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In this paper, we study the growth, in terms of the Nevanlinna characteristic function,
of meromorphic solutions of three types of second order nonlinear algebraic ordinary
differential equations. We give all their meromorphic solutions explicitly, and hence
show that all of these ODEs satisfy the classical conjecture proposed by Hayman in
1996.
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1. Introduction

One important aspect of the studies of complex ordinary differential equations
(ODEs) is to investigate the growth of their solutions which are meromorphic on
the whole complex plane C. A well known problem in this direction is the following
classical conjecture [1, 2, p. 344] proposed by Hayman in [3].

Conjecture 1.1 (Hayman) If w is a meromorphic solution of

P (z, w,w′, · · · , w(n)) = 0, (1)

where P is a polynomial in all its arguments, then there exist a, b, c ∈ R+ such that

T (r, w) < a expn−1(br
c), 0 ≤ r < ∞, (2)

where T (r, w) is the Nevanlinna characteristic of w(z) and expl(x) is the l times
iterated exponential, i.e.,

exp0(x) = x, exp1(x) = ex, expl(x) = exp{expl−1(x)}.

*Corresponding author. E-mail: ntw@maths.hku.hk
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The conjecture for the case n = 2 was proposed by Bank in [4]. When n = 1, (2)
reduces to

T (r, w) < arc, 0 ≤ r < ∞, (3)

and we say that a meromorphic function w has finite order if it satisfies (3).
The infimum σ of all possible numbers c is called the order of w. For example,
sin z, cos z, tan z, ez and the gamma function Γ(z) have order 1. The Weierstrass
ellptic function ℘(z), which satisfies (℘′)2 = 4(℘− e1)(℘− e2)(℘− e3), has order 2.
The function ee

z

has infinite order but satisfies (2) with n = 2, c = 1. Throughout
the paper, we use the standard notations and results of Nevanlinna theory [5, 6]
and we shall consider solutions meromorphic on C.
In this paper, we consider the following three types of second order ordinary

differential equations (ODEs)

ww′′ − w′2 + P (w) = 0, (4)

w′′ + cw′2 + P (w) = 0, (5)

w′′ + cw′ + P (w) = 0, (6)

where c ∈ C and P is a polynomial. We prove (see Theorems 3.1, 3.2, 3.4) that
the classical conjecture holds for above equations and moreover we find all their
meromorphic solutions in closed form.

2. Existing results

The classical conjecture holds for any linear algebraic differential equation. In fact, if
f is a meromorphic solution of an(z)w

(n)+an−1(z)w
(n−1)+ · · ·+a1(z)w

′+a0(z)w =
h(z), where all the coefficients a0, a1, . . . , an, h are polynomials, then w is of finite
order [7, 8]. One class of nonlinear ODEs which supports the classical conjecture is
the higher order Briot-Bouquet differential equation: Q(w(n), w) = 0, n ∈ N, where
Q is a polynomial in two variables, as Eremenko, Liao and Ng [9] proved that all
their non-entire meromorphic solutions belong to the class W , which consists of
elliptic functions and their successive degeneracies, i.e., elliptic functions, rational
functions of one exponential exp(kz), k ∈ C and rational functions of z.
Some other positive results toward the classical conjecture are as follows.

Theorem 2.1 (Gol’dberg [10] or [6, 11, p. 223]) Suppose (1) is a first order dif-
ferential equation, then all its meromorphic solutions have finite order.

The classical conjecture for n = 2 remains open and only some partial results
are known. Steinmetz [12] proved that (2) holds for any second order differential
equation P (z, w,w′, w′′) = 0 provided that P is homogeneous in w,w′ and w′′. He
further proved that each meromorphic solution of such an ODE can be expressed
in terms of entire functions of finite order.

Theorem 2.2 (Steinmetz [6, 12, p. 248]) Suppose P (z, w,w′, w′′) is homogeneous

2
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in w,w′ and w′′. Then all meromorphic solutions of the ODE (1) are of the form

G(z) =
g1(z)

g2(z)
exp g3(z),

where g1, g2 and g3 are entire functions of finite order.

For higher order cases, little is known. If we restrict ourselves to the study of entire
solutions of (1), by making use of Wiman-Valiron theory, Hayman [3] obtained a
positive result to certain subclass of the algebraic differential equation

P =
∑

λ∈I
aλ(z)w

i0(w′)i1 · · · (w(n))in = 0, (7)

where I consists of finite multi-indices of the form λ = (i0, i1 · · · , in), ik ∈ N and
aλ are polynomials in z. To state Hayman’s result, we recall the definition of degree
and weight of the ODE (7).
The degree of each term in (7) is defined to be |λ| = i0 + i1 + · · · + in and the

weight ||λ|| is defined by ||λ|| = i0 + 2i1 + · · · + (n + 1)in. We shall consider the
terms with the highest weight among all those with the highest degree in (7). Let
Λ = {λ||λ| = max

λ′∈I
|λ′|} and Ω be the subset of Λ such that it consists of those terms

with the highest weight, then we have

Theorem 2.3 (Hayman [3]) Suppose Ω is defined as above for ODE (7). Let d be
the maximum degree of all the polynomials aλ(z) and suppose that

∑

λ∈Ω
aλ(z) 6= 0.

Then all entire solutions of (1) have finite order σ ≤ max{2d, 1 + d}.

Remark 2.4 The upper bound in Theorem 2.3 is sharp but the same result cannot
be extended to meromorphic solutions [3].

Remark 2.5 Theorem 2.3 includes Theorem 2.1 if we restrict ourselves to entire
solutions of first order algebraic ODEs, since the assumption in Theorem 2.3 always
holds in this case (there is only one term with highest weight and highest degree).
However, it is not the case for second order ODEs. One example for which Theorem
2.3 is inappliable is ww′′ − w′2 − ww′ = 0, but it satisfies the classical conjecture
according to Theorem 2.2.

Among the second order differential equations which are not covered by Theorems
2.2 and 2.3, the simplest one [1, 3] is perhaps

ww′′ − w′2 = a2w
′′ + a1w

′ + a0w + b, (8)

where aj and b are rational in z (or even constants) and are not all identically
zero. If all the aj and b are constants, Chiang and Halburd [1] proved that all
meromorphic solutions of (8) satisfy (2) by explicitly giving all its meromorphic
solutions which are either polynomials or rational functions of one exponential.

3
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Their result is obtained mainly by combining Wiman-Valiron theory [6, 13, Chapter
3], local series analysis and reduction of order. Using a different approach, Liao [14]
obtained the same result. Recently, Halburd and Wang [15] verified the classical
conjecture for aj and b rational.

3. Main Results

We will show that the classical conjecture is true for the ODEs (4)-(6) which are not
covered by any of the above results. The main results can now be stated as follows.

Theorem 3.1 Suppose the differential equation (4)

ww′′ − w′2 + P (w) = 0,

where P (w) =
∑k

n=0 anw
n, ak 6= 0 is a polynomial with constant coefficients, has

non-constant meromorphic solutions, then we have k ≤ 4 and its meromorphic
solutions are characterized as follows:

1) if k = 0 or 1, then (4) is included in (8);
2) if k = 2, then a0 = a1 = 0 and the non-constant meromorphic solutions, which

are actually the general solution, of (4) are zero-free entire functions given by

w(z) = c1e
− a2

2
z2+c2z, c1, c2 ∈ C;

3) if k = 3 or 4, then we must have a2 = 0 and any meromorphic solution w of
(4) satisfies

w′2 + a4w
4 + 2a3w

3 + 2Cw2 − 2a1w − a0 = 0, C ∈ C,

whose general solution is meromorphic [16, Chapter 11] and given in the Ap-
pendix A.

Theorem 3.2 Consider the differential equation (5)

w′′ + cw′2 + P (w) = 0,

where c ∈ C and P (w) =
∑k

n=0 anw
n is a polynomial. If the ODE (5) has non-

constant meromorphic solutions, then we have k ≤ 4 and its meromorphic solutions
are characterized as follows:

1) for c = 0, we have k ≤ 3 and
i) non-entire meromorphic solutions of (5) exist only for k = 2 or 3 and

they are given in the Appendix A as ODE (5) can then be reduced to
ODE (A1).

ii) entire solutions of (5) exist only for k = 0 or 1 and they are given by

w(z) =

{

c1 sin
(√

a1z
)

+ c2 cos
(√

a1z
)

− a0

a1
, k = 1,

c1 + c2z −
a0
2
z2, k = 0,

(9)

4
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where c1, c2 ∈ C are arbitrary constants.
2) for c 6= 0, any meromorphic solution w of (5) satisfies

4c5w′2 + 4a4c
4w4 +

(

4a3c
4 − 8a4c

3
)

w3 +
(

4a2c
4 − 6a3c

3 + 12a4c
2
)

w2

+
(

4a1c
4 − 4a2c

3 + 6a3c
2 − 12a4c

)

w + 4a0c
4 − 2a1c

3 + 2a2c
2 − 3a3c+ 6a4 = 0,

whose general solution is meromorphic and given in the Appendix A.

The estimate of order of meromorphic solutions of (4) and (5) comes as an im-
mediate corollary to Theorem 3.1 and Theorem 3.2.

Corollary 3.3 All meromorphic solutions of (4) and (5) are of finite order and
hence classical conjecture holds for ODEs (4) and (5).

Finally, using the results in [17, 18] and Lemma 4.5, we have

Theorem 3.4 The classical conjecture holds for the second order differential equa-
tion (6)

w′′ + cw′ + P (w) = 0,

where c ∈ C and P (w) is a polynomial with constant coefficients in w of degree k.

Most results of this paper are contained in the third author’s thesis [19].

4. Proof of main results

Before proving our main results, let us recall two theorems which will be used later.

Theorem 4.1 [20, p. 43] Let fj(z) and gj(z)(j = 1, 2, . . . , n)(n ≥ 2) be two sys-
tems of entire functions satisfying the following conditions:

1)
∑n

j=1 fj(z)e
gj(z) ≡ 0.

2) For 1 ≤ j, k ≤ n, j 6= k, gj(z)− gk(z) is non-constant.
3) For 1 ≤ j ≤ n, 1 ≤ h, k ≤ n, h 6= k,

T (r, fj) = o{T (r, egh−gk)}.

Then fj(z) ≡ 0 (j = 1, 2, . . . , n).

Theorem 4.2 [20, p. 210] Let f and g be two transcendental entire functions.
Then

lim
r→∞

logM(r, f ◦ g)
logM(r, f)

= ∞, lim
r→∞

T (r, f ◦ g)
T (r, f)

= ∞,

lim
r→∞

logM(r, f ◦ g)
logM(r, g)

= ∞, lim
r→∞

T (r, f ◦ g)
T (r, g)

= ∞.

5
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4.1. Proof of Theorem 3.1

If k = 0 or 1, the ODE (4) is just a special case of the ODE (8) and thus we only
need to consider the case k ≥ 2.
First of all, one can check immediately that (4) does not admit polynomial so-

lutions for k > 2. By Wiman-Valiron theory [6, 13, Chapter 3], we can show
that the ODE (4) does not have any transcendental entire solution when k > 2
as there is only one top degree term in (4). Now for a meromorphic solution
w of (4) with a pole at some z = z0 ∈ C, we consider its Laurent series
w(z) =

∑∞
n=0wn(z − z0)

n+p, p < 0, p ∈ Z, w0 6= 0. If k = 2, we have w0 = 0,
which is impossible and hence for k = 2 there is no nonentire meromorphic so-
lution. For k > 2, w0 is determined by ww′′ − w′2 + akw

k. Comparing the terms
determining w0 yields (k − 2)p = −2. Since p ∈ Z and k > 2, there are only two
choices 3 and 4 for k. In conclusion, meromorphic solutions of the ODE (4) exist
only in the cases k = 2, 3 or 4 and they are entire for k = 2 and nonentire for
k = 3, 4. We will divide them into the following two cases.

Case 1: k = 3 or 4.
By considering the Laurent series expansion around a pole of w (if it exists),

a necessary condition for the existence of non-entire meromorphic solution of
(4) is a2 = 0, otherwise logarithmic branch singularity appears in the solution.
Then with the integration factor w−3w′, the ODE (4) becomes

w′2 + a4w
4 + 2a3w

3 + 2Cw2 − 2a1w − a0 = 0, C ∈ C, (10)

whose general solution is meromorphic and is given in the Appendix A.
Case 2: k = 2.

We consider the following two subcases.

Subcase 2a: If a nonconstant entire solution w of the ODE (4) is zero-free on C, then
there exists a nonconstant entire function h(z) such that w(z) = eh(z).
Substituting w(z) = eh(z) into (4) yields

a0e
−2h + a1e

−h + a2 + h′′ = 0.

If h is a transcendental entire function, then by Theorem 4.2 and the
properties T (r, a+f) = T (r, f)+O(1), a ∈ C and T (r, f (n)) = O(T (r, f))
for r ∈ (0,∞) outside a possible exceptional set of finite linear measure,
we have T (r, a2+h′′) = o{T (r, eh)}. If h(z) is a nonconstant polynomial,
then T (r, a2 +h′′) = o{T (r, eh)} holds obviously. Therefore, according to
Theorem 4.1, we have

a0 = a1 = a2 + h′′ = 0.

Thus (4) has a meromorphic solution in this case only if a0 = a1 = 0
and it can be explicitly solved with the general solution given by w(z) =

c1e
− a2

2
z2+c2z, where c1, c2 ∈ C.

Subcase 2b: The entire solution w of the ODE (4) has at least one zero in C. Then

v =
1

w
is a meromorphic function with at least one pole in C and it

6
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satisfies

vv′′ − v′2 − a0v
4 − a1v

3 − a2v
2 = 0. (11)

If a0 and a1 do not vanish simultaneously, from Case 1, we know that
(11) does not have any meromorphic solution since a2 6= 0. If a0 = a1 = 0,
then Subcase 2a implies v(z) is an entire function which is a contradiction.
Therefore in Case 2, all the nonconstant entire solutions of (4) are zero-
free.

4.2. Proof of Theorem 3.2

If c = 0, then for k ≥ 4, by Wiman-Valiron theory and from the local series ex-
pansion around a pole of w (if it exists), one can easily see that (5) does not have
any entire and non-entire meromorphic solution, respectively. Hence we must have
k ≤ 3. Since c = 0, (5) is a second order Briot-Bouquet differential equation and
hence by [9, Theorem 1] all the non-entire meromorphic solutions of (5) belong to
class W . If P (w) is linear in w or vanishes identically, then the general solution
of the ODE (5) is given by (9). Suppose k = 2 or 3, then the equation (5) has
neither transcendental entire solutions (by Wiman-Valiron theory) nor polynomial
solutions. For the non-entire meromorphic solutions, they are given in the Appendix
A as ODE (5) can be reduced to ODE (A1).
In the following, we shall consider the case c 6= 0. Similarly, we have k ≤ 4

otherwise (5) has no meromorphic solutions.
Assume that z0 is neither a pole nor a critical point of the meromorphic solution w

of (5), i.e., w(z0) 6= ∞, w′(z0) 6= 0, then there exist a neighborhood N ′ of w0 and a
neighborhood N of z0 such that w : N → N ′ is univalent. Since w is a nonconstant
univalent function from N to N ′, it has an inverse univalent function z = ϕ(w). We
define y : N ′ → C to be

y(w) := w′(ϕ(w)). (12)

Therefore y(w) is an analytic function in N ′. By using (12), the ODE (5) reduces
to

(

y2

2

)′
+ cy2 + P (w) = 0, (13)

where y(w) is defined by (12) and is analytic in w in some domain of C. Solving the
linear ODE (13) yields

4a4c
4w4 +

(

4a3c
4 − 8a4c

3
)

w3 +
(

4a2c
4 − 6a3c

3 + 12a4c
2
)

w2

+
(

4a1c
4 − 4a2c

3 + 6a3c
2 − 12a4c

)

w

+4a0c
4 − 2a1c

3 + 2a2c
2 − 3a3c+ 6a4 + 4c5w′2 = Ce−2cw, C ∈ C. (14)

Notice that for nonzero C, the ODE (14) has neither non-constant polynomial
solution nor transcendental entire solution (by Theorem 4.2). Next, assume w is
a meromorphic solution of (14) with a pole at z = z1, then z1 is either a pole or
a removable singularity of the l.h.s of (14) while z1 is an essential singularity of

7
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Ce−2cw for nonzero C. Hence, in order for (14) to hold for w meromorphic, we must
have C = 0 for which the general solution of the equation (14) is meromorphic and
given in the Appendix A.

Remark 4.3 One may also apply the integration factor e2cww′ for (5) to obtain the
equation (14).

4.3. Proof of Theorem 3.4

To prove Theorem 3.4, let us recall some lemmas that we will need.

Lemma 4.4 The equation

w′′(z) + cw′(z)− 6

λ
(w(z) − e1) (w(z) − e2) = 0, λ 6= 0 (15)

has meromorphic solutions if and only if c
(

c2λ+ 25e1 − 25e2
) (

c2λ− 25e1 + 25e2
)

=
0 and they are given respectively as follows

(1) if c = 0, then the general solution to the equation (15) is meromorphic and
given in the Appendix A as ODE (15) can be reduced to ODE (A1).

(2) for c2λ = 25(ei−ej) 6= 0, i, j ∈ {1, 2}, then the general solution to the equation
(15) [17, 18] is

w2(z) = (ei − ej)e
−2c

5
z℘

(

e
−c

5
z − ζ0; 0, g3

)

+ ej , (16)

where ζ0, g3 ∈ C are arbitrary.

Lemma 4.5 The ODE

w′′ + cw′ − 2

λ2
(w − q1) (w − q2) (w − q3) = 0, λ(6= 0), c, q1, q2, q3 ∈ C (17)

has nonconstant meromorphic solutions if and only if c satisfies

c
∏

(cλ+ qi + qj − 2qk)(−cλ+ qi + qj − 2qk) = 0, (18)

where (ijk) is any permutation of (123), and we further have

1) for c = 0, the general solution of (17) is meromorphic and given in the Ap-
pendix A as ODE (17) can be reduced to ODE (A1).

2) for c 6= 0 satisfying (18), we can classify the nonconstant meromorphic solu-
tions of (17) into two families

i) for c =
2qi − qj − qk

λ
=

−qi + 2qj − qk
−λ

,

w6(z) = qk −
qi − qk

2
e−

qi−qk
λ

z℘
′(e−

qi−qk
λ

z − ζ0; g2, 0)

℘(e−
qi−qk

λ
z − ζ0; g2, 0)

, ζ0, g2 arbitrary.(19)

ii) if c =
2qi − qj − qk

±λ
,

8
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w7(z) =
qje

qj (z−z0)

±λ − qke
qk(z−z0)

±λ

e
qj (z−z0)

±λ − e
qk(z−z0)

±λ

, z0 arbitrary, (20)

which for qj = qk degenerates to

w8(z) =
±λ

z − z0
+ qj, z0 arbitrary. (21)

Remark 4.6 For c 6= 0, all the meromorphic solutions of the equation (17) are
given by (19)-(21) and the solution (19) is the general solution.

Proof of Lemma 4.5. One can easily see that constant solutions of the ODE (17) are
w = qn, n = 1, 2, 3. Next we consider nonconstant meromorphic solutions of (17). By
making use of Wiman-Valiron theory, it can be proven immediately that the ODE
(17) does not have any nonconstant transcendental entire solution. Meanwhile, the
ODE (17) does not admit any nonconstant polynomial solution. Consequently, each
nonconstant meromorphic solution of the equation (17) should have at least one
pole on C.
Suppose w is a meromorphic solution of (17) with a pole at z = z0. Without

loss of generality, we may assume z0 = 0 then w(z) =
∑+∞

j=p wjz
j ,−p ∈ N, wp 6= 0.

Substituting the series expansion of w into the ODE (17) gives p = −1, w−1 =
±λ. The ODE (17) has Fuchs indices −1, 4 and the corresponding compatibility
conditions regarding the existence of meromorphic solution are

{

c
∏

(cλ+ qi + qj − 2qk) = 0, if w−1 = λ,

c
∏

(−cλ+ qi + qj − 2qk) = 0, if w−1 = −λ,
(22)

where (ijk) is any permutation of (123).
Now we compare the ODE (17) with the following second order ODE

[D − f2(w)][D − f1(w)](w − α) = 0, (23)

where D =
d

dz
, α ∈ C and fi(w) = Aiw + Bi, Ai, Bi ∈ C, i = 1, 2. Expanding (23)

gives

w′′ − (f1 + f2 +
df1
dw

w − α
df1
dw

)w′ + f1f2(w − α) = 0. (24)

Identifying the equations (17) and (24) leads to the conditions







f1 + f2 +
df1
dw

w − α
df1
dw

+ c = 0,

f1f2(w − α) = − 2
λ2 (w − q1) (w − q2) (w − q3) .

(25)

One can check that the compatibility conditions (22) hold if and only if the
conditions (25) are satisfied or c = 0.

9
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If c = 0, then the ODE (17) reduces to a first order Briot-Bouquet differential
equation through multiplying it by w′ and integration. Therefore all its meromorphic
solutions belong to class W and they are given in the Appendix A.
For c 6= 0 and assuming (22) from now on, due to the symmetry in (22) and

the fact that w has at least one pole on C, it suffices to consider the case c =
(−q1 + 2q2 − q3)/λ 6= 0 and one choice for Ai, Bi, i = 1, 2 and α is

A1 = − 1

λ
,A2 =

2

λ
,B1 =

q3
λ
,B2 = −2q2

λ
, α = q1. (26)

As a consequence, if c = (−q1 + 2q2 − q3)/λ 6= 0, then (17) can be written as

[D − 2

λ
w −B2][D +

w

λ
−B1](w − α) = 0. (27)

Let G(z) = [D +
w

λ
− B1](w − α), then we have [D − 2

λ
w − B2]G(z) = 0 from

which one can solve for G(z) = βe
∫

2

λ
wdzeB2z, β ∈ C. If β = 0, from G(z) = [D +

w

λ
−B1](w−α) = 0, we are able to obtain the first family of meromorphic solutions

of the ODE (17)

w(z) =
q1e

q1(z−z0)

±λ − q3e
q3(z−z0)

±λ

e
q1(z−z0)

±λ − e
q3(z−z0)

±λ

, z0 ∈ C. (28)

For β 6= 0, we let H(z) = e
∫

2

λ
udz which satisfies H ′(z) = 2w(z)H(z)/λ and

[D +
u

λ
−B1](w − α) = βeB2zH(z), (29)

hence, w is meromorphic if and only if H is meromorphic. By the substitution of

w =
λ

2

H ′

H
into (29), we have

− 2B1λHH ′ + 4αB1H
2 − 4βeB2zH3 + 2λHH ′′ − 2αHH ′ − λH ′2 = 0. (30)

If we let H(z) = e−B2zh(z), then the ODE (30) reduces to

(2B1 +B2) (2α+B2λ) h
2 − 2h

(

(α+ (B1 +B2)λ) h
′ − λh′′

)

− λh′2 − 4βh3 = 0.(31)

Suppose h is a meromorphic solution of (31). W.L.O.G, we assume that it has
a pole at z = 0 and h(z) =

∑+∞
j=p hjz

j,−p ∈ N, hp 6= 0 then one can check that

p = −2 and the Fuchs indices of the ODE (31) are −1, 4 with the compatibility
condition

(α+ (B1 +B2)λ)
2
(

2αλ (10B1 +B2)− 8α2 +
(

−8B2
1 + 2B2B1 +B2

2

)

λ2
)

= 0,(32)

which by the substitution of (26) reduces to

(q1 + q2 − 2q3) (2q1 − q2 − q3) (q1 − 2q2 + q3) = 0, (33)

10
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which implies q3 = (q1 + q2) /2 or q1 = (q2 + q3) /2 since c = (2q2 − q1 − q3)/λ 6= 0.
Then by the substitution of (26), the ODE (31) reduces to

{

−λ2h′(z)2 + λh(z) (2λh′′(z) + 3 (q2 − q1) h
′(z)) + 2 (q2 − q1)

2h(z)2 − 4βλh(z)3 = 0,

q3 =
1
2 (q1 + q2) .

{

−λ2h′(z)2 + λh(z) (2λh′′(z) + 3 (q2 − q3) h
′(z)) + 2 (q2 − q3)

2h(z)2 − 4βλh(z)3 = 0,

q1 =
1
2 (q2 + q3) .

Next, it suffices to consider the case q3 = (q1 + q2) /2 due to the symmetry in the
above two equations. By the translation against the dependent variable u, we may
further assume q3 = 0 which implies q1+ q2 = 0. Let us come back to equation (30),
which by the substitution of (26) with q1 = −q2 6= 0, q3 = 0 reduces to

− λH ′(z)2 + 2H(z)
(

λH ′′(z) + q2H
′(z)

)

− 4βH(z)3e−
2q2z

λ = 0. (34)

Performing the transformation H(z) = v(ζ), ζ = e−
q2
λ
z gives

v′2 − 2βλ

q22
v3 + Cv = 0, (35)

whose general solution is meromorphic and can be found in the Appendix A.
Finally, for c = (−q1 + 2q2 − q3)/λ 6= 0 and q3 = (q1 + q2) /2, which implies

c = −(2q1 − q2 − q3)/λ, we obtain the meromorphic solutions of the ODE (17)
(which meanwhile is the general solution)

w(z) = −q2 − q3
2

e−
q2−q3

λ
z℘

′(e−
q2−q3

λ
z − ζ0; g2, 0)

℘(e−
q2−q3

λ
z − ζ0; g2, 0)

+ q3, ζ0, g2 ∈ C. (36)

Lemma 4.7 ([6, p. 5]) Let g : (0,+∞) → R and h : (0,+∞) → R be monotone
increasing functions such that g(r) ≤ h(r) outside of an exceptional set F with finite
linear measure. Then, for any α > 1, there exists r0 > 0 such that g(r) < h(αr)
holds for all r ≥ r0.

Proof of Theorem 3.4. From the expression of solutions in Lemmas 4.4 and 4.5, it
suffices to focus on w2(z) and w6(z) because other solutions belong to the class W
which only consists of meromorphic functions of finite order.
We claim that for every α (6= 0) ∈ C, there exists A,B ∈ R+ such that

T (r, ℘(eαz ;ω1, ω2)) < A exp(Br), 0 ≤ r < ∞,

where ω1, ω2 ∈ C\{0} (ω1/ω2 6∈ R) are the periods of ℘(z). Since ℘(z;ω1, ω2) =
℘(z/ω1; 1, τ)/ω

2
1 , where τ = ω2/ω1, we only need to prove the claim for ℘(eαz ; 1, τ),

where τ ∈ H. For brevity, we denote ℘(eαz ; 1, τ) by ℘(eαz).
From the theory of elliptic functions [21, 22], we know that ℘(z; 1, τ) satisfies the

first order ODE ℘′2 = 4(℘−e1)(℘−e2)(℘−e3), where e1 = ℘(1/2), e2 = ℘(τ/2), e3 =

℘((1+ τ)/2) are distinct. Next we consider N℘(eαz)(r, ej) :=

∫ r

0

n℘(eαz)(t, ej)

t
dt, j =

11
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1, 2, 3, where nf (r, a) denotes the number of poles of 1/(f − a) in D(r) = {z ∈
C||z| < r}, without counting multiplicity.
Let T = 2πi/α = |T |eiβ, β ∈ [0, 2π), R be the region enclosed by the rectangle

{z ∈ C|z = x+ iy, 0 ≤ |x|, |y| < r} and R′ = e−iβR = {z′ ∈ C|z′ = e−iβz, z ∈ R} ⊃
D(r).
Then we have n℘(eαz)(t, ej) ≤ n′

℘(eαz)(t, ej), where n′
f (r, a) denotes the number

of poles of 1/(f −a) in R′, without counting multiplicity. As eαz has a period T , we

have n′
℘(eαz)(t, ej) ≤

2([t] + 1)

T
n′′

℘(eαz)(t, ej), where [r] is the integer part of r ≥ 0

and n′′
f (t, a) is the number of poles of 1/(f−a) in R1 = {e−iβz|z = x+iy,−t < x <

t, 0 ≤ y < T}, without counting multiplicity. Since ℘−1(e1) = {1
2+m+nτ |m,n ∈ Z},

n′′
℘(eαz)(t, e1) ≤ (2[e|α|t] + 1)× 2e|α|t

|τ | . Therefore,

N℘(eαz)(r, e1) =

∫ r

0

n℘(eαz)(t, e1)

t
dt

=

∫ r

δ

n℘(eαz)(t, e1)

t
dt

≤
∫ r

δ

2([t] + 1)

T t
n′′

℘(eαz)(t, e1)dt

≤ 4(1 + 1
δ )

T |τ |

∫ r

δ
e|α|t(2e|α|t + 1)dt

≤ 4(1 + 1
δ )

T |τ |
e2|α|r + e|α|r − 2

|α|
< a1e

b1r,

where a1 =
4(1 + 1

δ )

T |ατ | > 0, b1 = 2|α| > 0, and δ > 0 is chosen such that ℘(eαz)

omits e1 in D(δ). Applying the same argument, we can obtain the upper bounds of
N℘(eαz)(r, ej), j = 2, 3 which are given by

N℘(eαz)(r, ej) < aje
bjr, 0 < aj , bj , j = 2, 3.

According to the Second Main Theorem of Nevanlinna theory, we have

T (r, ℘(eαz)) ≤
3

∑

j=1

N℘(eαz)(r, ej) + S(r, ℘(eαz)),

where S(r, ℘(eαz)) = o(T (r, ℘(eαz)), for all r ∈ [0,+∞) outside an exceptional set
E ⊂ (0,+∞) with finite linear measure. Hence,

T (r, ℘(eαz)) < a′eb
′r

holds for all r ∈ [0,+∞)− E, where a′ = (1 + ε)(a1 + a2 + a3), ε > 0, b′ = max
1≤j≤3

bj.

According to Lemma 4.7, for γ = 3/2, there exists r0 > 0 such that T (r, ℘(eαz)) <
a′e3b

′r/2 for all r ≥ r0. On the other hand, it is obvious that there exist a′′, b′′ > 0

12
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such that T (r, ℘(eαz)) < a′′eb
′′r for all 0 ≤ r < r0. As a consequence, we have

T (r, ℘(eαz)) < AeBr, 0 ≤ r < ∞,

where A = max{a′, a′′}, B = max{3b′/2, b′′}.
From the proof of our claim, it is easy to see that the same conclusion holds for

℘(k1 exp{αz}+ k2), ℘
′(k1 exp{αz}+ k2), k1, k2, α ∈ C as well. By making use of the

properties T (r, fg) ≤ T (r, f) + T (r, g) and T (r, f) = T (r, 1/f) +O(1), we conclude
that there exists a, b > 0 and c = 1, such that

T (r, wi(z)) < aebr, 0 ≤ r < ∞, i = 2, 6.

Thus, the proof is complete.
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Appendix A. The second degree Briot and Bouquet equation

We recall here the various expressions for the general solution of the first order
second degree binomial equation of Briot and Bouquet

(

du

dz

)2

= ak

k
∏

j=1

(u− ej), (A1)

in which the integer k runs from 0 to 4, ak is a nonzero complex constant and ej
are complex constants. Let us denote ℘ and ζ the functions of Weierstrass,

℘′2 = 4℘3 − g2℘− g3, ζ ′ = −℘.

14
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The general solution is (the arbitrary origin z0 of z is omitted) [23, Table 1, p. 73],















































































































































u = a
−1/2
4 (ζ(z + a)− ζ(z − a)− 2ζ(a) +A) = a

−1/2
4

(

A− ℘′(a)
℘(z)− ℘(a)

)

,

k = 4, ej all distinct,
1

u− e1
= A cosh(Bz) + C, k = 4, one double root e1,

u =
e1 + e2

2
+A coth(Bz), k = 4, two double roots e1, e2

u− e4
u− e1

= A

[

e4 − e1
2

z

]2

, k = 4, one triple root e1,

u = e1 ±
a
−1/2
4

z
, k = 4, one quadruple root,

u =
e1 + e2 + e3

3
+

4

a3
℘(z, g2, g3), k = 3, ej all different,

u = A+B coth2(Cz), k = 3, e1 = e2 6= e3,

u = e1 +
4

a3z2
, k = 3, e1 = e2 = e3,

u =
e1 + e2

2
+A cosh(Bz), k = 2, e1 6= e2,

u = e1 + e±
√
a2z, k = 2, e1 = e2,

u = e1 +
a1
4
z2, k = 1,

u = ±√
a0z, k = 0,

(A2)

in which ℘(a), A,B,C are algebraic functions of ak, ej .
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