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Flux-Modulated Permanent-Magnet Wheel Motor
Based on a Wide-Speed Sliding Mode Observer
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Ming Cheng, Fellow, IEEE , and K. T. Chau, Fellow, IEEE

Abstract—This paper presents a sensorless flux
adaption-direct torque control (FADTC) for a new
flux-modulated permanent-magnet (FMPM) wheel motor, in
which space-vector pulsewidth modulation (SVPWM) and
a wide-speed sliding mode observer (SMO) are adopted.
SVPWM-FADTC has several advantages over conventional
hysteresis direct torque control, such as low torque/flux
ripples in motor drive and reduced direct axis current when
the motor is operated at a light or a sudden increased
load. To achieve the sensorless control of SVPWM-FADTC
system, a wide-speed SMO is proposed. Compared with
conventional SMO, system chattering is improved, the
low-pass filter and the phase compensation are eliminated,
and the estimation accuracy of the rotor position at low
speed is enhanced. Numerical simulations and experiments
with a 2-kW FMPM wheel motor are carried out. The results
verify the feasibility and effectiveness of the proposed
sensorless SVPWM-FADTC method adopted by the FMPM
wheel motor.

Index Terms—Direct torque control (DTC), flux-
modulated wheel motor, permanent-magnet (PM) motor,
sliding mode observer (SMO).

I. INTRODUCTION

DUE to the advantages of simple structure and high ef-
ficiency, the permanent-magnet (PM) wheel motor is

widely used in electric vehicles (EVs). A PM wheel motor
drive has two types: One is low-speed gearless outer-rotor drive,
and another is high-speed planetary-geared inner-rotor drive.
The former has the drawbacks of bulky size and heavy weight
because of its low speed, and the latter has the disadvantages
of transmission loss, regular lubrication, and acoustic noise
because of its mechanical planetary gear. Magnetic gear has
been paid much attention in recent years since it can provide
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overload protection, high reliability and efficiency, reduced
acoustic noise, and no maintenance [1, 2]. A magnetic-geared
PM wheel motor has been proposed in [3]; it artfully integrates
a magnetic gear into a PM brushless dc motor so that they
can share a common PM rotor, hence offering high efficiency
and high torque density. Moreover, the low-speed requirement
for direct driving and the high-speed requirement for compact
motor design can be achieved simultaneously. However, it has
a complicated structure with three air gaps, which results in
high costs and complex manufacture. Hence, in this paper, a
new flux-modulated PM (FMPM) wheel motor is proposed.
Due to the omitted inner rotor and stationary ring, there is only
one air gap between a stator and an outer rotor. Therefore,
the structure is highly simplified, and the torque density is
greatly enhanced. Moreover, the merits such as direct drive, low
speed, and large torque output make this FMPM wheel motor a
promising candidate for driving EVs.

Direct torque control (DTC) has the advantages of rapid
torque response, simple structure, and less parameter depen-
dence [4, 5]. Due to these characteristics, it can meet the high
performance requirement for EVs. Nevertheless, conventional
hysteresis DTC presents some drawbacks such as large torque
ripple and variable switching frequency [6]. Instead, DTC based
on space-vector modulation (SVM-DTC) can obtain fixed
switching frequency and lower torque ripple [7, 8]. In the DTC
system, to control its torque by controlling the torque angle, the
stator flux amplitude is constant. Thus, when the motor runs at a
light or a sudden increased load, the d-axis current is increased
to maintain the stator flux a constant, which will increase the
loss of the motor and reduce its efficiency [9, 10]. To solve
this problem, a strategy of stator flux linkage control based on
maximum torque per ampere is proposed and implemented for
interior PM synchronous motors [10]. However, this algorithm
is relatively complex due to the solution of the nonlinear
equations. In [9], a novel DTC scheme of “id = 0” is proposed.
It is simple and greatly improves the efficiency. Nevertheless,
the shortcomings of conventional hysteresis DTC have not been
overcome. In this paper, a flux adaption-DTC based on space-
vector pulsewidth modulation (SVPWM-FADTC) is proposed.

To achieve precise torque control of the new FMPM wheel
motor in the DTC system, an accurate rotor position is needed.
The electromechanical position sensors are commonly used to
obtain the rotor position. However, the use of these sensors
causes a series of problems such as additional cost, reduction
of reliability, and complexity of the drive system [11]. To

0278-0046 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



3144 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 62, NO. 5, MAY 2015

overcome these drawbacks, sensorless control has been paid
much attention. Currently, according to the different applicable
speed ranges, sensorless control algorithms can be categorized
into two main approaches: One is a high-frequency injection
method, and another is a back electromotive force (EMF)
estimation method. Due to the salient effect, the former is
independent on motor parameters and has an accurate estima-
tion at zero/low speed [12, 13]. Nevertheless, high-frequency
noise brought by high-frequency injection signal will deterio-
rate the system performance. The latter is suitable for salient
and nonsalient motors and exhibits good dynamic and static
performance at medium/high speed [14, 15]. However, the low-
speed estimated performance is relatively poor. Owing to the
low saliency of the new FMPM wheel motor, the latter is more
appropriate than the former.

Among several kinds of sensorless control algorithms, the
sliding mode observer (SMO) is especially attractive for sen-
sorless control of the new FMPM wheel motor because of
the distinctive advantages of high reliability and good robust-
ness to large load variations. However, chattering caused by
discontinuous switching is an inevitable problem in the SMO
[16, 17]. Therefore, the key of SMO is to minimize chattering
and improve the low-speed estimated accuracy. In [18], the
sigmoid function is used instead of the conventional switching
function to significantly reduce system chattering. However, the
use of a low-pass filter (LPF) results in a phase delay problem;
thus, the estimated accuracy is reduced. In [19], the phase delay
problem caused by LPF is solved, but the analysis of low-
speed estimated performance is ignored. In [20], an adaptive
algorithm of the back EMF gain is proposed to enhance low-
speed estimated accuracy, but the phase compensation is still
required, which makes the estimated accuracy of the whole
drive system worse. Therefore, it is necessary to develop a
wide-speed SMO method for the sensorless control.

The major contribution of this paper is to propose a sen-
sorless SVPWM-FADTC method for the new FMPM wheel
motor to obtain the following performances: low torque ripples,
reduced d-axis current at a light or sudden increased load,
and a good estimated performance in a wide operating range.
This paper is organized as follows. In Section II, the operating
principle and characteristics of the new FMPM wheel motor
are described. The SVPWM-FADTC scheme of this motor is
analyzed in Section III. In Section IV, descriptions of the wide-
speed SMO and sensorless DTC system of this FMPM wheel
motor are presented in detail. Simulation and experimental
results are analyzed in Section V. Finally, conclusions are stated
in Section VI.

II. MOTOR DESCRIPTION

A. Operating Principle

The proposed FMPM wheel motor is shown in Fig. 1. It can
be noted that there is only one air gap between a stator and
an outer rotor of the proposed motor. The stator core has slots
of total number zs, in which three phase windings with pole
pairs ps are wound. On the other hand, slots of total number
of pr are punched at equal distance along the periphery of the

Fig. 1. Configuration of the proposed FMPM wheel motor. (a) Three-
dimensional view. (b) Sectional view.

rotor core. Its operating principle is similar with the PM vernier
machine in [21], which is based on the rule called the “magnetic
gearing effect”. That is, a small movement of the rotor makes
a large change of the flux, which results in high torque. In this
proposed FMPM wheel motor, the stator teeth are designed to
modulate the high-speed rotating field of the three phase stator
windings to the low-speed rotating field of the PM outer rotor.
Thus, self-decelerating operation is realized, and high-torque
output is achieved.

Similar with the magnetic-geared PM brushless motor in
[22] or the flux-controllable vernier PM machine in [23], to
maximize the useful fundamental harmonic field and produce
steady torque [2], this motor should satisfy

zs = ps + pr. (1)

Hence, the high-to-low speed ratio Gr is expressed as

Gr = −Pr

Ps
(2)

where the “−” means that the fundamental magnetic field of the
armature winding is in the opposite direction of rotation of the
outer rotor. In these parameters, zs is chosen to be multiples of
three to realize three-phase topology. To minimize the torque
ripple and perform torque transmission, pr and ps are designed
as 23 and 4, respectively. Then, according to (1), zs is 27.
From (2), it yields Gr = 5.75. It means that the outer rotor
speed is only 4/23 of that in stator for armature rotating field
speed. Thus, when the speed of the rotating field in the stator is
2300 r/min, the speed of the outer rotor is 400 r/min approxi-
mately. It can satisfy the requirements of wheel motor in EVs.
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TABLE I
PARAMETERS OF THE FMPM WHEEL MOTOR

Fig. 2. Winding inductance of phase A.

Fig. 3. No-load PM flux of three phases.

B. Motor Characteristics

The parameters of the FMPM wheel motor are listed in
Table I. Based on the finite-element analysis of the FMPM
wheel motor, the static characteristics are analyzed. Fig. 2
shows the winding inductances of phase A. It is shown that
self-inductance and mutual inductance of phase A are approxi-
mately consistent. The no-load PM flux linkages of three phases
are sinusoidal, as shown in Fig. 3. It indicates that the back
EMF waveforms of stator winding are sinusoidal. Therefore,
the new FMPM wheel motor is more suitable for sinusoidal
current drive.

III. SVPWM-FADTC SCHEME OF THE NEW

FMPM WHEEL MOTOR

As it has been demonstrated in [8], the SVM-DTC scheme
based on expected voltage vector modulation is implemented
well. However, when the new FMPM wheel motor is operated
at a light load or a sudden increased load, the required torque
is very small [9], [24]. Hence, the additional d-axis current

component is required to maintain the stator flux a constant.
The d-axis current does not produce torque, and the reactive
power component of stator current increases. Thus, with the
increased value of the d-axis current, loss of the FMPM motor
will be increased and its efficiency will be decreased. To reduce
the d-axis current in DTC, a flux linkage adaptive approach [24]
is investigated in this paper.

The flux linkages and the electromagnetic torque in dq frame
are shown as follows:{

Ψd = Lsid +Ψf

Ψq = Lsiq
(3)

Te =
3

2
PrΨf iq (4)

where Ls is the phase inductance; id,q and Ψd,q represent the
phase currents and flux linkages in dq frame, respectively; ψf

is the PM flux linkage; and Te is the electromagnetic torque.
In (3), setting id = 0 and combined with (4), the stator flux

reference can be deduced as⎧⎪⎨
⎪⎩

ψ∗
d = ψf

ψ∗
q = 2TeLs

3Prψf

ψ∗ =
√

ψ∗2
d + ψ∗2

q

(5)

where ψ∗ is the stator flux reference, and ψ∗
d,q represent the

stator flux references in dq frame.
Therefore, the reference stator flux linkage is not a constant,

and it changes with the load torque.
The proposed SVPWM-FADTC scheme is shown in Fig. 4.

The flux linkage adaption is used to obtain the reference stator
flux linkage amplitude. The reference stator flux linkage vector
is determined by the reference angular frequency of the stator
flux linkage (the output of the PI torque regulator) and the
reference flux linkage position. Then, the expected voltage
vectors and their duration are chosen and calculated by the flux
linkage vector error; hence, the error can be reduced to zero.

The SVPWM-FADTC scheme of the new FMPM wheel
motor shown in Fig. 4 exhibits many advantages. Because the
SVPWM technique is adopted instead of the switching table
in conventional DTC, the torque/flux ripples are decreased,
the switching frequency is fixed, and the current waveforms
are significantly improved accordingly. Moreover, due to the
utilization of the flux linkage adaptive approach, the d-axis
current component is greatly reduced, and efficiency of the
motor can be enhanced correspondingly.

IV. SENSORLESS CONTROL BASED ON

WIDE-SPEED SMO

Due to the use of sign function as the sliding mode variable
structure function, conventional SMO suffers from chatter-
ing. The LPF is needed to eliminate the chattering from the
switching, and it will lead to the phase delay, and then an
extra compensation is required to estimate the rotor position.
Moreover, the poor performance of low-speed estimation makes
the operation range narrowed. Therefore, a wide-speed SMO is
proposed in this paper.
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Fig. 4. Block diagram of the SVPWM-FADTC scheme.

A. Design of the Back EMF Observer

The back EMF equations of the new FMPM wheel motor in
αβ frame are {

eα = −ψfωe sin θ
eβ = ψfωe cos θ

(6)

where eα,β are the back EMFs in αβ frame; ωe is the electrical
angular velocity; and θ is the rotor position with electric degree.

Based on [17], the back EMF observer can be constructed
and the asymptotical stability is verified.

The equations of the back EMF observer are given as follows:⎧⎪⎨
⎪⎩

dêα
dt = −ω̂eêβ − l1(êα − eα)
dêβ
dt = ω̂eêα − l1(êβ − eβ)
dŵe

dt = (êα − eα)êβ − (êβ − eβ)êα

(7)

where êα,β are the estimated back EMFs in αβ frame; ω̂e is
the estimated electrical angular velocity; and l1 represents the
observer gain, which is greater than zero.

B. Design of the Wide-Speed SMO Observer

The voltage equations of the FMPM wheel motor in αβ
frame can be expressed as{

diα
dt = −Rs

Ls
iα − 1

Ls
eα + 1

Ls
uα

diβ
dt = −Rs

Ls
iβ − 1

Ls
eβ + 1

Ls
uβ

(8)

where iα,β and uα,β are the stator currents and the stator
voltages in αβ frame, and Rs is the stator resistance.

Based on the idea of sliding mode in [25] and by using sig-
moid function as the sliding mode variable structure function,
then (8) can be rewritten as{

dîα
dt = −Rs

Ls
îα − 1

Ls
(uα − l2Heα −Hα)

dîβ
dt = −Rs

Ls
îβ − 1

Ls
(uβ − l2Heβ −Hβ)

(9)

where îα,β are the estimated currents in the αβ-axis; H is
the sigmoid function that replaces the conventional switching
function; Hα,β is H in αβ frame; He is the equivalent con-
trol function, which is obtained by back EMF observer from
H; Heα,β is He in αβ frame; and l2 is the feedback gain
coefficient of He.

The variable structure system is defined as

H =

[
Hα

Hβ

]
= k × sigmoid(S) = k [ 2

1+e−ax − 1 ] (10)

where a is the adjustable parameter, k is the switching gain of
H, and S = î− i is the current error between the estimated
current and the actual current.

By subtracting (8) from (9), the dynamic equation of the
wide-speed SMO can be depicted as{

dSα

dt = −Rs

Ls
Sα + 1

Ls
(eα − l2Heα −Hα)

dSβ

dt = −Rs

Ls
Sβ + 1

Ls
(eβ − l2Heβ −Hβ)

(11)

where Sα,β are the current errors in αβ frame.
Once the system slides on a sliding mode surface, then the

sliding surface becomes as follows:{
Sα = îα − iα = 0
Sβ = îβ − iβ = 0.

(12)

Substituting (12) into (11), one obtains{
eα = Hα + l2Heα

eβ = Hβ + l2Heβ .
(13)

Furthermore, back EMF from (13) can be used to calculate
the rotor approximate electric angle θ̂ as follows:

θ̂ = − tan−1

(
eα
eβ

)
= − tan−1

(
Heα

Heβ

)
. (14)

According to the SMO theory, its stability condition is
ST
α Ṡα < 0, ST

β Ṡβ < 0, and then the following can be obtained:

ST
α,β × Ṡα,β =

1

Ls
Sα,β (eα,β − l2Heα,β −Hα,β)−

Rs

Ls
S2
α,β .

(15)

Due to −RsS
2
α/Ls < 0,−RsS

2
β/Ls < 0 and combined with

(10), the condition that meets for (15) is shown as follows:

(1 + l2)k > max(|eα|, |eβ |). (16)

In (13), it is shown that the magnitude of the equivalent
control He is always larger than that of the back EMF with the
value −1 < l2 < 0. Then, the rotor position can be calculated
from He instead of the back EMF. Although the back EMF is
relatively small at low speed (5%–20% of the rated speed), the
estimated He is enlarged. Therefore, the wide-speed SMO is
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Fig. 5. Block diagram of conventional SMO.

Fig. 6. Block diagram of wide-speed SMO.

able to work at a lower speed and has better position estimated
accuracy.

The block diagrams of conventional SMO and wide-speed
SMO are shown in Figs. 5 and 6, respectively. In these two
figures, it is shown that, in the wide-speed SMO algorithm,
the switching function is replaced by the sigmoid function to
improve the charting problem of conventional SMO. The back
EMF observer is used instead of traditional LPF to achieve the
back EMF signal. Furthermore, the adaptive algorithm of the
back EMF gain is used to enhance the low-speed estimation
accuracy.

For a wheel motor application, reliability of the drive system
is very important. The wide-speed SMO algorithm is used to
replace the sensor to obtain the rotor position signal in the
SVPWM-FADTC drive system; then, the reliability of the DTC
system can be enhanced due to the omitted position sensor.
The control diagram of the sensorless SVPWM-FADTC of the
FMPM wheel motor is shown in Fig. 7.

V. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation Results

To verify the validity of the sensorless SVPWM-FADTC al-
gorithm adopted by the new FMPM wheel motor, the proposed

Fig. 7. Simplified block diagram of the proposed sensorless SVPWM-
FADTC of the FMPM wheel motor.

Fig. 8. Simulation waveforms of DTC.

system, as shown in Fig. 7, is simulated by using MATLAB/
Simulink.

Fig. 8 shows the simulation results of conventional DTC sys-
tem and SVPWM-FADTC system with 400 r/min commanded
under a light load of 2 N ·m, respectively. The waveforms of
speed, torque, stator flux amplitude, d-axis current, and q-axis
current are included in this figure. It is shown that the torque
ripple of conventional DTC is 50%, whereas that of SVPWM-
FADTC is 4%, which is reduced greatly and so is the flux
ripple. The torque waveforms of both conventional DTC and
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Fig. 9. Simulation waveforms of steady-state performances for sensorless control system. (a) Conventional SMO with 20 r/min commanded.
(b) Wide-speed SMO with 20 r/min commanded. (c) Wide-speed SMO with 400 r/min commanded.

SVPWM-FADTC reach reference torque at 0.03 s. Therefore,
the advantage of rapid torque response has been retained in the
SVPWM-FADTC system. In addition, the d-axis current value
of conventional DTC is −3.2 A, whereas that of SVPWM-
FADTC is 0.05 A; then, the power factor increases from 18.1%
to 99.7% accordingly. The q-axis current is linearly propor-
tional to the torque; hence, the dynamic and steady performance
of the q-axis current is the same as that of the torque, and the
q-current waveform could reflect the performance of torque.
The above analysis demonstrates the effectiveness and advan-
tages of the SVPWM-FADTC algorithm.

To verify the low- and high-speed performances of the wide-
speed SMO, Fig. 9 gives the steady-state waveforms obtained
by the conventional SMO with 20 r/min commanded, the wide-
speed SMO with 20 r/min commanded, and the wide-speed
SMO with 400 r/min commanded, respectively. Comparing
Fig. 9(a) with Fig. 9(b), it can be noted that there are many
performance improvements achieved with the proposed wide-
speed SMO: Chattering is reduced when the conventional
switching function is replaced by a sigmoid function, the
position error is reduced, and the sine of equivalent control
function He is improved. Hence, the accuracy of position and
speed estimation is greatly enhanced, which demonstrates that
the wide-speed SMO has a good estimated performance of low
speed. With the position error in Fig. 9(c), it can be observed
that the proposed sensorless control algorithm has a better
tracking capability at high speed. From the above analysis, it
can be noted that, based on the wide-speed SMO, whether the
motor runs at high speed or low speed, chattering of estimated
position and He is small and so is the position error. Hence, by
using the wide-speed SMO algorithm, the performance of low
speed can compete with that of high speed, in which no phase
compensation is needed, and has good estimated accuracy.

Fig. 10. Dynamic performance of sensorless control based on wide-
speed SMO with 200 r/min commanded.

It is very important to maintain a steady and smooth speed
during the actual operation for EVs. To verify the performance
of the transient responses for the proposed strategy, Fig. 10
shows dynamic performance under a change from load of 4
to 2 N ·m and then back to 4 N ·m at reference speed of
200 r/min. It is shown that the dynamic and steady-state
performance of the estimated speed waveform is agreed with
the actual speed waveform, which fully demonstrates that the
system has the performance of a fast response and the capacity
of strong robustness.
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Fig. 11. Experiment platform. (a) Conventional DTC. (b) SVPWM-
FADTC.

B. Experimental Results

To further verify the performance of the proposed sensorless
SVPWM-FADTC algorithm adopted for the new FMPM wheel
motor, a dSPACE 1104 controller is used to drive the prototype.
The experiment platform is shown in Fig. 11, which includes
the prototype coupled with a 2.2-kW 1500-r/min dc motor as
a load, an incremental encoder with 1024 pulses/revolution
to obtain the actual rotor position, a three-phase diode bridge
rectifier, a voltage source inverter controlled by a dSPACE 1104
controller, and some necessary peripherals.

To verify the validity of the SVPWM-FADTC algorithm,
Fig. 12(a) and (b) shows the experimental results of the con-
ventional DTC system and the SVPWM-FADTC system with
400 r/min commanded under a light load of 2 N ·m, respec-
tively. It can be noted that the flux ripples of the SVPWM-
FADTC system are greatly reduced compared with that of
the conventional DTC system; the torque ripples are accord-
ingly reduced due to the reduced q-axis current ripples. The
q-axis current waveform in conventional DTC and SVPWM-
FADTC reaches reference value at almost the same time, which
illustrates that the advantage of rapid torque response has
been retained in the SVPWM-FADTC system. Furthermore, the
d-axis current value of conventional DTC is −3 A and that
of SVPWM-FADTC is 0.05 A; then, the corresponding power
factor of SVPWM-FADTC is largely increased. Comparing the
experimental results in Fig. 12 with the simulated results in
Fig. 8, it is shown that the experimental d- and q-axis current
waveforms have more glitch. This is due to the current sensor
in the circuit board, which is influenced by electromagnetic
interference.

Fig. 13 displays the experimental steady-state waveforms
obtained by the conventional SMO with 20 r/min commanded,

Fig. 12. Experimental waveforms of DTC. (Left) Scale of stator flux
amplitude and q-axis current. (Right) Scale of speed and d-axis current.

the wide-speed SMO with 20 r/min commanded, and the
wide-speed SMO with 400 r/min commanded, respectively.
In Fig. 13(a) and (b), it is shown that, compared with the
conventional SMO, in the wide-speed SMO, the estimated
rotor position can better track the actual rotor position since
the estimated error is reduced, chattering of estimated rotor
position and the equivalent control function He is obviously
reduced, and the sine of He is greatly improved at low speed.
Therefore, with the proposed control strategy, the improvement
of estimated position and speed at low speed is achieved. As
shown in Fig. 13(c), the position error is about zero and the
waveform of He is ideal sinusoidal at high speed. From the
above analysis, it can be concluded that the wide-speed SMO
algorithm has an accurate estimation at both high speed and low
speed. Comparing the experimental results in Fig. 13 with the
simulated results in Fig. 9, it is shown that the amplitude of He

in the experiment is unequal to that in the simulation. During
the adjustment of SMO parameters, such as k and l2, which
are set incompletely identical due to the difference between
the experimental hardware system and the simulation software
system. This is the reason why the amplitudes of He between
experiment and simulation are not equal.

From the sensorless control results of the simulation and
experiment, it can be observed that the proposed wide-speed
SMO can widen the range of speed estimation. However, it still
has the problem of zero/lowest speed operation as it is based on
back EMF to obtain the position and speed signals. The com-
bination method of high-frequency fluctuating voltage signal
injection and wide-speed SMO can solve the aforementioned
problem. When the motor is running at less than 20 r/min,
the high-frequency fluctuating voltage signal injection method
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Fig. 13. Experimental waveforms of steady-state performances for
sensorless control system. (Left) Scale of estimated rotor position and
Heα. (Right) Scale of actual rotor position and estimated error.

is used; otherwise, the wide-speed SMO method is applied
to ensure dynamic performance and robustness of the driving
system. Then, the self-detection of rotor position at full speed
range, including zero speed, can be realized, and it will be
addressed in the next research.

Fig. 14 shows the transient responses of sensorless control
based on the wide-speed SMO under a change from load of 4
to 2 N ·m and then back to 4 N ·m at 200 r/min. As observed,
the rotor actual speed and estimated speed are well regulated
regardless of load disturbance. Moreover, two full cycles of the
phase current are shown in this figure. With the harmonic anal-
ysis, the total harmonic distortion of the phase current is 4.73%,
as shown in Fig. 15. It can be obtained that the phase current at
full cycle is sinusoidal, although the experimental phase current
has some glitch due to the current sensor in the circuit board,
which is influenced by electromagnetic interference.

Fig. 14. Performance of sensorless control based on wide-speed SMO
with 200 r/min commanded under step load torque. (Left) Scale of
estimated speed and phase current. (Right) Scale of actual speed and
torque.

Fig. 15. Harmonic analysis of the steady phase current.

VI. CONCLUSION

To meet the requirements of high performance for driving
system, sensorless SVPWM-FADTC of the new FMPM wheel
motor based on wide-speed SMO has been proposed and inves-
tigated in this paper. The proposed SVPWM-FADTC algorithm
offers advantages of small torque and flux ripples, reduced
d-axis current, and enhanced motor efficiency when the motor
is operated at a light load or a sudden increased load.

Furthermore, sensorless control based on wide-speed SMO is
studied to solve the problems produced by mechanical sensors
of the SVPWM-FADTC system; thus, the system reliability is
enhanced. Due to the use of the sigmoid function instead of
the conventional switching function, system chattering has been
greatly reduced. In addition, due to the proposed combination
of the adaptive algorithm of back EMF gain and the back EMF
observer, the problem of phase delay caused by LPF in the
conventional SMO has been solved and the estimated accuracy
of rotor position at low speed has been further enhanced. With
this proposed sensorless control algorithm, the FMPM wheel
motor could be operated from 5% to 100% rated speed with
good tracking capability, fast dynamic, and strong robustness.

The evaluation of system performances has been imple-
mented by simulation and experiment based on a prototype of
the new FMPM wheel motor. Both the simulated and exper-
imental results have demonstrated the feasibility and validity
of this sensorless SVPWM-FADTC driving system for the new
FMPM wheel motor. Furthermore, this paper has provided a
certain reference value for the sensorless control scheme based
on back EMF to widen the estimated range.
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