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Convergence of Low-Frequency EFIE-Based
Systems With Weighted Right-Hand-Side Effect

Qin S. Liu, Student Member, IEEE, Sheng Sun, Senior Member, IEEE, and Weng Cho Chew, Fellow, IEEE

Abstract—This paper addresses the convergence of the electric-
field integral equation (EFIE)-based matrix systems with the right-
hand-side effect. The role of the right-hand-side excitation in de-
termining the convergence rate of the iterative solvers is found
to be important or even crucial at low frequencies. The weighted
contributions from different singular vectors are decided by not
only the corresponding singular values but also the right-hand side.
Based on this understanding, we investigate the low-frequency sta-
bilized form of both EFIE and Calderén multiplicative precondi-
tioner EFIE (CMP-EFIE) on capacitive problems. For the parallel-
plate capacitor excited by the delta-gap source, the singular vectors
with small singular values cannot be excited, and the charge cur-
rents on the capacitive surface dominate. Thus, the stability of the
EFIE-based system can be achieved at low frequencies. Detailed
spectral analysis and convergent results are carried out in order to
capture the physical nature of the problems.

Index Terms—Low-frequency stability, perturbation method,
right-hand-side effects, singular vectors, spectrum analysis.

I. INTRODUCTION

ESIDES the typical factors like the condition number

and eigenvalue spectrum, the role of the right-hand-side
excitation in determining the speed of convergence of an
iterative solver is also found to be important or even crucial
under some situations, such as antenna, circuit, or packaging
problems, which are usually excited by current or voltage
sources. Maxwell’s equations have highly predictive power
over a wide range of length scales, from the subatomic to
intergalactic length scales, only if Maxwell’s equations are
solved correctly. Disparate sizes in geometrical models in-
duce both low-frequency circuit physics and mid-frequency
wave physics, resulting in ill-conditioned matrix equations.
When the method of moments (MoM) is employed to solve
surface integral equations in order to model electromagnetic
problems, both electrical-field integral equation (EFIE) and
magnetic-field integral equation (MFIE) are extensively used.
Analysis for the system stability of EFIE and MFIE focuses
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on the conditioning analysis and eigenvalue spectrum anal-
ysis. MFIE is thought to be well conditioned because of its
diagonal-dominant property. Unfortunately, many real physics
problems cannot be formulated by MFIE since it is less accurate
[1], [2] and is not applicable to open surfaces [3]. So we still
need to work with the ill-conditioned EFIE. EFIE is known to
become ill-conditioned at low frequencies since it suffers from
the low-frequency breakdown problem. Thus, it is important
to investigate the convergence phenomenon of the EFIE-based
systems.

The eigenvalue spectrum and the condition number are two
key factors that are usually thought to influence the iteration
convergence of the MoM matrix system. In matrix analysis
theory, the small condition number of the matrix usually in-
dicates a well-conditioned system, and the clustering of the
eigenvalues at a finite number that is away from zero or a
smaller-than-one spectral radius will usually ensure the stable
convergence of the matrix system. It was stated in [4] that the
eigenvalues of the system matrix and the number of corre-
sponding eigenvectors required to represent the right side of the
equation determines the convergence rate of the iterative so-
lution algorithms, and the increasing density of discretization,
which brings the existence of the increasing high-order modes,
will lead to the ill condition of the EFIE system matrix [5]. So
far, several remedies to the EFIE low-frequency breakdown
have been proposed, such as loop-tree/loop-star decomposition
[6]-[8] or the augmented EFIE (A-EFIE) method [9], which
contributes to improving the conditioning of the impedance
matrix. Also there are methods which focus on obtaining a
stable spectral property of the system matrix. It is investigated
in [10] that the properties of the basis functions employed
have direct influence on the eigenvalue spectrum of the re-
sulting MoM matrix and the eigenvalues cluster around one
after regularization by employing the multiresolution (MR)
basis function, which brings a good convergence behavior
similar to the second-kind integral equation. The success of
the recent proposed Calderéon multiplicative preconditioned
EFIE (CMP-EFIE) method [5], [11], [12] also benefits from
the preconditioning that has made the original EFIE into a
second-kind Fredholm integral equation operator, and the use
of the Chen—Wilton—Buffa—Christiansen (CWBC) basis func-
tion makes the Calderdon preconditioner into a multiplicative
form (CMP-EFIE) [13], which also avoids the singularity of
the Gram matrix and some complicated operator projection
manipulations. However, the CMP-EFIE method still breaks
down at low frequencies because the analytical condition
77 = 0 cannot be guaranteed after discretization. The most
common way to remedy the breakdown problem is to apply
loop-star decomposition [14], [15], which, however, will lose
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the diagonal-dominant property for the matrix. As an exten-
sion, a basis-free loop-star decomposition is proposed [16].
The new equation is applicable to scattering, inductive, and
capacitive problems, immune from both low-frequency and
discretization breakdown. Another more explicit way is to
manually remove the square of the hypersingular term (7,%)
[17] so that the remaining three terms (7.2 + 7.7}, + 75, 7,) are
stable at low frequencies. Unfortunately, although stable at low
frequencies, MFIE, A-EFIE, and CMP-EFIE all suffer from the
low-frequency inaccuracy problem for the solved currents. As a
remedy, the perturbation method has been applied to capture the
accurate currents at different frequency orders [1], [18]-[20].

In this paper, the right-hand-side effect is taken into consider-
ation when we investigate the convergence phenomenon of the
EFIE-based matrix systems dealing with capacitive problems.
Indeed, EFIE, which is known to have low-frequency break-
down, is shown to be stable at low frequencies when dealing
with symmetric capacitive structures. The same could also be
true of CMP-EFIE after removing the incorrect frequency-de-
pendent terms. Detailed spectral analysis for both EFIE and
CMP-EFIE systems is presented and discussed in the following
sections. It is then pointed out that the right-hand-side effect
is the key issue that is responsible to the convergence of the
system. Under the delta-gap excitation, the singular vectors with
small singular values, which will cause the slow convergence of
the iterative system, cannot be excited. Also, in order to stabi-
lize the CMP-EFIE system, the induction term with very small
eigenvalues is removable at low frequencies when the charge
term dominates. Thus, we can get the low-frequency stabilized
form of EFIE and CMP-EFIE for capacitive problems.

The contributions of this paper are threefold: 1) it presents
the theory of analyzing the right-hand-side effect in studying
the convergence of an iterative system; 2) it investigates the
weighted right-hand-side effect of the EFIE-based systems in
solving capacitive problems, and thus the corresponding stabi-
lized forms of EFIE and CMP-EFIE are studied; and 3) it ver-
ifies the accuracy of the simplified CMP-EFIE in solving the
low-frequency capacitive problem using the right-hand-side ef-
fect analysis.

The paper is organized as follows. In Section II-A, first we de-
fine the physical problem and bring out the convergence issue.
Then, Section II-B provides a mathematical manipulation of
the right-hand-side effect in the iterative process; following in
Section II-C is the detailed right-hand-side effect analysis of
EFIE on capacitive problems at low frequencies, and also a sta-
bilized form of EFIE is studied. Next, the simplified CMP-EFIE
is analyzed in Section III-A. In addition, through the perturba-
tion analysis in Section III-B, the convergence and accuracy of
simplified CMP-EFIE is verified. Finally, Section IV presents
more numerical results with asymmetric capacitive structures.

II. STABILIZED EFIE ON CAPACITIVE PROBLEM

A. Convergence of Conventional EFIE on Capacitive Problem

The EFIE operator can be written in its mixed potential form
with two terms, the smooth term (7Z;;) and the hypersingular term
(11) as

7(J) =7.(J) + Tn(J) )

5109

T:(J) =dwpn, x /g(r,r’)J(r')dr’ 2)

JT
1 |
T() =~ A XV / g(ex )V I ()

where g denotes the free-space Green’s function, ¢ and g are
the relative permeability and permittivity, respectively, and J is
the unknown current of a surface whose unit normal pointing
outward at r is n,.

It is well known that the EFIE operator has a low-frequency
breakdown problem due to the null space of the divergence
operator. The hypersingular term, which is also known as
the charge term, dominates when the frequency goes to zero.
Thus, the null space in this integral operator results in an
ill-conditioned matrix, where the eigenvalues of the system can
be very large, corresponding to the irrotational current when
the charge term dominates, and very small, corresponding to
the solenoidal current when the induction term dominates.
However, the solenoidal currents along the capacitive surfaces
are trivial because of the open-circuited gap. This implies that
the eigenvectors with very small eigenvalues cannot be excited
with the delta-gap excitation. Therefore, the EFIE operator
remains stable at very low frequencies for a capacitive problem.
Generally speaking, this is mainly because the dominant charge
term corresponding to the electroquasistatic equations captures
the circuits physics for capacitors, and the swamped induction
term is trivial in describing the capacitive problem.

As a numerical example, we consider a parallel-plate capac-
itor with the physical size of 4 mm X 5 mm X 0.4 mm. The
number of unknowns is 553 with 394 triangular patches. The
distributions of the eigenvalues for resultant matrices are plotted
in the complex plane, as shown in Fig. 1. As for the case of tradi-
tional EFIE, at a very low frequency (1 Hz), the overall distribu-
tion is dispersive in a wide range. By applying a simple diagonal
preconditioner (DP), the eigenvalue spectrum is compressed.
From the perspective of the frequency, there are values accu-
mulating around zero at both very low frequencies (1 Hz) and
relatively higher frequencies (1 GHz) for both EFIE and EFIE
with DP. It should be noted that both 1 Hz and 1 GHz are within
the low-frequency range since the physical size of the model
is from the scale of 10 "'\ to 1072\, (X is the wavelength in
free space. For “low frequency,” we were talking about the sit-
uations when the object size is much less than the wavelength,
usually less than A/20.) The spectrum properties should imply
that the systems are ill-posed. However, when taking a look at
the detailed convergence information as shown in Table I for
EFIE with DP, we find that the iterative system remains stable at
very low frequencies with accurate capacitance being achieved
(compare with [20]). Also, the condition number is very large
at very low frequencies due to some very small eigenvalues.
When the frequency becomes higher, the condition number be-
comes smaller; however, convergence becomes worse, and the
spectral radius p almost remains the same. It implies that the
values of small eigenvalues becomes higher with the frequency
increasing. The fact that p > 1 implies that the convergence
of system cannot be guaranteed. A similar conclusion can be
drawn for the case of dense meshes with 2288 unknowns. The
system matrix becomes even more ill conditioned, and the con-
vergence becomes very slow as the mesh density increases.
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TABLE 1

CAPACITANCE AND CONVERGENCE INFORMATION OF THE MOM MATRIX UNDER EFIE WITH DP. TOLERANCE ERROR = 1()—*

EFIE, N = 553, Ngmell = 160 EFIE, N = 2288, Nz™ell = 713 static EFIE, N = 553

f (GHz) | C (pF) | No. iter. Cond. p =max |\;| | No. iter. Cond. C (pF) | No. iter. Cond. C (pF)
1020 | 0.4723 36 3.7 x 1018 1.9895 86 2.0 x 10" | 0.4769 36 3.8 x 1018 | 0.4723

1079 0.4723 36 6.4 x 101? 1.9895 86 3.5 x 1020 | 0.4769 36 6.4 x 1019 | 0.4723

10~2 0.4723 36 1.5 x 10° 1.9895 86 8.5x 10° | 0.4769 36 4.5 x 1017 | 0.4723

10~1 0.4724 36 1.5 x 107 1.9895 86 8.5 x 107 | 0.4769 36 3.9 x 1017 | 0.4723

1 0.4766 272 1.5 x 10° 1.9899 40650 8.5 x 10° | 0.4812 36 3.5 x 1017 | 0.4723

5 0.6137 2505 6.1 x 103 1.9899 22797 3.4 x 10* | 0.6141 36 3.2 x 1017 | 0.4709

N: the number of unknowns; N2 the number of small singular values.

210" EFIB, =1k EFIE, /= 1GHz We denote the singular vectors in V to be v,,, which are orthog-
e O : - e 0 e ) I onal to each other, and assume that the unknown vector can be
& & written as
2oy 240
< <
£ | £}
=] &0
g -8t g =) reosondemadmmsmsdunmens ooy N
B : : : : ool ¢ : X = CrVn (6)
2 e 1 ¢ 1_ 32 4 2z 0 2 ”2::1
Real Part x10 Real Part %10
(a) (b) where N denotes the dimension of the problem, and ¢, is a

%1076 EFIE_DP, f= 1Hz 10 EFIE_DP, = 1GHz

Imaginary Part

-05 0 05 1 15 2
Real Part

Real Part
© (d

Fig. 1. Eigenvalues distribution of the MoM matrix under EFIE and EFIE with
DP: (a) EFIE at 1 Hz; (b) EFIE at 1 GHz; (c) EFIE_DP at 1 Hz; and (d) EFIE_DP
at 1 GHz.

B. Mathematical Manipulations of System Convergence With
RHS Effect

In the above case, we find that it is hard to explain the conver-
gence phenomenon either using condition number or eigenvalue
spectrum properties. Actually, eigenvalue spectrum and condi-
tion number are the properties of the impedance matrix, which is
on the left-hand side of the system equation. Typically, the con-
vergence of an iterative solver also depends on the right-hand
side of the equation, which corresponds to the nature of the ex-
citing source that generates the incident field [3]. The effect of
the right-hand side can be described by performing the SVD
analysis of a typical system

A -x=h. )

The singular value decomposition of the matrix A is

A-T5VT. )

series of coefficients. By substituting (6) into (4) and testing
the equation with u,, which are the singular vectors in U, the
coefficients ¢,,, can be deduced as

(u,,,b)

<um ;s Uy > Om

(7

Cpy, =

where ., is the /nth singular value. So the contribution of the
singular vectors in a solution depends very much on the singular
values as well as the right-hand side, which will excite different
modes. Each mode corresponds to a singular vector that can be
treated as a basis current. The convergence becomes poor if the
modes with small singular values are excited. Hence, we can
calculate the contribution from different modes with the coeffi-
cients ¢,,.

For a more mathematical representation, the convergence
phenomenon can be interpreted based on the Krylov subspace
method. The Krylov subspace KX (A, 1) is defined as

ICK(Aer) :span{ro,A-ro,Az~r0,...,AK~r0} (8)

where ryp = b — A - xq is the initial residual error, and x is the
initial estimate of the solution. The best estimate solution has
the residual error in the K th iteration as

K
rg = Z(LkAk o = PIU\(A) - Irg. (9)
k=0

Here, P (A) is a K th-order polynomial of the matrix A with
P2(0) = 1. Different iterative solvers aims at finding the co-
efficients o, ’s using different strategies through some threshold
constrains.

To understand how the convergence issue relates to the right-
hand side, one can re-derive the typical Krylov subspace method
analysis as follows by presenting the right-hand side explicitly.
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For a symmetric matrix A, rg can be expanded in terms of the
left and right singular vectors of A,

(10)

N
ro = Z Vn<11n71‘0>-

n=1

Then the K'th term of (9) becomes

N
= Ak : Z Vn<u'na I'0>

n=1

N
= Z ()',,k;un <un~, (b

n=1

= Z O',,Iill,n <un7 b> - <un7 A : XO)}'

n=1

- A - x9))

(11)

Note that U7 - A = ¥ - VT and from (7), the above equation
can be reduced to

(12)

N

Ak k

A .ry = g o, Sauy,
n=1

where S, = 0, (¢, — (Vn,X0)). Here, S,, describes the contri-
bution of the right-hand side and the initial estimated solution
in the iterative process. Thus, it indicates that the contribution
of singular vectors in the iterative process depends on not only
the their corresponding singular values but also the coefficients
¢, which contain the information from both the matrix and the
right-hand side.

More explicitly, the residual error in the K'th iteration can be
written as

K

ryg = Z (J,kAk

k= 0 k=0

= Z (Z ago? ) Snuy,

n=1 \k=0
N
E 0
= PK(O-‘IL)STLUIL'

n=1

§ ag E U,LSrLuIL

n=1

(13)

Here, we take GMRES iterative method as an example to pro-
vide the upper bound of the convergence rate. In this case, we

need to seek the minimum of [|r & || subject to zx = xx —Xg €
]CK (A, I‘()) as
min_ ||rg|| = min ZPK o) Sy,
zx EXE (A rq) PO’('T:) n=1
< HllIl Z IPR(a)| 1Sn] [lu |
PO
n 1
N
:Z min |PY(0,)] S . (14)
n= lPK(

All that is needed is an upper bound of the scalar function
minpo ) |P%-(0,)|. Referring to [22], similar convergence
analysis can be done using real Chebyshev polynomials since

5111

all singular values ,, are real positive. The derivation begins
with

min |PY(0,)| < min  max

P () PP (z) o€lon,o1]

|P?<(a)|. (15)

The minimum of the right-hand side of the inequality can be
reached by the polynomial

) Ox (1+z””1)

g1 — 0N

O (14+2:72)

(16)

where Cg (1) is the Chebyshev polynomial of the first kind of
degree K as defined by

_ f cos[K cos71(t)],
Ck(t) = {Cosh[K cosh ' (1)],

As in the definition, the maximum of Cx for # in [—1,1] is 1.
Thus, we have

-1<t<1

lt| > 1. 1n

1
’CK (1 + 2

P (o)) =

min  max
PI?<T) o€lon.o1] —0o1

01—0ON

. (18)
)

Then, the upper bound of ||r || can be obtained as

N

! ] S 1Sl

‘CK (1 + 2 770-1 n=1
19

ci—ox
which is codetermined by information from both the left-hand
and right-hand side of the matrix equation. For a heuristic de-
scription, we can use the upper bound of the residual error to ex-
plain why the convergence of EFIE becomes slower when the
frequency gets higher. Taking the parallel-capacitor as an ex-
ample and referring to Fig. 2, the singular values suddenly drop
to very small values at a point for both systems at 1 Hz and 1
GHz. The small singular values correspond to the null space,
which will slow down the convergence. An iterative system is
judged to be convergent if the residual error reached the manu-
ally set tolerance. We can calculate the contributions of modes
for regular singular values (T egular o) and small singular values
(Tsman &) in the residual error according to (19), respectively.

min_
2 EKE (A,rg)

ekl =

f=1Hz
Tsmall 0 X 10—5, f =1 GHz. (20)

—2 —14
Tregular o X 10 y Tsmall 0 X 10 )

-2
Tregular o X 10 ’

If the convergence threshold is set to be 10 =3, then the contri-
bution to the residual error from the small singular value modes
are trivial for both cases. The combination of the regular sin-
gular values modes can meet the threshold requirements. How-
ever, usually the systems have not converged to accurate solu-
tions at such a threshold. Or if higher accuracy is required, the
threshold should be made lower. If it is chosen to be lower than
10~4, the contribution from the small singular value modes at 1
GHz becomes not negligible in affecting the convergence pro-
cedure, thus, leading to a worse convergence. On the contrary,
as with the case of 1 Hz, the contribution from the small sin-
gular value modes is much smaller compared with the normal
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Fig. 2. Weights of contributions from singular vectors of EFIE in the port cur-
rent after SVD: (a) at 1 Hz and (b) at 1 GHz.

convergence threshold we usually set, which is trivial in the it-
eration procedure.

C. Right-Hand-Side Effect on Capacitive Problems

From the above section, we have known that the weights of
the contribution from different modes can be obtained by cal-
culating the coefficients ¢,,. Now looking back, the physical
problem defined previously, as shown in Fig. 2 for the EFIE
system, the decomposition of the currents at the port of the par-
allel-plate capacitor can be derived, where the singular values
follow the descending order with respect to the index. It is im-
portant to note that the contribution from small singular value
modes is trivial at 1 Hz. As the frequency increases, the influ-
ence of small singular-value modes becomes comparable to that
of regular ones. It implies that the small singular value modes
are not excited at very low frequencies. Physically speaking,
the large singular value modes represent the irrotational current
when the charge term (hypersingular term 7},) dominates, while
the small singular value modes correspond to the solenoidal cur-
rent when the induction term (smooth term 7,) dominates.

As depicted in Table I, the number of the small singular values
(Nsmally §s 160 in this numerical example. In other words, the
number of the large singular values (N!2'¢°) is 393, which is
just equal to the number of charge currents

Nchargecurrents = {¥patch — 1 =393. (21)
Thus, it means that the contribution from the charge currents is
enough to describe the total current. Even though there is a null
space, the system can still converge fast. However, the contribu-
tion from the induction term cannot be ignored any more when
frequency increases, leading to a poor convergence of iterative
process.

The EFIE system will break down at low frequencies and
cannot capture the real physics if the smooth term is swamped.

However, as discussed above, the smooth term is trivial when
dealing with the capacitive problem. At the static limit (w = 0),
the EFIE operator becomes

Jstatic _ (lin%](’]; + Th) > T, (22)

In fact, the solution solved from the static EFIE is a zeroth-order
approximation of the entire solution. At low frequencies, the

rest of the EFIE operator is a compact perturbation of the static

counterparts since the kernel of the operator can be expanded as
e IkR 1

— 4+ O(wh).

- +0")

PEV:R4 ... =
(Jk) R+ 7

1
= — ’k’l
7 bk 1

(23)

Then, we can expect the small singular values of static EFIE op-
erator to approach zero with the order of w!. As shown in the
last column of Table I, instead of poor convergence at higher fre-
quencies for the original EFIE, the static EFIE remains stable
over a wide frequency range. Similar explanation can be ob-
tained by the analysis of the weights from different modes. As
shown in Fig. 3, the distribution of the weights of the singular
vectors in the port current for the static EFIE is similar to that
of traditional EFIE at 1 Hz. However, when the frequency is
increased to 1 GHz, similar to the behavior at 1 Hz, the contri-
butions from those small singular value modes are trivial in the
entire solution. Thus, the system can remain stable over a wide
range of frequency, and it can be verified from the figure that the
small singular values go to zero as O(w!). Also, as we know,
EFIE has an approximate null space when w — 0. When the
frequency gets higher (not reaching middle frequency), the null
space becomes less exact than that at very low frequencies. This
results to the induction term showing up, which leads to the ex-
citation of the singular vectors with small singular values. One
may think that there is a tiny inductive effect here, which may
excite the modes relates to the loop current. However, the capac-
itive property is still dominant. As with the static EFIE, which
has an exact null space, the corresponding null space singular
values should be exactly zero. Then, the nonzero null space sin-
gular values in Fig. 3 are due to numerical roundoff, numer-
ical noise, or approximation. However, the approximation of the
static EFIE extracting the capacitive physics may lose some ac-
curacy in capturing the emerging inductive physics.

III. STABILIZED CMP-EFIE ON CAPACITIVE PROBLEM

We can take the Calderon multiplicative preconditioned
EFIE (CMP-EFIE) method as another example to present the
right-hand-side effect. As mentioned above, CMP-EFIE is
an effective remedy for the EFIE low-frequency breakdown.
By applying the Calderén identity on EFIE, the EFIE oper-
ator “preconditions” itself, and the new operator becomes a
well-conditioned second-kind integral operator. However, at
very low frequencies, the CMP-EFIE method suffers from
an inaccuracy problem for both closed surfaces and open
capacitive problems [18], [20]. In [21], a simplified form of
CMP-EFIE is claimed to be a stable and accurate formulation
for capacitive problems at low frequencies. Here, the simplified
CMP-EFIE is studied with the right-hand-side effect analysis.
It is shown that the simplified formulation can achieve a current
result of good accuracy at very low frequencies.
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Fig. 3. Weights of contributions from singular vectors of static EFIE in the port
current after SVD: (a) at 1 Hz and (b) at 1 GHz.
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Fig. 4. Weights of contributions from singular vectors for the simplified CMP-
EFIE. The frequency is 1 Hz.

A. Simplified CMP-EFIE for Low-Frequency Capacitive
Problem

Notice that CMP-EFIE formulation can be written as a com-
bination of two constraints [21], the smooth preconditioned term

T, (T, +Tn)(J) =15 - b, (24)
and the hypersingular preconditioned term
T (T + T)(J) = T, - b. (25)

In [21], the hypersingular preconditioned term in (25) is proven
to be trivial in describing the capacitive problem. Therefore,
(24) can be treated as a simplified form of CMP-EFIE. From
the formulation, it is actually a 7, -preconditioned EFIE. As ev-
idence, Fig. 4 presents the right-hand-side effect by showing the
weight of contributions from singular vectors for (24). From
physics, similar to EFIE, the new formulation of CMP-EFIE
also remains stable at low frequencies because the contribution
from the small singular vectors is trivial. And the resultant cur-
rent can also be verified to be irrotational since the solenoidal
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basis vectors have little contribution to the total current. Fur-
thermore, the accuracy of the current can be ensured at low fre-
quencies under the formulation of (24), which will be further
explained in the next subsection using the perturbation method.

B. Spectral Analysis With Perturbation Method

As proposed in [18], [20], the perturbation method is used to
remedy the inaccuracy problem in the CMP-EFIE. Here, the in-
accuracy problem with capacitive structure is briefly reviewed.

The three-term decomposition of CMP-EFIE is uncondition-
ally stable at low frequencies after manually setting 7,7, = 0.
From circuit physics analysis, we consider a lossless capacitor
charged by a constant voltage V. Then, the current is given by
I = V/(1/jwC), from which we can conclude that Imm(I) ~
O(w). On the other hand, according to (23), the frequency de-
pendence of the Green’s function is g ~ O(w®, w!). For the
delta-gap excitation, the right-hand side is V ~ O(w?, 0). Since
the current basis function and the testing function is frequency
invariant, the frequency dependence of the matrix equation can
be obtained as

T(w®, w”) = Z°V(0,0") + Z"V(0,w™t). (26)
Matching the frequency order of the two sides of the equation
yields

b>—1.

@7

For a capacitor, the imaginary part of current solved by the
CMP-EFIE equation is of the order w . It implies that the ac-
curate current of a capacitor is a high-order subset of that from
the CMP-EFIE formulation at low frequencies. Therefore, due
to the finite computation precision, it is difficult to obtain the
accurate imaginary part of the current, which is very important
for circuits problems. However, doing the same thing for the
simplified CMP-EFIE (24), the matching result corresponding
to (26) should be b > 1, which indicates that the solved current
is of the correct order of the frequency. This ensures the accu-
racy of the simplified system. In the following, we will use the
perturbation method to analyze and verify our conclusion.
With the perturbation method, impedance matrices, current
unknowns, and excitation vectors can all be expanded with re-
spect to a small parameter & = uky. Obviously, all the ma-
trices and vectors in the equations become frequency invariant.
Matching the coefficients of like powers of 8, the solution of cur-
rent j can be obtained at different frequency orders, respectively.
Since the unknowns are ¢kqj in the formulation of CMP-EFIE
with perturbation, only the equation corresponding to the second
order of current needs to be solved for capacitive problems
2253 e G L + 205 50 Gom' L] -3
[ C(V]I)BCGm + Z}CL'(Ii)BCGm ] b(0> (28)
where higher order currents have been ignored since they
are much smaller at low frequencies. Similar to that in
Section III-A, we can simply remove the smooth term from
(28), which denotes induction physics. Furthermore, from the
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Fig. 5. Comparison of iteration number of original and simplified CMP-EFIE
with perturbation method. The frequency is 1 Hz.

analysis in Section III-A, since (25) is trivial in describing
the capacitor problem, then it can be concluded that the
term 7, - b is trivial in the right-hand side. Thus, the term
Z’é%? R € b{® should equal to zero in (28). Thus, we
can rewrite (28) as

ZiWpe  Gul Tl 3P =28 5 - G -DO. (29)
It is interesting to note that it becomes the static EFIE for-
mulation with a smooth term as preconditioner. As shown in
Fig. 5, the simplified form in (29) remains stable and converges
even faster than the original one in (28). As also shown in
(24), the term 7,7, is a compact counterpart. Hence, (24) also
yields the form of (29) at low frequencies. Fig. 6 plots the
calculated imaginary currents of a parallel-plate capacitor by
different methods at the frequency of 107! Hz. Obviously,
large errors are involved in the current obtained from the
three-term CMP-EFIE formulation. On the contrary, the sim-
plified CMP-EFIE and CMP-EFIE with perturbation method
can still achieve a good stability at such a low frequency. A
comparison is also done with the direct inversion method of
the CMP-EFIE with perturbation formulation, which would be
a reliable reference. Shown in the top right corner of Fig. 6,
an imaginary current solved from the simplified CMP-EFIE
and the CMP-EFIE with the perturbation method can achieve
a good agreement. In addition, they are of the same order of
the results by using the direct inversion solver, which indicates
that the accuracy of the simplified formulation is ensured.
Moreover, as shown in Fig. 7, the simplified system in (29)
converges much faster than the EFIE and EFIE with DP and
can also remain stable at both of the two frequencies.

More information can be obtained from the influence of the
right-hand side. Fig. 8 shows the weight of contributions from
singular vectors for the original and simplified CMP-EFIE with
perturbation formulation. Similar to the EFIE, the simplified
system also has 160 singular values that approach to zero,
which have trivial contribution to the current at the port. In-
terestingly, in the original system, they have equally important
contributions on the singular values and the weight corre-
sponding to the smallest singular value is relatively higher.
(For CMP-EFIE, due to the preconditioner, the singular values
are redistributed. The smallest singular value corresponds to
the lowest order current mode, which is the dominant current
component. That is why the dominant singular-value weight
relates to the smallest singular value.) Therefore, the simplified
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Fig. 7. Comparison of iteration number of EFIE, EFIE with DP and simplified
CMP-EFIE with perturbation: (a) At 1 Hz and (b) At 1 GHz.

system converges even faster, because the contributions of
singular vectors with small singular values are suppressed in
comparison with the original one.

IV. MORE NUMERICAL RESULTS WITH
PARALLEL-PLATE CAPACITORS

Both EFIE and CMP-EFIE converge well at low frequencies
for capacitive problems. However, the convergence of EFIE is
more sensitive to the number of unknowns. In Table II, we show
the convergence for parallel-plate capacitors when the width of
the parallel plate (w) is varying while its length is fixed as 5 mm.
The frequency is 1 Hz, and the mesh size is chosen to be 0.25
mm ((1/6) x 1071 X). NV is the number of unknowns. It shows
that the convergence of both CMP-EFIE with perturbation and
simplified CMP-EFIE with perturbation remains stable regard-
less of the increasing number of unknowns when the mesh size
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Methods Number of Iteration (GMRES-30 and Tolerance: 1 x 10~%)
w=1mm, N =480 | w=2mm, N =1054 | w=4mm, N =2082 | w =5mm, N = 2626
EFIE 32 36 60 80
Static EFIE 32 36 60 80
CMP-EFIE_p 24 23 23 23
Simplified CMP-EFIE_p 22 20 20 21
102 CMP-EFIE p 10" @ 0.5 Unit: mm
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Fig. 8. Weights of contributions from singular vectors of CMP-EFIE with per-
turbation in the port current after SVD at 1 Hz: (a) original CMP-EFIE with
perturbation and (b) simplified CMP-EFIE with perturbation.

is fixed. While the convergence of EFIE and static EFIE begin
to slow down with the increase of the number of unknowns.

The instability of the formulation of EFIE dealing with capac-
itive problems also occurs when the structure is asymmetric. As
shown in Fig. 9(a), the excitation point of the capacitor is moved
away from the symmetric position, and Fig. 9(b) shows the con-
vergence of EFIE, CMP-EFIE, and the simplified CMP-EFIE
with the position of the excitation at 1 Hz. It implies that the
results of CMP-EFIE and simplified CMP-EFIE is almost im-
mune to the position of the excitation point, while the conver-
gence of EFIE becomes worse and worse when the excitation
point is moving away from the central position. The possible
reason is that the asymmetric feeding excites some high-order
modes, which can be annihilated by the smoothing property
of a compact operator like three-term CMP-EFIE or simplified
CMP-EFIE. However, the noncompact nature of the EFIE op-
erator enhances the high-order components, and then the diver-
gence behavior occurs.

V. CONCLUSION

In this paper, the right-hand-side effect is taken into consid-
eration to explain the convergence phenomenon of the EFIE-

Fig. 9. (a) Geometry of parallel plate capacitor with asymmetric excitation po-
sition. (b) Comparison of the convergence with the position of the excitation
using EFIE (with DP), static EFIE (with DP), CMP-EFIE with perturbation,
and simplified CMP-EFIE with perturbation at 1 Hz.

based systems. Regardless of the unimportant terms, the sim-
plified and stabilized forms for the low-frequency EFIE and
CMP-EFIE for open capacitors have been presented. Following
the detailed right-hand-side effect analysis, the EFIE operator
has been found to be stable and has fast convergence at very
low frequencies. This is mainly because the charge current is
enough to describe the total current of a capacitor, while the
singular vectors with small singular values have not been ex-
cited with delta-gap excitation at low frequencies. Moreover, it
has been shown that the smooth term can be employed to pre-
condition the hypersingular term, where a stabilized and accu-
rate form of CMP-EFIE at low frequencies has been achieved.
With the perturbation method, it is easy to understand that the
stabilized CMP-EFIE form is also the zeroth-order approxima-
tion at low frequencies, where higher order terms should be
considered when the frequency is higher. More results have
shown that EFIE is more sensitive than the CMP-EFIE to the
right-hand-side excitation.
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