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Abstract—Characterizing the video diffusion in online social
networks (OSNs) is not only instructive for network traffic engi-
neering, but also provides insights into the information diffusion
process. A number of continuous-time diffusion models have been
proposed to describe video diffusion under the assumption that
the activation latency along social links follows a single parametric
distribution. However, such assumption has not been empirically
verified. Moreover, a user usually has multiple activated neighbors
with different activation times, and it is hard to distinguish the
different contributions of these multiple potential sources. To
fill this gap, we study the multiple-source-driven asynchronous
information diffusion problem based on substantial video diffusion
traces. Specifically, we first investigate the latency of information
propagation along social links and define the single-source (SS)
activation latency for an OSN user. We find that the SS activation
latency follows the exponential mixture model. Then we develop
an analytical framework which incorporates the temporal factor
and the influence of multiple sources to describe the influence
propagation process. We show that one’s activation probability
decreases exponentially with time. We also show that the time shift
of the exponential function is only determined by the most recent
source (MRS) active user, but the total activation probability is the
combination of influence exerted by all active neighbors. Based on
these discoveries, we develop a multi-source-driven asynchronous
diffusion model (MADM). Using maximum likelihood techniques,
we develop an algorithm based on expectation maximization (EM)
to learn model parameters, and validate our proposed model with
real data. The experimental results show that the MADM obtains
better prediction accuracy under various evaluation metrics.

Index Terms—Asynchronous diffusion process, exponential mix-
ture model, measurement, online social network.

I. INTRODUCTION

T HE rapid development of online social networks (OSNs),
such as Facebook and Twitter, renders them a powerful

tool for information propagation. In OSNs, information is prop-
agated in the so called “word-of-mouth” format, which greatly
reshaped the access patterns of multimedia contents, especially
the video contents. These videos shared in OSNs are originally
hosted by video sharing sites (VSSes), such as YouTube. As a
result, while the video requests of VSSes, e.g., YouTube, have
imposed great demand on the Internet [1], a large number of
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requests to these VSSes are actually generated by OSNs with
distinct access patterns [2]. The distinct URLs of these videos
shared in OSNs allow us to identify and track the diffusion path
of each shared video easily and explicitly without conducting
topic identification and tracking [3]. Therefore, characterizing
the video diffusion in OSNs is not only instructive for network
traffic engineering, but also provides insights into the informa-
tion diffusion process.
Many information diffusion models have been proposed to

describe the information diffusion process. Among these var-
ious models, two important models are the Threshold Model
[4] and the Cascade Model [5], and their special cases, i.e., the
Linear Threshold Model and the Independent Cascade Model,
respectively, have been applied to solve the influencemaximiza-
tion problems [6]. The above models all assume that the diffu-
sion proceeds synchronously in discrete unit time steps, whereas
in reality information propagates continuously and the diffu-
sion rate varies with time. To fill this gap, a number of con-
tinuous-time diffusion models have been proposed to describe
the diffusion more accurately [7], [8], or to solve specific prob-
lems, such as the network inference problem [9], [10]. How-
ever, the basic question of these studies, namely, “How does the
inter-personal influence vary with time?” has not been empir-
ically and extensively studied, and all these studies try to an-
swer this question with a single parametric model assumption,
including the exponential [7], power-law, or Rayleigh distribu-
tions [10], [9]. Such an assumption has been suggested to be
impractical recently [11]. Moreover, a user usually has multiple
activated neighbors with different activation times, and it is hard
to distinguish the different contributions of these multiple po-
tential sources [12], [13].
Motivated by the above issues, we select Renren,1 the most

popular Facebook-like OSN in China, to be our research
platform for empirical studies on the video diffusion process.
This is because compared with the strict privacy policies of
other OSNs such as Facebook, Renren not only maintains a
complete list of individual user’s video sharing actions and
makes it publicly accessible by default, but also provides the
friendship network of its users until April 2011. We have
collected substantial video diffusion traces as well as the un-
derlying social network topology from Renren, covering the
sharing actions of around 2.8 million Renren users for more
than 3 years. In this paper, we study the video-sharing actions
in Renren under multiple active sources. According to both
theoretical [4], [5] and empirical [14] studies, for User , other

1http://www.renren.com
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than the Most Recent Source (MRS) neighbor, any other friend
who shared the same video before may exert cumulative
influence on . Hence, to analyze the influence of multiple
sources on the current user, in this work we started by studying
a single active source problem, and then further present an
analytical framework to study the effect of multiple influential
sources. Particularly, we consider the inter-personal influence
as a time-varying stochastic process and deduce the information
diffusion process under multiple influential sources. Moreover,
we develop a novel asynchronous diffusion model based on the
deduced stochastic process.
Our main contributions are summarized as follows:
• We collect a substantial dataset from Renren and analyze
several basic properties to support our subsequent studies
on information diffusion.

• We conduct a detailed empirical study on the collected
information diffusion traces. We define the single-source
(SS) activation latency as the time interval between the ac-
tivation time of the target user and that of his/her single
activated neighbor. We find that SS activation latency is
characterized by the exponential mixture model.

• In addition to the SS active user, other existing active
sources could also exert influence on the target user. We
develop an analytical framework to study how multiple
influential sources affect the target inactive user. We find
that, even under multiple influential sources, one’s activa-
tion latency can still be characterized by the exponential
mixture model.

• Based on the analytical results given above, we develop
a general Multi-source-driven Asynchronous Diffusion
Model (MADM) to describe the information propagation
behavior in social networks and predict the individual
activation time. It incorporates both the aforementioned
temporal features and the heterogeneous influential source
features.

• Last but not least, using maximum likelihood techniques,
we develop algorithms based on Expectation Maximiza-
tion (EM) to learn the model parameters and conduct a
comprehensive set of experiments on large scale real world
datasets to evaluate the performance of MADM compared
with four other models using two evaluation metrics, and
demonstrate that MADM has better prediction accuracy on
user’s activation time.

The rest of the paper is organized as follows. Section II in-
troduces related works. Section III describes the statistics of
our crawled datasets and also presents measurement results. In
Section IV, we study the characteristics of the diffusion traces
and the distribution of SS activation latency. In Section V, we
develop an analytical framework of the asynchronous diffusion
model. Section VI presents the experimental results. Finally
Section VII is the conclusion and future work.

II. RELATED WORK

In this section, we survey literature on VSSes studies and
information diffusion in online social network.

A. Video Sharing Sites Studies

With the advent of Web 2.0 technology, there are increasing
interests on the VSSes. As themost successful VSS,Youtube has
become a popular research topic since its establishment in early
2005. Gill et al. [15] presents a traffic characterization study
of YouTube. Cheng et al. [16] not only presents a systematic
and in-depth measurement study on the statistics of YouTube
videos, but also investigate the social networking in YouTube
videos. Xie et al. [17] uses a social graph to model YouTube,
with people and content as nodes and meme postings as links,
to track large-scale video remix in Youtube.
However, the video access patterns are different between

VSSes and OSNs. In particular, videos in VSSes are mainly
viewed via related videos, search engines and front page [18],
whereas videos in OSNs are viewed via friends sharings.
Such differences in access pattern have profound impacts on
the workload of VSSes, e.g., the word-of-mouth diffusion in
OSNs amplifies the skewness of video popularity compared
with VSSes [19]. Hence understanding the video propagation
behaviors in OSNs is indispensable.

B. Information Diffusion Studies in OSNs

The existing information diffusion models can be classi-
fied into two categories [20]: the aggregate-level model and
the agent-based model. Among the aggregate-level diffusion
models, the Bass diffusion model [21] is very popular and
quantitatively describes how new products get adopted as an
interaction between existing and potential users. However,
such aggregate-level diffusion models suffer from considerable
inherent limitations, e.g., the inability to reflect population
heterogeneity and poor explanatory power [20]. Agent-based
models are more commonly used today [22], and two represen-
tative models are the Threshold Model [4] and Cascade Model
[5]. However, existing models “are based on assumed rather
than measured influence effects” [23]. Motivated by this gap,
many empirical studies have been conducted on the information
diffusion process by focusing on various media contents. Cha
et al. [24] measured the photo propagation in Flickr, one of
the most popular photo sharing social network, and found that
the spreading was slow. Sun et al. [25] conducted an empirical
investigation of influence diffusion in Facebook by defining
the influence behavior accurately using explicit page fanning
diffusion data. However, compared with other types of media,
the diffusion dynamics of videos have been demonstrated to
hold some unique features [19], e.g., the popularity of videos
in OSNs decays faster than photos [24]. It is, therefore, worth-
while to study video diffusion in OSNs.
Multiple-source influence in information diffusion is a

critical issue, and a series of data-driven methods have been
proposed. Goyal et al. [13] introduced a “credit distribution”
model to learn activation probabilities of different sources by
directly leveraging propagation traces. [12] also investigated
the influence credit assignment issue among multiple sources to
compute influence among Twitter. [14] discussed the activation
probability of information diffusion across different topics
under one or more exposures (multiple sources). In addition
to lacking empirical verification on their approaches to assign
the influence among multiple sources, such studies also do not



NIU et al.: MULTI-SOURCE-DRIVEN ASYNCHRONOUS DIFFUSION MODEL 2027

consider how the multiple influence probabilities vary with
time. Moreover, the asynchronous activation modes of users’
multiple neighbours are not fully addressed. In this paper, we
propose an asynchronous temporal diffusion model to account
for these issues.
We are not the first to investigate the interplay of OSNs and

VSSes by studying how videos originally hosted by VSSes are
diffused in OSNs. Most recently, Li et al. [19] compared studies
on the characteristics of video requests from OSNs and from
VSSes, and proposed a model to describe the growth process of
videos overall popularity in OSNs. Then Wang et al. [26] dis-
cussed the video recommendation issue in OSNs by designing
a joint social-content recommendation framework for users to
import or re-share videos. Distinct from these studies, the aim
of our study is to empirically investigate the temporal charac-
teristics of influence with multiple sources, rather than to model
videos’ overall popularity [19] or to enhance the video recom-
mendations [26].

III. PRELIMINARIES

A. Dataset

The dataset in this study is collected from Renren, one of
the most popular online social websites in China with more
than 160 million registered users. It shares almost the same
features, structure and layout as Facebook. Users could main-
tain their own profiles, photo galleries and blogs, and establish
bidirectional friendship links with other users. However, two
unique characteristics of Renrenmake it extremely attractive for
studying information diffusion over OSNs. Firstly, unlike Face-
book, the friendship relationship in Renren is accessible before
April 2011, which enables us to acquire the topological data to
create a real world social network graph. Secondly, and perhaps
more importantly, well-organized information diffusion data in
Renren is public to any registered users. This allows us to crawl
substantial diffusion traces to study how information spreads
temporally and spatially.

B. Mechanics of Renren Information Diffusion

Information diffusion in Renren is realized by “sharing”
events, which includes sharing friends’ notes, photos and
video links. Diffusion of shared information occurs as follows.
Firstly, user A shares a piece of information, which is broadcast
to his entire friend list. Upon receiving this information, one
or more of his friends may decide to share the information as
well. Thus, we say that information is propagated from user A
to some of his friends.
To study how information diffuses in Renren, we concentrate

on the propagation of one particular event, namely, “sharing
video.” Since the video shared in Renren mainly come from
several external video websites (see Table I, which shows, using
statistics collected from our crawled dataset, that over 92% of all
URLs accessed are from the top five websites), and the external
video URLs can be used to identify different topics (videos)
directly. There is no need to conduct text mining and topic
identification, which is time consuming and probably inaccu-
rate. Meanwhile, Renren provides the timestamp of when a user
shares a video. This allows us to study how the propagation of
videos evolves over time.

TABLE I
STATISTICS OF EXTERNAL WEBSITES IN RENREN

C. Crawling Methods

We design the following two crawlers to collect both user
information data and the diffusion traces.
• The “user information crawler” analyzes the user profile
webpage in order to acquire this user’s unique user identi-
ties, affiliation information and friend list.

• The “video information crawler” obtains the given user’s
shared video information by parsing the user’s “video-
sharing” page.

Although it is computationally expensive and nearly impos-
sible for us to acquire the entire Renren network topology, for-
tunately, just like Facebook, Renren evolves from a university-
based social network and hence is divided into regional net-
works with affiliation information that represents universities
or institutions. Therefore, following previous studies [27][28],
we plan to focus our research on a university-based regional net-
work in Renren as well. Moreover, as has been demonstrated by
Choudhury et al. [29], our method, which incorporates both net-
work topology and user-context, like the affiliation information,
is better able to capture the information diffusion characteristics
compared with a pure topology-based sampling method. Specif-
ically, we perform affiliation-oriented crawls of the Xian Jiao-
tong University (XJTU) network, a famous college online so-
cial network community in Renren. Firstly, we use the “browse
user” function to obtain the 50 most popular users (in terms
of number of friends) in the XJTU community. Then, we seed
the “user information crawler” with the 50 most popular users
to preform an exhaustive crawling of the XJTU users as well
as their friendship links. Finally, we obtain a connected social
graph of XJTU users as well as their 1-hop friends, and it is not
surprising that the social graph which has been collected from
the 50 most popular seed users is a connected graph.
For users in the social graph, we further employ a “video

information crawler” to collect the information of their shared
videos, including the sharing time (namely, the activation time),
video URL, video title, etc. To avoid the limitation of request
frequency from a unique IP on the Renren server, the crawlers
work in a parallel mode on more than 10 computers. For sim-
plicity, in the rest of the paper we use the “XJ dataset” to repre-
sent data collected from the XJTU community.

D. Data Description

For the XJ dataset, the topology information is just a snap-
shot of a particular timestamp, and the diffusion traces do cover
a long time period. The topology snapshot in the XJ dataset
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TABLE II
PROPERTIES OF THE VIDEO DATASET

Fig. 1. Video popularity distribution.

is collected in February 2011. It includes 2,808,681 nodes and
52,685 of them are affiliated with XJTU, and the rest are friends
of these XJTU affiliates. Then, for all nodes, we further col-
lect their shared video information (see Table II). Although the
friendship data is a snapshot at a particular time, the video in-
formation covers 1224 days in total, from March 2008 to July
2011. The reason is that each user’s “video-sharing” page keeps
a visible record of all his/her sharing history since this user ac-
count is created in Renren.

IV. EMPIRICAL STUDIES IN INFORMATION DIFFUSION

In this section, to capture the macro-level properties of the
sharing events in Renren, we firstly analyze the video popu-
larity. Then, we study the micro-level properties of the sharing
events by investigating the inter-personal “activation latency”
characteristics. We find that, in the macro-level, the diffusion
behavior displays some common features already discovered in
traditional social network studies; in the micro-level, the tem-
poral properties could instruct us in building a more compre-
hensive and realistic diffusion model.

A. Video Popularity

The video popularity for a certain Video , denoted , is
defined as the number of users who have shared Video . We
study the popularity distributions for the XJ dataset. The results
are compiled from over 6.4 million shared videos. The Cumu-
lative Distribution Function (CDF) of the video popularity is
shown in Fig. 1. Specifically, the horizontal axis of Fig. 1 ranks
the videos from the most active ones to the least active ones,
with the rank normalized between 0 and 100. Due to the high
skewness of the data, we use the log-log scale to better display
the figure. As the coordinate (0.49, 0.8) shows, the top 0.49%
of the popular videos account for nearly 80% of video sharings.

TABLE III
THE POPULARITY OF THE TOP 5 VIDEOS

Such high skewness (in contrast with the top 8% of the popular
videos accounting for 80% of video views in YouTube [30]) is
mainly because the word-of-mouth diffusion in OSNs amplifies
the skewness of video popularity, and hence demonstrates the
uniqueness of video access pattern in OSNs. In particular, from
the statistics in Table III, we observe that each top video enjoys
a high popularity of over 100,000. Motivated by the high skew-
ness of video popularity distribution, in addition to modeling the
diffusion process for all videos, we will also specifically focus
on the most popular videos to explore the influence of video
popularity on the resultant model parameters in Section VI-A.

B. Influence Path

We define the influence path for a social network as follows.
The Renren social graph can be represented in the form of an
undirected graph , where is
a set of nodes (users), and is the unique ID of User , and

is a set of edges. Note that friendship is
mutual in Renren, so the relationship between User and User
is bidirectional, which means is equivalent to .

Besides, we use to denote the timestamp when we acquired
the network topology, i.e, the timestamp of the topology snap-
shot.
After describing the social graph, we now focus on the video-

sharing events for each user. Besides gathering a set of video
objects which have been shared among
users in , for any video object , we also collect the
users who have shared Video in the following set

, where is the time that user
shared the video object , and is called the sharing time or

activation time interchangeably.
For any two different elements and , we as-

sume that User has influenced User for sharing video Ob-
ject if and only if:
• User and User are friends, namely, ;
• User shared earlier than , namely, ;
• Note that video-sharing activity can only propagate along
existing friendship links, so we extract sharing records
which happen after the link is created, namely, ;

• The influence can only take effect within certain time in-
terval , namely, . can also be referred to as
the Influence Effectiveness Time Window (IETW).

For any , we further collect the sharing times
of users who are neighbors of User for video object to
define the influence path:

(1)

We define the MRS activation latency of User for video
object as: . For , the MRS acti-
vation latency is reduced to a special case, which is defined as
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Fig. 2. Empirical data and exponential fitting.

Fig. 3. Empirical data and exponential mixture distribution fitting.

the Single Source (SS) activation latency. In SS sharing, only
one neighbour has shared the video.
In our data, we also find some zero-source sharing actions2,

which means that the corresponding user shares a video inde-
pendently, i.e., without being influenced by his/her neighbours.
As revealed by [31], such zero-source sharing actions aremainly
driven by some external events, such as the mass media. In our
studies, zero-source cases are excluded since we focus on mod-
eling information diffusion within the OSN.

C. SS Activation Latency

What is the distribution of the SS activation latency? To an-
swer this question, we present a large scale study for the aggre-
gate propagation of all the crawled 6,416,745 distinct videos.
In our previous work [8], we just analyze the MRS activation
latency by assuming that sharing activities may happen within
any time interval, so we did not set any time limit. In this work,
we conduct a more detailed research on the SS activation la-
tency using the parameters discussed in Section IV-B, and
, which limits the activation latency within the IETW and
omits the sharing actions before . Then we further study the
case for multiple active sources.
1) Exponential Distribution Fitting: Fig. 2(a) shows the Cu-

mulative Distribution Function (CDF) of the SS activation la-
tency with the exponential distribution fitting. To provide good-
ness-of-fit, we use the Q-Q plot (Fig. 2(b)) to compare the em-
pirical data and the theoretical distribution. Although the expo-

2In our dataset, the percentage of zero-source sharings, single-source shar-
ings, and multiple-source sharings are 20%, 37%, and 43%, respectively.

nential model could reflect the distribution trend to some extent,
the fitting result is not perfect.
2) Exponential Mixture Distribution Fitting: Since the SS

activation latency cannot be fully described using pure expo-
nential distribution, we adopt the exponential mixture model.
Fig. 3(a) shows the CDF of the SS activation latency and the
exponential mixture model fitting. Also, we use the Q-Q plot
(Fig. 3(b)) to show the goodness-of-fit result. In probability and
statistics, a mixture distribution [32] is a probability density
function of the form: . Here, is
the number of components in the mixture model. For each ,

is the Probability Density Function (PDF) of the com-
ponent number . The scalar is the proportion of component
number . In order for the mixture model to be a proper PDF, it
must be the case that , where for all . In this
paper, we adopt the exponential mixture model, where
is an exponential distribution, and . The detailed formu-
lation is

(2)

To provide rigorous goodness-of-fit result for the given dis-
tributions, we use the Kolmogorov-Smirnov test (K-S test) (see
Table IV) to compare the empirical data and the theoretical dis-
tribution for the pure exponential model and the exponential
mixture model. The results show that the exponential mixture
model could explain the SS activation latency better.
Many different models have been adopted in modeling diffu-

sion networks and social networks in the literature, including ex-
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TABLE IV
K-S TEST RESULT

ponential distribution, power law distribution and Weibull dis-
tribution [33][34].We are the first to utilize the exponential mix-
ture model to describe the interpersonal diffusion latency along
social links. Why does the mixture model perform well? One
intuitive explanation is as follows. Users are composed of two
categories, i.e., active users and inactive users [35]. Active users
are those who share videos more frequently, and inactive users
are those who share videos less frequently. In these two groups,
the average activation latencies will also be different, corre-
sponding to the different parameters of the two components in
our proposed exponential mixture model.
Meanwhile, due to the simplicity of the pure exponential fit-

ting, we will explore its performances in the following sections.
Under certain circumstances, it may provide a good approxima-
tion, and reduce the computational cost.

V. MULTI-SOURCE-DRIVEN ASYNCHRONOUS DIFFUSION
MODEL

When studying the behaviour of a target user in informa-
tion diffusion, it is common that the target user has multiple
neighbours who all try to exert influence on his/her decision.
Hence to model the diffusion process properly, we will derive a
Multi-source-driven Asynchronous Diffusion Model (MADM).
However, this is challenging since it is hard to distinguish the
influences exerted by these multiple sources [14] [13] and to
determine the activation latency accordingly. To overcome this
challenge, rather than trying to measure the activation latency
with multiple sources directly, we propose to deduce the activa-
tion latency with multiple sources from its special case, namely,
the SS activation latency, which can be measured easily and ex-
plicitly as shown in Section IV-C. In this section, we not only il-
lustrate the derivation, but also validate the derived conclusion.

A. Multi-Source Influence

According to the empirical results shown in Section IV, the
activation latency under the single source influence scheme fol-
lows the exponential mixture distribution. In other words, the
probability that a node is activated by its single active source

neighbor decreases exponentially with time. Based on this sig-
nificant observation, we try to further solve the multi-source in-
fluence problem by utilizing the time-shift linear superposition
of asynchronous influences. Consider an inactive Node D, in a
single source influence problem, Node D only has one active
neighbor, say Node A. Suppose the total probability that Node
D is activated by Node A is denoted as . This is the influ-
ential power of Node A on Node D, and obviously .
Next we try to integrate the continuous time factor to see how
this probability is distributed across time. We use a probability
density function to show the activation probability from
Node A to Node D across time. Based on our empirical findings
in Section IV, is defined as follows:

(3)

where is activation time of Node A, and are the pa-
rameters to control weights of the two exponential components,
and the corresponding decreasing rates of the two compo-
nents are represented by and , respectively. Note that

, which satisfies that the total probability
equals . Next we discuss the two-source scenario in Fig. 4.
Suppose Node A is activated at time , and starts to activate

its neighbor Node D with the probability expressed in Equa-
tion (3). At time , another neighbor of Node D,
namely Node B, is activated, but Node D has not been activated
yet. Thus it has two influence sources A and B. The influences
on Node D by A and B decrease exponentially with time shifts
and , respectively

(4)

(5)

If the activation probability density function on Node D is
noted by , we formulate it by the linear superposition of

and . It is shown in Equation (6) at the bottom
of the page.
Here, is the total probability that D is activated by the

combined influential power of Node A and B. To simplify Equa-
tion (6), we introduce two symbols and as shown in
Equations (7) and (8).

(7)

(6)
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Fig. 4. Two-source influence problem.

and

(8)

Equation (6) can then be written as:

(9)

Note that . So we draw the conclusion that
for the two-source case, the activation latency still follows the
mixture model. And can be easily derived from
the parameters in the traditional LTM or ICM. In LTM, the in-
fluential power between a node pair is described as the edge
weight. Thus and are the influence weights from
Node A and Node B, respectively, to Node D. should be
the weight summation from all active neighbors of Node D,
and thus is calculated as . In ICM, the influen-
tial power is described as probability. Then and are
the activation probabilities from Node A and Node B, respec-
tively, to Node D and the total probability can be represented as:

.
For the three-source case, with Node A, Node B and Node C

activated at time , and respectively ( ),
what is the activation probability density function for Node D?
Following the same procedure as in the two-source case, the
result under the three-source scenario is shown in Equation (10)
at the bottom of the page. And the corresponding parameters are
shown in Equation (11) and Equation (12) at the bottom of the
page.
Following the same idea, we can derive the activation proba-

bility function for the multi-source influence problem. Suppose

we wish to calculate the activation probability of Node at
time , the first step is to find the neighbors of Node activated
before . It includes all the active neighbors of Node denoted

, and their corresponding activation times, de-
noted . Thus the
activation probability function of Node at time could be ex-
pressed as follows:

(13)
where

(14)

(15)

(16)

(17)

has the following expressions:

for LTM (18)

for ICM (19)

From Equation (13), we find several important results:
• The multi-source influence on Node , represented by ac-
tivation probability density function, decreases exponen-
tially with time.

• The time shift on the exponential mixture model is . It
corresponds to the MRS neighbor of Node . Thus the
shift is only determined by theMRS neighbor, but not other
neighbors that are activated earlier.

• The weights for the two different components are con-
trolled by all existing active sources, i.e., their activation
times may influence the proportions of the two compo-
nents, and .

• Note that , and the total probability
is not only determined by the MRS neighbor, but the com-
bination of probabilities from all the neighbors activated
before User .

(10)

(11)

(12)
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Fig. 5. Empirical data and exponential mixture distribution fitting for MRS activation latency.

TABLE V
K-S TEST RESULT FOR MRS ACTIVATION LATENCY FITTING

B. MRS Activation Latency

However, the derivation in Section V-A is based on the “in-
dependent user activation” assumption, and hence needs to be
further verified in case this assumption may not hold. According
to our derived results, the activation probability of target users
is only determined by the MRS activation latency, which can
be better characterized by the exponential mixture distribution.
Therefore, we will empirically verify the distribution of MRS
activation latency.
Fig. 5(a) shows the Cumulative Distribution Function (CDF)

of the MRS activation latency and the exponential mixture
model fitting. To provide goodness-of-fit for the given distribu-
tion, we use the Q-Q plot (Fig. 5(b)) to compare the empirical
data and the theoretical distribution. To provide rigorous good-
ness-of-fit result for the given distributions, we also show the
Kolmogorov-Smirnov test (K-S test) (see Table V) result. It
shows that the MRS activation latency can be fitted well by
the exponential mixture model, which accords with our derived
results.

C. Multi-Source Influence Under the Exponential Model
Approximation

In the SS activation latency measurement studies
(Section IV-C), we found that although the exponential
model cannot fully describe the SS activation latency, it could
still provide a good approximation. Hence, in this section, we
consider the exponential model, in which the SS activation
latency follows the single exponential distribution. We will
firstly focus on the two-source scenario as shown in Fig. 4, and
then target the general multi-source influence problem.
We follow the same setting in Section V-A in which Node A

and Node B are activated at time and respectively, with
. Their neighbor Node D has not been activated

yet. Thus it has two influence sources A and B. The influences
on Node D from A and B separately decrease exponentially
with time shifts and , respectively. If the total activation

probability density function on Node D is denoted by , we
formulate it by the linear superposition of and :

(20)

(21)

(22)

Here follows the same definition as shown in
Section V-A, which can be easily derived from the parameters
in the traditional LTM and ICM model.
Following the same idea, we can derive the activation prob-

ability function for the general multi-source influence problem.
Suppose we wish to calculate the activation probability of Node
at time , we first find all the neighbors of Node activated

before . It includes all the active neighbors of Node denoted
, and their corresponding activation times, de-

note . Thus the ac-
tivation probability density of Node at time could be ex-
pressed as follows:

(23)

where , and has the following expressions:

for LTM (24)

for ICM (25)

One important finding is that in the general formulation Equa-
tion (23), only the MRS activation latency affects the activation
probability of the target user. Compared with the exponential
mixture model, this largely reduces the computational cost. This
is because in the exponential mixture model, we have to utilize
all existing activated users’ activation time records. As to the
quantitative performance of the single exponential assumption,
we will explore this in the model validation in Section VI-B.
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D. Diffusion Model

To account for the aforementioned cumulative influence from
the multiple active sources and the temporal information prop-
agation feature, we propose a new diffusion model, namely, the
Multi-source driven Asynchronous Diffusion Model (MADM).
The specifics of MADM are as follows.
• Initially, a social graph is given, where
represents the set of nodes, and is the set of edges. A
group of seed nodes is initially activated.

• Time proceeds continuously. Any inactive node will be
activated with the following probability function which
varies with time:

(26)

where is the total probability that node is activated
by the combined influential power of all of active
sources, is the activation time of MRS neighbor,
is the IETW, and can be calculated using ex-

isting activation time records as shown in Equation (15)
and Equation (16) and and are the exponential com-
ponent parameters.

• If any inactive node is activated at time , update for
all the inactive nodes.

• The process ends if no more activation is possible.
The computational complexity of MADM includes two parts,

i.e., model training and model validation. The first part is due to
parameter learning, i.e., the computational cost of the EM al-
gorithm. A rigorous proof of the finite convergence of the EM
algorithm is given in [36]. According to the derived results,
once we learned the required parameters under the explicitly
measurable SS cases, we can further derive the parameters for
multiple cases. Then the complexity of the EM algorithm per-
formed on a training set is , where is the number
of SS sharing actions and is the maximum number of iter-
ations. For the model validation part, we need to calculate the
activation probability for all the sharing actions in the testing
set following Equation (13). For each sharing action, the com-
putation of Equation (13) will further depend on Equation (15)
and Equation (16), and both of them need to traverse the active
sources of this sharing action once. Accordingly, when applying
the trained model on a testing set of sharing actions, where
each sharing action is, on average, driven by active sources,
the complexity is . However, the average number of
active sources can be regarded as a fixed constant for a given
dataset, and is usually much smaller than the average number
of users’ friends. In particular, equals to 2.71 in our dataset,
much smaller than the average number of friends which is 89.
Therefore, the model validation complexity for MADM is actu-
ally . Thus the total complexity of MADM is the combi-
nation of these two parts, i.e., . Moreover, in our
following experiments, we set according to previous
studies [37], which is negligible compared with the values of
and in the millions. Thus the computational complexity

of training and testing MADM based on our experimental set-
tings is , which grows linearly with the number of
sharing actions investigated.

VI. EXPERIMENTS

A. Model Training

Using our proposed MADM, given any User , its activa-
tion probability can be calculated using a closed-form equa-
tion . Since User existing neighbor’s activation time
records are known parameters, we have to find a way to train
the four unknown parameters in the exponential mixture model:
, , and . and are the mixing parameters, deter-

mining the proportion of the two exponential components.
and are the inversion of means of the two exponential distri-
butions, i.e., and .
The expectation-maximization (EM) algorithm is an iterative

procedure for model parameter estimation. It starts with any ini-
tial guesses for the values of the parameters, and then proceeds
to repeat two phases that are called the expectation step (E-step),
and the maximization step (M-step). The EM algorithm is the
most widely adopted method for maximum-likelihood estima-
tion of the parameters of a mixture distribution. In his work on
distributions from exponential families, Hasselbald [38] derived
the E-step and M-step for finite mixtures. Also, he compared
the performance of the EM algorithm with another estimation
method, the method of moments. Although it is difficult to draw
definitive conclusions from his small study, his examples rou-
tinely showed that the EM algorithm produce estimates with
smaller variances than the method of moments estimates.

Algorithm 1 EM Learning Algorithm

Require:
Training set:

Ensure:
The final output parameters
Define SS activation latency set
for to do
if then
Add to set

end if
end for
Initialize parameters:

, , ,
, , ,

,
while do
[ , , ] = Expectation( , , , )

=Maximization( , , )
if then
break

end if

end while
return

Hence, we also adopt the EM algorithm for estimation of our
exponential two-mixture distribution. In each expectation step,
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the probabilities that any given observation belongs to a partic-
ular exponential component are estimated using the currently
fitted distribution parameters. In the maximization step, all the
data incorporating the distribution parameters are re-maximized
using the new estimates of the probabilities from the previous
E-step. The details of the EM algorithm are described in Algo-
rithm 1, incorporating the E-step (Algorithm 2) and the M-step
(Algorithm 3).

Algorithm 2 Expectation Step

Require:
, , ,

Ensure:
The final output parameters , ,

for to do

end for

return , ,

Algorithm 3 Maximization Step

Require:
, ,

Ensure:
The final output parameters

,

,

return

According to the observations in Fig. 1, Section IV-A, we
choose the top 0.49% videos as popular videos and the rest
as non-popular videos, and then train our model for these
two groups, respectively, to examine whether the resultant
parameters are sensitive to video popularities. The results are
shown in Table VI. There are two interesting observations.
The first one is that compared with non-popular videos, the
average activation latency of popular videos is larger, which
means the diffusion rates along social links of popular video
is, in general, slower. Although it seems counter-intuitive, it
can be explained by the fact that popular videos have a much
larger window of interest than non-popular ones, i.e., popular
videos typically have a more constant interest rather than a
brief surge of interest which is similar to the observations
in [39]. Also, note that the video popularity in OSNs decays
very fast [19], which means that the majority of the sharings

TABLE VI
PARAMETER LEARNING FOR DIFFERENT VIDEOS

is gathered soon after the video is first diffused. Then for the
popular videos, the remaining small portion of video sharings
will be distributed along a larger time window, making the
activation latency of sharings which occur in the tail longer.
The second observation is that the learned average activation
latency for popular videos is similar to the value for all videos,
i.e, the performance of popular videos is representative. This
is because popular videos contribute most of the sharing
actions.

B. Model Validation

In this section, we discuss the validation of the proposed
MADM model on real datasets (i.e. the collected XJ dataset).
In particular, we are interested in the predictive performance of
the models, i.e., given the activation time of one’s existing ac-
tive sources, can we predict his activation time accurately? We
consider two evaluation metrics and compare our results with
three other prediction models.
1) Evaluation Metrics: To compare different diffusion

models, we use two evaluation metrics, namely, prediction ac-
curacy, and relative expected error. Considering that our model
is continuous in time, it is impractical to predict a precise time
point. Hence we introduce the tolerance level denoted by ,
i.e. the model can predict an activation time point correctly
within the given time interval .
• The first metric is prediction accuracy, i.e. given the real
activation time for User , the prediction accuracy
metric is calculated as follows:

(27)

where is the set of influence paths in the test dataset,
and is the number of influence paths in . For
the influence path of User and video object
in , is User real activation time. This metric
measures how well the test set fits the given model.

• The second metric we consider is the relative expected
error [40], which can be regarded as a soft version of ac-
curacy. It does not insist on predicting the exact activation
time, but takes into account the prediction error. For a real
activation time in the test dataset, we measure the expected
time error between the real activation time and the time
predicted by the model.

(28)

Compared with previous studies [41][7], which try to im-
prove the accuracy of predicting whether an activation will
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happen by learning the heterogeneous diffusion probability of
each individual social link, the main concern of the perfor-
mance evaluation here is the temporal aspect, i.e., the accuracy
of predicting the occurrence time with a given activation
probability. In our evaluation, we only consider those users
who finally got activated, by setting [12]. Under this
setting, the evaluation result will be the same for both LTM and
ICM. Therefore, we do not differentiate LTM and ICM when
presenting the evaluation result.
2) ComparisonModels: Here, we use four non-trivial models

for comparison.
• RandomModel: RandomModel (RM) is a baseline model,
which assumes that the activation probability follows a
uniform distribution as follows:

(29)

• Most Recent Model: Most Recent Model (MRM) is
a way to describe how a human’s historical behavior
may influence his forthcoming actions. It considers that
human behaviors are not purely random, but may follow
certain patterns. Previous human dynamics studies in
various areas, e.g. emails [42] and short messages [43],
have demonstrated that human activities have the char-
acteristics of following certain patterns or obey certain
distributions. The specifications of MRM are described
as follows. To predict User activation time, we firstly
collect all of historical influence path records and order
them by activation times as the following sequence

. Here, is the total number
of historical records, and activation times satisfy

. Then MRM will estimate
future MRS activation latency as that in his last known
influence path record .

• Exponential Model: Exponential Model (EXPM) is a
variant of our proposed MADM, which assumes that the
activation probability follows an exponential distribution
as shown in Equation (23). The only unknown parameter
in EXPM can be easily calculated using the maximum

likelihood technique.
• Rayleigh Model: the Rayleigh model (RAYM) is a
well-known parametric model previously used in de-
scribing the temporal dynamics of diffusion in OSNs [9]
and also in epidemiology [44], where the likelihood of in-
fluence or activation is modeled via the Rayleigh distribu-
tion. Specifically, is defined as the conditional
likelihood of transmission between node and node .
The transmission likelihood depends on the activation
times and transmission rate . The detailed
formulation is .
The only unknown parameter in RAYM can be easily
calculated using the maximum likelihood technique.

3) Experimental Settings: In the experiments we set to be
24 hours, and select the influence path records within 120 days
starting from January 1 2011. Additionally, we divide all data
into a training dataset and a testing dataset. We use the influence
path records within the time period [January 1 2011, March 31

Fig. 6. Prediction accuracy.

TABLE VII
RELATIVE EXPECTED ERROR (HOURS)

2011] as the training set to learn model parameters, and the in-
fluence path records within the time period [April 1 2011, May
1 2011] as the testing set to validate the prediction power of
MADM. We further consider the tolerance level as

(30)

4) Performance: Fig. 6 compares the prediction accuracy of
our model with other models. The X-axis corresponds to the
tolerance level from 0.2 to 4.0. The Y-axis is the corresponding
prediction accuracy value for the given tolerance level. Specif-
ically, they show that the prediction accuracies of MADM,
EXPM, RM, RAYM and MRM increase with the increase of
tolerance levels. In general, our proposed MADM performs
best with an accuracy around 63% when the tolerance level
equals to 4 hours. Since exact prediction accuracy is hard to
achieve, and there is much noise (like spam account and spam
records) in the data, we think this is a remarkable result. Also
note that here we only employed the general parameters learned
from the whole population due to the computational simplicity
as well as the lack of adequate training data for each individual
user. If we take user heterogeneity into consideration, perfor-
mance may be further improved by learning the parameters for
each individual user.
Moreover, if we can accept a tolerance level larger than 1.8

hours, EXPM can perform as well as MADM. In this sense,
EXPM could be treated as a good substitution for MADM due
to its model simplicity. In addition, we can see that MADM,
EXPM, RAYM and MRM outperform the baseline model RM
under all tolerance levels. This is because RM does not use any
historical influence diffusion records and just predicts the acti-
vation times randomly.
According to another performance metric, i.e., the Relative

Expected Error performance (Equation (28)), as shown in
Table VII, MADM still performs the best with 4.2 hours rela-
tive expected error. EXPM performs the second best, followed
by RAYM, MRM and RM.
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C. Discussion

Our work is not without limitations. We focus on the dif-
fusion processes that are fully driven by inter-personal social
links. In reality, diffusion can also benefit from external influ-
ential sources (e.g., mass media), and this has been previously
observed in Twitter by Myers et al. [31]. They show that the
information diffusion process in Twitter is determined not only
by online activities but also by external activities which are not
recorded online. This raises two interesting issues. How can we
detect the external influence in the OSNs of our interest? How
can our proposed MADM be combined with the external influ-
ence factors to generate a hybrid model? It would be interesting
and meaningful to study these issues in our further work.

VII. CONCLUSION AND FUTURE WORK

This paper introduces a Multi-source-driven Asynchronous
Diffusion Model (MADM) to describe the information prop-
agation process in OSNs. Through an influence measurement
studyofvideo-sharingpropagationonadominantChineseonline
social network, we firstly characterize the temporal patterns of
the information propagation process. Based on the empirical
findings, we propose an analytical framework to study howmul-
tiple active sources affect thediffusionprocess.Next,wedevelop
MADM to describe the information propagation behavior in so-
cialnetworksandpredict the individualactivation time.Using the
datasets collected from theRenren social network,we conducted
model training and model validation. The experimental results
show that MADM performs better than other existing models.
One future research is to utilize the proposed asynchronous

diffusion model to investigate the information diffusion related
applications. For example, we may reconsider the influence
maximization problems [45], [46] in OSNs by incorporating
the temporal factors.
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