employing a complex
Hilbert metric in a critical way, we show that the entropy rate
of a class of hidden Markov chains with continuous alphabet
is analytic with respect to the input Markov chain parameters.
Joint analyticity results with respect to both the input
Markov chain parameters and the channel parameters, which
apply to additive Cauchy or Gaussian channels, are further
obtained under strengthened assumptions on the channel.
Given the implications of the analyticity results in the discrete
setting, we expect that the results in this paper will be of great
interest and significance in the continuous setting. Further
work include the applications of the analyticity results in this
paper to computations of entropy rate of hidden Markov chains
and capacity of finite-state channels with continuous output
alphabet.
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