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Abstract—In this paper, the electromagnetic (EM) features of
graphene are characterized by a discontinuous Galerkin time-
domain (DGTD) algorithm with a resistive boundary condition
(RBC). The atomically thick graphene is equivalently modeled
using an RBC by regarding the graphene as an infinitesimally thin
conductive sheet. To incorporate RBC into the DGTD analysis, the
surface conductivity of the graphene composed of contributions
from both intraband and interband terms is first approximated
by rational basis functions using the fast-relaxation vector-fitting
(FRVF) method in the Laplace domain. Next, through the inverse
Laplace transform, the corresponding time-domain matrix equa-
tions in integral can be obtained. Finally, these matrix equations
are solved by time-domain finite integral technique (FIT). For ele-
ments not touching the graphene sheet, however, the well-known
Runge-Kutta (RK) method is employed to solve the two first-
order time-derivative Maxwell’s equations. The application of
the surface boundary condition significantly alleviates the mem-
ory consuming and the limitation of time step size required by
Courant–Friedrichs–Lewy (CFL) condition. To validate the pro-
posed algorithm, various numerical examples are presented and
compared with available references.

Index Terms—Discontinuous Galerkin time-domain (DGTD)
method, fast-relaxation vector-fitting (FRVF), finite integral tech-
nique (FIT), graphene, Laplace transform, resistive boundary
condition (RBC), surface conductivity.

I. INTRODUCTION

G RAPHENE, an atomically thick two-dimensional (2-D)
layer of carbon atoms in which the atoms are arranged

in a honeycomb lattice, has already gained intensive atten-
tions from the academia and industry communities because of
its unique electrical (electron mobility up to 200 000 cm2/Vs
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for suspended graphene), mechanical (Young’s modulus up to
1 TPa), and thermal (thermal conductivity up to 5000 W/mK)
properties [1]. These remarkable features make it as a promis-
ing candidate for semiconductors, tuneable nanoantennas, and
surface plasmon waveguides, etc. The surface conductivity
of graphene denoted as σg(ω, μc,Γ, T ) plays pivotal roles
in studying its electromagnetic (EM)/optical properties such
as surface plasmon polarization (SPP) and transformation of
optics [2], where σg is a function of temperature T , chemi-
cal potential or Fermi level μc (dependent on carrier density,
electrostatic biasing, and chemical doping), particle scattering
rate Γ [3]. In the absence of external magnetostatic biasing,
σg is a scalar, otherwise it becomes a tensor [4]–[6] due
to the quantum Hall effect. By dynamically tuning the sur-
face conductivity, the propagation, polarization, radiation, and
scattering of electromagnetic waves through graphene can be
manipulated conveniently.

The graphene’s surface conductivity σg consists of contri-
butions from two terms: intraband σintra and interband σinter.
To quantify the EM properties of graphene, various numeri-
cal algorithms have been developed, including the method of
moments (MoM) [7] and finite-difference time-domain (FDTD)
method [8]. Compared with frequency-domain methods [7],
time-domain methods [3], [8], [9] have a plethora of advan-
tages such as broadband characterization with only a single
simulation and transient response capture, etc. Generally, there
are two approaches to model the graphene. 1) The graphene
is considered as a thin layer with nanoscale finite thick-
ness (around 0.34 nm) [10], [11], thus volumetric meshes
are required. With this approach, the surface conductivity is
transformed to an equivalent permittivity. 2) The graphene is
modeled as a infinitesimal thin conductive sheet over which
a resistive boundary condition (RBC) is satisfied [8], [9]. For
the first approach, particularly fine spatial mesh elements are
unavoidable, which results in extremely stringent time step size.
Doubtlessly, it significantly increases the memory load and
CPU time. Nevertheless, by exploiting the RBC, the second
approach is free of these negatives.

In this work, a discontinuous Galerkin time-domain (DGTD)
[16]–[18] method is introduced to characterize the graphene
based upon the RBC. DGTD method integrates the merits
of both finite-volume method (FVM) [12] and finite-element
method (FEM) [13]. Like FVM, all operations of DGTD are
local since the information exchange among neighboring ele-
ments are enforced through the numerical flux, thus resulting in
block-diagonal mass matrices. The dimension of each block is
equal to the degree of freedoms (DoF) in each element. Mass-
matrix blocks are inverted and stored before time marching
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which produces a very compact and efficient solver when it is
combined with an explicit scheme.

Since all boundary conditions in DGTD are implemented
by redefining the Rankine–Hugoniot jump relations, the new
numerical flux formulation in the presence of the RBC must be
derived. Unfortunately, the mapping pair of Maxwell’s equa-
tions gauged by the RBC from the frequency-domain to the
time-domain is not available since the surface conductivity σg

is a very complicated function of the angular frequency ω [see
(3) and (4)]. To address this issue, the surface conductivity σg

is first approximated by a set of rational basis functions using a
fast-relaxation vector-fitting (FRVF) [14]–[16] technique in the
Laplace domain. Through the inverse Laplace transform, the
corresponding time-domain matrix equations can be obtained
in integral forms over the time variable t due to the fact that the
division of a function by the Laplace state variable s (s = jω)
is an integral operation to the function in the time domain [16],
[18], i.e.,

s−nF (s) ↔
∫

· · ·
∫

︸ ︷︷ ︸
n

f(τ) dτ · · · dτ︸ ︷︷ ︸
n

. (1)

These finalized Maxwell’s equations in integral forms will
be discretized through a finite integral technique (FIT) in the
temporal sequence. It is necessary to indicate that those mesh
elements not touching the graphene sheet are solved by the stan-
dard fourth-order Runge-Kutta (RK) marching scheme since
the numerical flux is same as that in the absence of RBC.

The remainder of this paper is organized as follows. In
Section II, the theory and formulation of the proposed algorithm
are detailed, including the description of RBC, the derivation
of numerical flux, and the formulation of matrix equations.
In Section III, numerical results are presented for illustration.
Conclusion is presented at the end of this paper.

II. THEORY AND FORMULATION

A. Resistive Boundary Condition

The 2-D graphene layer is considered as an infinitely con-
ductive thin sheet quantified by a scalar surface conductivity
σg(ω, μc,Γ, T ) in the absence of external magnetostatic bias-
ing field. According to the Kubo’s formula [19], the surface
conductivity σg is formulated as

σg(ω, μc,Γ, T )=
jq2

π�(ω − j2Γ)

∫ ∞

0

ε

[
∂fd(ε)

∂ε
− ∂fd(−ε)

∂ε

]
dε

− jq2(ω − j2Γ)

π�2

∫ ∞

0

fd(−ε)− fd(ε)

(ω − j2Γ)2 − 4(ε/�)2
dε

(2)

where ε indicates the energy state, � denotes the reduced
Planck’s constant, −q is the charge of electron, and fd(ε) =[
e(ε−μc)/kBT + 1

]−1
is the Fermi-Dirac distribution with the

Boltzmann’s constant kB . In (2), the first term corresponding to
the contribution from the intraband is evaluated as

σintra = − jq2kBT

π�2(ω − j2Γ)

[
μc

kBT
+ 2 ln

(
e−μc/kBT + 1

)]
(3)

Fig. 1. Schematic illustration of the Rankine–Hugoniot jump relations for the
mesh element i. If face f of element i touches the graphene, the jump rela-
tion over this face along the curve xn = 0 should meet the relation in (10).
Otherwise, both electric and magnetic fields are tangentially continuous. The
horizontal axis represents the normal direction over the element’s face, the
vertical axis t denotes the time [12].

while the second term in (2) resembling the interband contribu-
tion is approximated, for kBT � �ωand |μc|, by

σinter = − jq2

4π�
ln

[
2|μc| − (ω − j2Γ)�

2|μc|+ (ω − j2Γ)�

]
. (4)

As a resistive thin sheet with the finite conductivity σg , the
electric current density is proportional to the tangential electric
field at its surface. Based on this fact, the boundary condition
across the graphene sheet should satisfy

n̂× (E2 −E1) = 0 (5)

n̂× (H2 −H1) = σgEt (6)

where the superscripts 1 and 2 represent the two sides of
the graphene sheet, n̂ is a unit vector pointing normal to the
graphene sheet, Et = n̂× (E× n̂) is the tangential component
of E field along the graphene sheet where E is approximated by
E = (E1 +E2)/2.

It is necessary to emphasize that the boundary condition in
(5) and (6) is derived based on the fact that the skin-depth
is much larger than the thickness of the conductive sheet. It
is independent of the external excitations such as the incident
directions and polarizations of plane waves.

B. Formulation of the Upwind Flux

In DGTD, the enforcement of boundary conditions in (5) and
(6) is facilitated via reformulating the numerical flux based on
the Rankine–Hugoniot jump relations. For an arbitrary mesh
element i (tetrahedrons are used as the mesh elements in this
work), the jump relations along three characteristic [12] for the
f th face of element i shown in Fig. 1 are defined as (assume the
face fg of element i is over the graphene sheet)

1) Jump across the characteristic xn = −cit

1

μi
n̂i,f × (E∗

f −Ei) = −ci(H∗
f −Hi) (7)

1

εi
n̂i,f × (Hi −H∗

f ) = −ci(E∗
f −Ei) (8)
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2) Jump across the characteristic xn = 0

n̂i,f × (E∗∗
f −E∗

f ) = 0 (9)

n̂i,f × (H∗∗
f −H∗

f ) = αgσgEt (10)

3) Jump across the characteristic xn = cjf t

1

μj
f

n̂i,f × (Ej
f −E∗∗

f ) = cjf (H
j
f −H∗∗

f ) (11)

1

εjf
n̂i,f × (H∗∗

f −Hj
f ) = cjf (E

j
f −E∗∗

f ) (12)

where 1 ≤ f ≤ 4 for tetrahedrons, j denotes the neighboring
element sharing the f th face of element i, n̂i,f is the outward
unit normal vector of face f . ci and cjf represent the charac-
teristic speed in element i and its neighboring j, respectively.
εi/j and μi/j are the permittivity and permeability, respectively.(
E∗

f ,H
∗
f

)
and

(
E∗∗

f ,H∗∗
f

)
are the intermediate states in ele-

ment i and j, respectively. It is noted that the incorporation
of RBC is facilitated by disrupting the tangential continuity of
intermediate variables H∗

f and H∗∗
f . The above jump relations

have to be satisfied over the faces shared by element i and j.
The parameter αg is defined as

αg =

{
1, f = fg

0, f �= fg.
(13)

By combining (7), (9)–(11), the upwind flux for the
Ampere’s law equation is formulated by

n̂i,f ×H∗
f = n̂i,f×

⎡⎣
(
ZiHi + Zj

fH
j
f

)
+ n̂i,f ×

(
Ei −Ej

f

)
Zi + Zj

f

+αg

Zjσgn̂i,f ×
(
Ei +Ej

f

)
2
(
Zi + Zj

f

)
⎤⎦ . (14)

Similarly, with (8)–(10) and (12), the upwind flux for the
Maxwell-Faraday’s law equation is given by

n̂i,f ×E∗
f = n̂i,f×

⎡⎣
(
Y iEi + Y j

f E
j
f

)
+ n̂i,f ×

(
Hj

f −Hi
)

Y i + Y j
f

−αg

σg

(
Ei +Ej

f

)
2
(
Y i + Y j

f

)
⎤⎦ (15)

where Zi =
√

μi/εi and Zj
f =

√
μj
f/ε

j
f represent the char-

acteristic impedance of element i and the neighboring at the
f th face. By substituting (3) and (4) into (14) and (15), obvi-
ously, straightforward mapping the DG formulated Maxwell’s
equations from the frequency-domain to time-domain is not
possible due to the lack of analytical Fourier transform pair. To
overcome this problem, we first approximate the surface con-
ductivity σg by rational functions in the Laplace domain, then
via inverse Laplace transform, time-domain counterparts can be
obtained conveniently.

C. FRVF Technique

Suppose a given group of samples {(ωp, σg(ωp), p =
1, . . . , P} represent the values of surface conductivity σg at
angular frequency ωp, FRVF [14], [15] technique is employed
to fit these samples by rational basis functions. Namely

σg(s) =

M∑
m

cm
s− am

+ d+ se

=

M∑
m

cms−1

1− ams−1
+ d+

e

s−1
(16)

where s is the Laplace state variable, am and cm (which can
be either real quantities or complex pairs) denote the pole and
residue, respectively. d and e are two optional real parameters,
which are set to zero in this work. Then, we can rewrite (16) as

σg(s) =
u1s

−1 + u2s
−2 + · · ·+ uP s

−P

d0 + d1s−1 + d2s−2 + · · ·+ dQs−Q

=

∑P
p=1 ups

−p∑Q
q=0 dqs

−q
(17)

where up and dq are the p and qth coefficients, and the orders
of numerator and denominator are P and Q, respectively.

To fix the poles and residues, FRVF involves two stages:
1) pole identification and 2) residue identification. With this
rational function and the transform pair in (1), the correspond-
ing time-domain equations are obtained in an integral form to
time t. The integral operators will be further discretized by FIT
in this work.

D. Formulation of DGTD

Let Ω denote the computation domain of interest, which is
bound by the surface ∂Ω. For DGTD, the domain Ω is first split
into N nonoverlapping tetrahedrons Ωi with the corresponding
boundary ∂Ωi. In element i, the electric field E and magnetic
field H are expanded by vector basis functions Φ(r) and Ψ(r)
[16], [20], [27]

Ei =

ni
e∑

k=1

eik(t)Φ
i
k(r) (18)

Hi =

ni
h∑

l=1

hi
l(t)Ψ

i
l(r) (19)

where ni
e and ni

h are the number of vector basis functions for
E and H in the ith element, eik and hi

k are the unknown time-
dependent coefficients of basis functions.

Next, the mesh cells are regrouped into two different sets
ΩRBC and ΩNRBC. The set ΩRBC consists of mesh ele-
ments interfacing with the graphene sheet (or RBC), while the
set ΩNRBC contains those meshes not touching the graphene
sheet (or RBC). For elements in ΩNRBC, the fourth-order RK
method is employed to solve the two first-order time derivative
Maxwell’s equations [17]; while for elements in ΩRBC, FIT
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is applied to discrete the integral operators. Since RK march-
ing scheme-based DGTD formulation is already well developed
[16], [17], [24], we only detail the FIT-based DGTD formula-
tion in this work. To obtain the time-domain matrix equations,
we start with the two first-order Maxwell’s equations in the
Laplace domain.

Suppose that the element i belongs to the set ΩRBC, and
its f th (f ∈ N, 1 ≤ f ≤ 4 for tetrahedron) face overlaps with
the graphene sheet. By applying the DG testing over the two
Maxwell’s curl equations in Laplace domain, we can obtain∫

Ωi

Φi
k·
[
εiE

i − s−1∇×Hi
]
dr

= s−1
4∑

f=1

∫
∂Ωi,f

Φi
k · [n̂i,f × (H∗

f −Hi)
]
dr (20)∫

Ωi

Ψi
l·
[
μiH

i + s−1∇×Ei

]
dr

= s−1
4∑

f=1

∫
∂Ωi,f

Ψi
l ·
[
n̂i,f × (Ei −E∗

f )
]
dr. (21)

With (14)–(21) and the inverse Laplace transform in (1), the
time-domain matrix equations can be derived as [16]

Mi
e

(
d0e

i
0 + d1e

i
1 + · · ·+ dQe

i
Q

)
− Si

e

(
d0h

i
1 + d1h

i
2 + · · ·+ dQh

i
Q+1

)
=

4∑
f=1

(
Fii,f

ee eif + Fij,f
ee ejf + Fii,f

eh hi
f + Fij,f

eh hj
f

)
+ Fij,σg

ee ej,σg + Fii,σg
ee ei,σg︸ ︷︷ ︸

F
σg
e

(22)

Mi
h

(
d0h

i
0 + d1h

i
1 + · · ·+ dQh

i
Q

)
+ Si

h

(
d0e

i
1 + d1e

i
2 + · · ·+ dQe

i
Q+1

)
=

4∑
f=1

(
Fii,f

hh hi
f + Fij,f

hh hj
f + Fii,f

he eif + Fij,f
he ejf

)
+ F

ij,σg

he ej,σg + F
ii,σg

he ei,σg︸ ︷︷ ︸
F

σg
h

(23)

where Mi
e/h and Si

e/h are mass and stiffness matrices with
dimension equal to the DoF in the element i, Fee, Feh, Fhh,
and Fhe are matrices arising from the numerical flux terms.
They are defined as follows:[

Mi
e

]
kl

=

∫
Ωi

Φi
k · εiΦi

ldr (24)

[
Mi

h

]
kl

=

∫
Ωi

Ψi
k · μiΨi

ldr (25)

[
Si
e

]
kl

=

∫
Ωi

Φi
k · ∇ ×Ψi

ldr (26)

[
Si
h

]
kl

=

∫
Ωi

Ψi
k · ∇ ×Φi

ldr (27)

[
Fii,f

ee

]
kl

=
−1

Zi + Zj
f

∫
∂Ωi,f

Φi
k · n̂i,f × (n̂i,f ×Φi

l)dr

(28)[
Fij,f

ee

]
kl

=
1

Zi + Zj
f

∫
∂Ωi,f

Φi
k · n̂i,f × (n̂i,f ×Φj,f

l )dr

(29)[
Fii,f

eh

]
kl

=− Zj
f

Zi + Zj
f

∫
∂Ωi,f

Φi
k · n̂i,f ×Ψi

ldr (30)

[
Fij,f

eh

]
kl

=
Zj
f

Zi + Zj
f

∫
∂Ωi,f

Φi
k · n̂i,f ×Ψj,f

l dr (31)

[
Fii,σg

ee

]
kl

=
Zj
fg

2(Zi + Zj
fg
)

∫
∂Ωi,fg

Φi
k · n̂i,fg× (n̂i,fg×Φi

l)dr

(32)

[
Fij,σg

ee

]
kl

=
Zj
fg

2(Zi + Zj
fg
)

∫
∂Ωi,fg

Φi
k · n̂i,fg×(n̂i,fg×Φ

j,fg
l )dr

(33)[
Fii,f

hh

]
kl

=
−1

Y i + Y j
f

∫
∂Ωi,f

Ψi
k · n̂i,f × (n̂i,f ×Ψi

l)dr

(34)[
Fij,f

hh

]
kl

=
1

Y i + Y j
f

∫
∂Ωi,f

Ψi
k · n̂i,f × (n̂i,f ×Ψj,f

l )dr

(35)[
Fii,f

he

]
kl

=
Y j
f

Y i + Y j
f

∫
∂Ωi,f

Ψi
k · n̂i,f ×Φi

ldr (36)

[
Fij,f

he

]
kl

=
−Y j

f

Y i + Y j
f

∫
∂Ωi,f

Ψi
k · n̂i,f ×Φj,f

l dr (37)

[
F

ii,σg

he

]
kl

=
1

2(Y i + Y j
fg
)

∫
∂Ωi,fg

Ψi
k · (n̂i,fg ×Φi

l)dr (38)

[
F

ij,σg

he

]
kl

=
1

2(Y i + Y j
fg
)

∫
∂Ωi,fg

Ψi
k · (n̂i,fg ×Φ

j,fg
l )dr.

(39)

It should be noted that the flux terms Fσg
e = F

ij,σg
ee + F

ii,σg
ee

and F
σg

h = F
ij,σg

he + F
ii,σg

he are not zero only for faces over the
graphene sheet. Otherwise, they are zero.

Moreover, terms eiq and hi
q are column vectors storing the

unknown coefficients eik and hil and defined as

eiq,k =

∫
· · ·
∫

︸ ︷︷ ︸
q

eik(τ) dτ · · · dτ︸ ︷︷ ︸
q

(40)

hi
q,l =

∫
· · ·
∫

︸ ︷︷ ︸
q

hil(τ) dτ · · · dτ︸ ︷︷ ︸
q

. (41)
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The expressions for other parameters in (22) and (23) are

(e/h)
i
f =

Q∑
q=0

dq(e
i
f/h

i
f )q+1

(e/h)
j
f =

Q∑
q=0

dq(e
j
f/h

j
f )q+1

ei,σg =
P∑

p=1

upe
i
p+1

ej,σg =

P∑
p=1

upe
j
fg,p+1. (42)

Referring (40) and (41), it is noted that all terms in (42) are
in the form of integration over time t.

To solve the matrix equations in (22) and (23), the inte-
grations over time are discretized by FIT based upon the
rectangular rule [16]. The discretized version of (40) and (41)
with order p or q at t = (n+ 1)δt can be written as

ein+1,p/q = (δt)p/q
n∑

kp/q=0

· · ·
k3∑

k2=0

k2∑
k1=0

eik1+1 (43)

hi
n+1,p/q = (δt)p/q

n∑
kp/q=0

· · ·
k3∑

k2=0

k2∑
k1=0

hi
k1+1 (44)

ein+1,0 = ein+1 (45)

hi
n+1,0 = hi

n+1 (46)

To keep an explicit time marching scheme, the terms involv-
ing contributions from neighboring elements will be discretized
with a forward rectangular rule [16], i.e.,

ejn+1,p/q = (δt)p/q
n∑

kp/q=0

· · ·
k3∑

k2=0

k2∑
k1=0

ejk1
(47)

hj
n+1,p/q = (δt)p/q

n∑
kp/q=0

· · ·
k3∑

k2=0

k2∑
k1=0

hj
k1
. (48)

After a lengthy mathematical manipulation, (22) and (23) are
finalized into a compact matrix system at t = (n+ 1)δt(

M̃i
e S̃i

e

S̃i
h M̃i

h

)[
ein+1

hi
n+1

]
=

(
F̃i

e

F̃i
h

)
(49)

where the matrix-blocks are defined by

M̃i
e=

Q∑
q=0

dq(δt)
qMi

e−
Q∑
q=0

dq(δt)
q+1Fii

ee−
P∑

p=1

up(δt)
p+1Fii,σg

ee

(50)

S̃i
e = −

Q∑
q=0

dq(δt)
q+1Si

e +

Q∑
q=0

dq(δt)
q+1Fii

eh (51)

M̃i
h =

Q∑
q=0

dq(δt)
qMi

h −
Q∑

q=0

dq(δt)
q+1Fii

hh (52)

S̃i
h =

Q∑
q=0

dq(δt)
qSi

h−
Q∑

q=0

dq(δt)
q+1Fii

he−
P∑

p=1

up(δt)
p+1F

ii,σg

he

(53)

and the column vectors are formulated as

F̃i
e = −Mi

e

{
Q∑

q=0

dq(δt)
q ẽi

n+1,q

}
+ Si

e

{
Q∑

q=0

dq(δt)
q+1h̃i

n+1,q+1

}

+Fii
ee

{
Q∑

q=0

dq(δt)
q+1ẽi

n+1,q+1

}
+Fij

ee

{
Q∑

q=0

dq(δt)
q+1ej

n+1,q+1

}

+Fii
eh

{
Q∑

q=0

dq(δt)
q+1h̃i

n+1,q+1

}
+Fij

eh

{
Q∑

q=0

dq(δt)
q+1hj

n+1,q+1

}

+F
ii,σg
ee

{
P∑

p=1

up(δt)
p+1ẽi

n+1,p+1

}
+F

ij,σg
ee

{
P∑

p=1

up(δt)
p+1ej

n+1,p+1

}
(54)

F̃i
h = −Mi

h

{
Q∑

q=0

dq(δt)
qh̃i

n+1,q

}
− Si

h

{
Q∑

q=0

dq(δt)
q+1ẽi

n+1,q+1

}

+Fii
hh

{
Q∑

q=0

dq(δt)
q+1h̃i

n+1,q+1

}
+Fij

hh

{
Q∑

q=0

dq(δt)
q+1hj

n+1,q+1

}

+ Fii
he

{
Q∑

q=0

dq(δt)
q+1ẽi

n+1,q+1

}
+ Fij

he

{
Q∑

q=0

dq(δt)
q+1ej

n+1,q+1

}

+F
ii,σg
he

{
P∑

p=1

up(δt)
p+1ẽi

n+1,p+1

}
+F

ij,σg
he

{
P∑

p=1

up(δt)
p+1ej

n+1,p+1

}

In (54),

ẽin+1,p/q = ein+1,p/q − (δt)p/qein+1 (55)

h̃i
n+1,p/q = hi

n+1,p/q − (δt)p/qhi
n+1 (56)

ẽin+1,0 = 0 (57)

h̃i
n+1,0 = 0. (58)

To efficiently evaluate (e/h)
i
n+1,p/q in (43) and (44),

(e/h)
j
n+1,p/q in (47) and (48), and (ẽ/h̃)

i

n+1,p/q in (55) and
(56), the following recursive scheme is introduced [16]:

(e/h)
i/j
n+1,p/q = (e/h)

i/j
n,p/q + δt · (e/h)i/jn+1,p−1/q−1 (59)

(ẽ/h̃)
i

n+1,p/q = (e/h)
i
n,p/q + δt · (ẽ/h̃)in+1,p−1/q−1. (60)

The dimension of the square matrix system in (49) is
(ni

e + ni
h) by (ni

e + ni
h). In this work, 12 edge basis func-

tions (6 constant tangential/linear normal (CT/LN) and 6 linear
tangential/linear normal (LT/LN) basis functions, respectively)
are used for both E and H in each mesh element, i.e., ni

e = 12
and ni

h = 12 for i = 1, . . . , N .
In DGTD analysis, the inversions of matrices are calcu-

lated and stored before time marching, thus only forward
matrix–vector products are involved during the time march-
ing process. For mesh elements in ΩRBC, the computational
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Fig. 2. (a) Fitted magnitude (s) and (b) phase of the surface conductivity σg

from 500 MHz to 10 THz with four poles.

TABLE I
POLES am AND RESIDUES cm FOR THE GRAPHENE SHEET WITH

μc = 0.3 eV AND Γ = 0.41 meV/�

cost is on the order of (ni
e + ni

h)× (ni
e + ni

h)×O(NRBC)
with NRBC denoting the number of elements in ΩRBC. On the
other hand, for elements in ΩNRBC, the Maxwell–Faraday’s
and Amperes law equations are solved separated by the
RK method, and the corresponding computational costs are
on the order of (ni

e × ni
e)×O(NNRBC) and (ni

h × ni
h)×

O(NNRBC) with NNRBC denoting the number of elements
in ΩNRBC, respectively. Thus, the total computational cost is
on the order of (ni

e + ni
h)× (ni

e + ni
h)×O(NRBC) + (ni

e ×
ni
e + ni

h × ni
h)×O(NNRBC).

Since the resultant time-marching scheme is explicit, to
ensure stability, the Courant–Friedrichs–Lewy (CFL)-like con-
dition restricting the time step size δtDG of DGTD must be
satisfied. Namely,

c0δtDG ≤ min{lmin
√
εrμr/4(p+ 1)2} (61)

where c0 is the free-space light speed and p is the order of basis
function. The details can be found in [21]–[24].

III. NUMERICAL RESULTS

In this section, various numerical examples are introduced
to validate the proposed algorithm by studying the EM wave

Fig. 3. The calculated magnitudes of coefficients ΓT , ΓR, and ΓA by the
proposed algorithm as well as the theoretical data for μc = 0.3 eV case.

Fig. 4. Convergence property using different mesh cell sizes with λmin

denoting the free space wavelength at 10 THz.

TABLE II
POLES am AND RESIDUES cm FOR THE GRAPHENE SHEET WITH

μc = 0.12 eV AND Γ = 3.29 meV/�

propagation, scattering, and plasmon resonant effects of the
graphene sheet.

A. An Infinitely Large Graphene Sheet

As the first example, an infinitely large free standing
graphene sheet is benchmarked under the illumination of a
normally incident Gaussian pulse. The temperature T is set
to be T = 300 K, while μc and Γ are two parameters to be
determined.

First, we set the chemical potential μc = 0.3 eV and the
scattering rate Γ = 0.41 meV/�. To facilitate the FRVF pro-
cess, the surface conductivity from microwave to terra hertz
is fitted by rational functions using four poles. In Fig. 2,
the comparison between the fitted value and the original data
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Fig. 5. (a) Fitted magnitude (ms) and (b) phase of the surface conductivity σg

from 500 GHz to 100 THz using seven poles.

Fig. 6. Magnitude of calculated transmission coefficient ΓT by the proposed
algorithm as well as theoretical data from terra hertz to near-infrared region.

is shown from 500 MHz to 10 THz. Excellent agreements
are observed. The extracted poles and residues are listed in
Table I. With these extracted values, the reflection ΓR, trans-
mission ΓT , and absorption ΓA coefficients are calculated
by the proposed DGTD-RBC algorithm, as shown in Fig. 3.
For comparison, the analytical solutions calculated by method
in [19] ΓT = 1 + ΓR and ΓA =

√
1− ‖ΓT ‖2 − ‖ΓR‖2 with

ΓR =
η2−η1−σgη1η2

η2+η1+σgη1η2
are also presented, where η1 and η2

denote the characteristic impedances in region 1 and 2. It
is noted that very good consistency is achieved. To investi-
gate the h-convergence property of this proposed algorithm
when using different mesh size, the error indicator defined by
ξerr = 10 log (‖ΓDG − Γref‖/‖ΓDG‖) is calculated and shown
in Fig. 4. As it can be seen, the error exhibits exponential
decreasing.

TABLE III
POLES am AND RESIDUES cm FOR THE 5× 10 m2 GRAPHENE SHEET

WITH μc = 0 eV

Fig. 7. Normalized ECS versus frequency for a freestanding graphene patch in
[25] as its counterpart calculated by integral equation method.

Next, the transmission of a plane wave through the graphene
sheet with μc = 0.12 eV and Γ = 2× 1012 Hz in the mid-
infrared region is studied. For FRVF, seven poles (see Table II)
are employed with 500 MHz sampling resolution from 500 GHz
to 100 THz. The fitted value and the original data are shown
in Fig. 5. It is noted that σg has a jump around 60 THz, thus
more poles are needed. Below this frequency, the intraband
dominates, otherwise interband overwhelms. The calculated
amplitude of the transmission coefficient and the analytical
result are presented in Fig. 6. Again, very good agreements
between the numerical results and references are observed.

It is necessary to mention that the computational domain is
truncated by the Silver−Müller absorbing boundary condi-
tion (SM-ABC) for the above simulations, which is rigorous
since the wave is normally incident on the boundary.

B. A Micro-Size Graphene Patch

For finite-size graphene patch, the figure-of-merits of inter-
est are the total-scattering cross-section (TSCS), the absorption
cross-section (ACS), or the extinction cross-section (ECS).
Another optional interesting parameter is the radar-cross-
section (RCS) especially for people in the EM community.
To truncate the computational domain, instead of using the
SM-ABC, the time-domain boundary-integral (BI) equation is
incorporated into the DGTD analysis [26], [27]. Based on the
equivalent currents defined over a Huygens’ surface, the field
values required for evaluating the incoming numerical flux at
the truncation boundary are calculated by the BI method. This
method is mathematically exact and rigorous, i.e., the scattered
waves coming from any direction can be absorbed perfectly.
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Fig. 8. (a) TSCS and (b) ACS of the 50× 50 m2 freestanding graphene patch
corresponding to different chemical potentials μc = 0.5, 1.0, and 1.5 eV.

To validate the proposed algorithm for three-dimensional
(3-D) problem, a 5× 10µm2 freestanding graphene patch in
[25] is revisited. The parameters of the surface conductiv-
ity σg are given by T = 300 K, μc = 0 eV, and Γ = 1

2τ with
τ = 10−13 s. To facilitate the FRVF, the surface conductivity
σg is sampled from 500 MHz to 5 THz with the sampling reso-
lution fstep = 500 MHz. Three poles and residues are adopted,
which are listed in Table III. As for the excitation source,
a Gaussian-modulated plane wave defined as Einc(r, t) =

ŷg(t− k̂ · r/c0) is used, where k̂ = ẑ is the propagation
direction, g(t) = exp(−[t− t0]

2/τ2m) cos(2πfm[t− t0]) is a
Gaussian pulse with the modulation frequency fm = 2.5 THz,
duration τm = 1.274× 10−13 s, and delay t0 = 3tm. For com-
parison, the normalized ECS from 0.1 to 4 THz are calculated
by the proposed DGTD-RBC algorithm, as shown in Fig. 7. The
reference result in [25] obtained by integral equation method is
also shown. The good agreements demonstrate the accuracy and
applicability of the proposed algorithm for 3-D cases.

Next, a 50× 50µm2 graphene patch with T = 300 K and
Γ = 2.5 meV/� placed in the xoy plane is characterized. Also,
the same plane wave is employed as excitation but with fm =
5 THz and τm = 6.37× 10−14 s.

Fig. 9. Calculated forward RCS of the 50× 50 m2 freestanding graphene
patch corresponding to chemical potentials μc = 0.5, 1.0, and 1.5 eV.

First, the TSCS and ACS of this graphene patch are evaluated
for different chemical potentials μc. There are totally 114 404
tetrahedrons involved. The time step sizes for DGTD and BI are
δtDG = 1.073× 10−16 s and δtBI = 2.45× 10−15 s, respec-
tively. For this example, 70 000 time steps are run. In Fig. 8,
the normalized TSCS and ACS from 1 to 10 THz are shown
for μc = 0.5, 1.0, and 1.5 eV. (The poles and residues of the
surface conductivity σg are shown in Appendix.) As expected,
plasmon resonances arise at various frequencies. The increase
of chemical potential results in the up-shift of resonant frequen-
cies. The forward RCS from 1 to 10 THz are also presented in
Fig. 9. It is found that the peaks of RCS happen at the plas-
mon resonant frequencies, which is resulted from the near-field
enhancement. In Fig. 10, the normalized near-field patterns of
Ey for μc = 1.5 eV case are plotted at three plasmon frequen-
cies [see Fig. 8(b)] f1 = 1.76 THz, f2 = 4.98 THz, and f3 =
6.97 THz. Noticeable near-field enhancement is observed at the
resonant frequencies. In Fig. 11, the normalized far-field scat-
tered patterns in E- and H-planes at the fundamental plasmon
frequency f1 = 1.76 THz are also presented. It is interestingly
found that the far-field patterns resemble those of conventional
short dipoles [28], which consists with the assertion in [28]. The
nonsymmetrical pattern in H-plane is attributed to the boundary
condition in (6).

To have a basic insight into the effect of substrate on the plas-
mon resonance, we suppose that the above graphene patch is
supported by an 1-µm-thick dielectric substrate. Three dielec-
tric mediums that are familiar to experimental researchers are
considered, including silicon-dioxide (SiO2) with εr = 4.0,
silicon-nitrate (Si3N4) with εr = 7.0, and silicon (Si) with
εr = 11.9. Fig. 12 shows the obtained ACS by the proposed
algorithm for μc = 1.0 eV. It is interestingly noted that the
plasmon resonance shifts to low frequencies with the increasing
of permittivity and more energy is collected at the fundament
plasmon mode while the high order modes are suppressed.
The reasons behind these phenomenons are attributed to higher
effective permittivity resulting lower resonance frequencies and
stronger confinements of surface plasmon waves. In Fig. 13,
the normalized magnetic near-fields Hx over the graphene at
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Fig. 10. Normalized near-field distribution of Ey over the graphene sheet at (a) f1 = 1.76 THz; (b) f2 = 4.98 THz; and (c) f3 = 6.97 THz for μc = 1.5 eV
case.

Fig. 11. Normalized far-field pattern in E- and H-plane at f1 = 1.76 THz for
μc = 1.5 eV case.

Fig. 12. Normalized ACS of a 50× 50 m2 graphene patch supported by
different dielectric substrates for μc = 1 eV.

Fig. 13. Normalized magnetic field Hx over the two sides of the graphene sheet
at (a)–(c) f1 = 1.57 THz and (b)–(d) f2 = 3.89 THz for the silicon-dioxide
case.

f1 = 1.57 THz and f2 = 3.89 THz for silicon-dioxide case are
shown. Obvious discontinuities are noted over the two sides of
the graphene.

C. Graphene-Strip Gratings

For the third example, five 5× 50µm2 graphene strips
are parallel placed along the y-axis with period p. Here, the
scattering rate and chemical potential are set to be μc =
1.0 eV and Γ = 2.5 meV/�, respectively. Also, the previous
Gaussian plane wave is employed as the excitation but with
x-polarization.

In this benchmark, the impacts of different grating period
p on the plasmon resonance are investigated. In Table IV, the
time step size δtDG, δtBI , and the number of mesh elements N
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TABLE IV
TIME STEP SIZE δtDG FOR DG AND δtBI FOR BI AND THE NUMBER OF

MESH ELEMENTS N

Fig. 14. Normalized ECS of graphene gratings with period p = 6, 8, and 10 m.

for p = 6, 8, and 10 µm are listed. The normalized ECS for
different period p are shown in Fig. 14. It is noted that the
plasmon frequencies shift downward as the increasing of the
period and simultaneously smaller number of plasmon modes
are excited. In Fig. 15, the total electric field over the graphene
plane for the first three resonant frequencies with p = 10 µm is
presented. The propagation of surface plasmon wave is clearly
observed.

IV. CONCLUSION

In this paper, a DGTD-based algorithm is developed to model
the graphene described by a surface conductivity σg . Instead
of volumetrically meshing the atomically thick graphene, an
RBC is applied by considering the graphene as an infinitely
thin conductive sheet with the surface conductivity σg described
by the Kubo formula. To incorporate this boundary condi-
tion into DGTD analysis, the formulation of numerical upwind
flux is rederived based on the Rankine–Hugoniot jump rela-
tions. By approximating the surface conductivity with rational
functions using the FRVF technique, the corresponding time-
domain matrix equations can be obtained in an integral form
over time t via the inverse Laplace transform. The integral oper-
ators are discretized by FIT. The validation and applicability of
the proposed algorithm are demonstrated by a set of numerical
examples.

APPENDIX

RESIDUES AND POLES OF THE RATIONAL FUNCTIONS

CORRESPONDING TO DIFFERENT μc

This section shows the poles and residues of the rational
functions used to approximate the surface conductivity σg of

Fig. 15. Normalized electric field over the graphene plane at resonant frequen-
cies f1 = 1.445 THz, f2 = 3.735 THz, and f3 = 5.291 THz for period
p = 10 m case.

the graphene patch corresponding to different chemical poten-
tials μc. To facilitate the FRVF technique, the sampling is
conducted from 500 MHz to 10 THz with sampling resolution
fstep = 500 MHz. The number of poles and residues is set to
4, as shown in Tables V–VII.
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TABLE V
POLES am AND RESIDUES cm FOR THE GRAPHENE SHEET

WITH μc = 0.5 eV

TABLE VI
POLES am AND RESIDUES cm FOR THE GRAPHENE SHEET

WITH μc = 1.0 eV

TABLE VII
POLES am AND RESIDUES cm FOR THE GRAPHENE SHEET

WITH μc = 1.5 eV
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