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Abstract—This paper presents an integrated control scheme
for vehicle-to-grid (V2G) operation in the distribution grid with
renewable energy sources. A hierarchical framework is proposed
for V2G applications, and the mathematical models are built
for both smart charging and V2G operation with distribution
grid constraints. V2G power is regulated to minimize the total
operating cost (TOC) while providing frequency regulation. The
simulation results verify the control algorithm in coordinating
distributed electric vehicle (EV) aggregations with the varying
wind power and daily load. For V2G dynamic regulation, EVs
connected in close proximity to wind power generators can locally
compensate for the wind fluctuation with fast response and, hence,
smooth out the power fluctuation at the bus having wind power
generators and EVs. Each individual EV is strategically assigned
to implement the simulated control algorithm through a bidirec-
tional converter. An experimental platform is incorporated into
the proposed integrated energy management to demonstrate the
instantaneous response of EV battery storage.

Index Terms—Dynamic regulation, electric vehicles (EVs), en-
ergy management, power grid, renewable energy, vehicle-to-
grid (V2G).

I. INTRODUCTION

TO COPE with the global energy crisis and environmental
pollution, it is becoming desirable to integrate renewable

energy generation such as wind power and solar power into the
existing power grid. Meanwhile, electric vehicles (EVs), par-
ticularly the plug-in hybrid EVs, for green transportation have
attracted increasing attention [1]. Because of the intermittent
nature of wind power, large-scale integration of wind power
poses a challenge on the power grid in both transient and steady
states. Vehicle-to-grid (V2G) operation can help address the
challenges by acting as a mobile energy storage device [1], [2].

EVs were simply regarded as dispatchable peaking power
plants to participate in the unit commitment planning in [3].
A large number of EVs were considered adjustable generators,
which were used to provide power to minimize both cost and
emission. However, the characteristics of the V2G power and
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the location of EVs were not sufficiently considered in the
V2G optimization model. Then, the feasibility analysis of EVs
was conducted, which considered the limitations imposed on
the V2G power due to the characteristics of EV batteries [4].
Moreover, a methodology for optimal charging sequence of
EVs with aggregator control was proposed to maximize the
V2G profit [5]. However, there were shortcomings that the
power flow of EVs was unidirectional, the charging rate was
fixed at the maximum limit, and the optimal solution was the
selected charging intervals during the plug-in period.

With the ever-increasing popularity of EVs [6], the frequency
regulation provided by V2G operation has been actively inves-
tigated. Several EV aggregations of different sizes and config-
urations were controlled in response to the frequency deviation
signal [7]. Moreover, EVs could provide various auxiliary
services such as the energy scheduling for load leveling [8],
the minimization of charging cost [9], and the spinning reserve
[10]. Although a variety of regulation services are suggested for
V2G energy management, the multiobjective control method to
manage EV energy for multiple ancillary services is absent in
the literature.

The purpose of this paper is to develop a multilevel control
structure for the distribution grid, which includes renewable
energy sources and EVs, so that the V2G power can be properly
deployed. The scale of distributed generators and the EV pene-
tration degree are assumed for exemplification. Nevertheless,
both the scale level and penetration degree can readily be
modified for other case studies.

This paper is organized as follows. Section II presents the
multilevel V2G framework where the widespread EVs are
aggregated at different locations and microgrids. Another target
is to establish a generic model for EV aggregations in different
charging scenarios. Section III describes the optimal control
algorithm that makes use of the scheduling of V2G power to
minimize the operating cost. Section IV discusses the dispatch-
ing method of EVs to realize a multipurpose utilization of V2G
power. Furthermore, a downscaled experimental setup is built
to implement the dispatching method. Finally, the proposed
control scheme is summarized, and a conclusion is drawn in
Section V.

II. MODERN POWER GRID FOR ELECTRIC

VEHICLE INTEGRATION

A. Updated Power Grid With New Components

The conventional resource-centric control model of the
power system is no longer sustainable; thus, a V2G control
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Fig. 1. Daily profiles of wind power generation and demand.

framework is proposed for the modern distribution grid, which
incorporates new electric components, including renewable
energy sources, microgrids, and adjustable electric appliances
at the user end [1]. Energy storage devices are required in
the power grid with large penetration of intermittent renewable
energy sources. The widespread EVs in the power grid have
good prospects of acting as distributed energy storage due to the
sufficient power capacity from a large number of EV onboard
batteries and the flexible power control provided by modern
power electronic chargers. The EV aggregator assembles the
power from a number of EVs and interacts with the grid opera-
tor through a two-way communication network. The aggregator
is also responsible for dispatching the V2G power to each
individual EV and monitoring the EV battery status. Further-
more, as an important energy storage device in microgrids, EVs
react to the intermittent wind power and stabilize the power
fluctuation at the common coupling point of microgrids.

The V2G control framework described in our previous paper
[1] has been proposed within the existing structure of the
power grid. The power drawn from the transmission network
is delivered to the downstream electric consumers. A 33-bus
distribution power network [11] is taken as an example, with
wind power plants installed and placed on the selected buses.
The total power supply from wind power is assumed 20% and
evenly split into two wind power buses. The time-varying daily
load and the typical wind power pattern with continuous small
fluctuation are shown in Fig. 1. The variation of wind power
generation profile opposes the load demand. Thus, the wind
power generation exacerbates the unbalance between power
supply and demand.

A number of EVs are plugged into the test power network
through various charging infrastructures, such as the large
charging stations with fast dc charging capability, the normal
ac charging stations, and the domestic chargers. The charging
infrastructures are assumed to cover about 20% of the region;
the number of buses with EVs can be represented by nx =
int(rEVnb) = 6, where nb is the total bus number, and rEV is
the spatial penetration degree of EVs. Thus, the charging load of
EVs is superimposed to six buses, which are randomly selected.

B. V2G Scenario

The average percentage of vehicles parked at home through a
day is derived from the 2009 National Household Travel Survey
(NHTS) data, as shown in Fig. 2(a) [12]. It is shown that more
than 90% of vehicles are parked at home between 9:00 P.M.
to 6:00 A.M. In this home-charging scenario, it is assumed

Fig. 2. EV charging period and charging load. (a) Probability of an EV to
be parked. (b) EV battery charging profile (Li-ion). (c) Overall EV power
consumption under uncontrolled charging and delayed charging scenarios.

that the EVs are connected to the power grid when they return
home. The scheduled period is selected as 9 h from 7:00 P.M. to
5:00 A.M. Apart from the estimated charging period, the V2G po-
wer is constrained by the power capacity of charging facilities
[13]. For home charging, the EVs are connected to the house-
hold power outlet and limited by the maximum charging rate.

To formulate the EV charging load, the power and energy
required for fully charging the battery are calculated. The EV
penetration degree, power level, and the energy storage of the
onboard battery pack are listed in Table I. The expected energy
consumption of EV charging load is expressed by

εT =

NEV∑
i=1

(SOCi, ed − SOCi, int)ECi

η

=
μ(SOCed)− μ(SOCint)

η
NEV

(
NEC∑
i=1

ECiγi

)
(1)

where εT is the expected energy consumption for charging all
EVs, NEC denotes the number of different EV types with ECi

being the power capacity of EV type i, γi is the ratio of this EV
type, SOCint and SOCed represent the initial state of charge
(SOC) and the target SOC before departure, η denotes the
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TABLE I
SIMULATION PARAMETERS FOR EV FLEETS

power efficiency of the EV charging facility, and NEV denotes
the number of EVs that are engaged in the V2G control scheme.
It is set to 1000, and the ratios of different EV types are equally
shared for the simulation purpose. The required energy roughly
equals 10% of the average daily load.

The initial values of SOC at all EV aggregations are con-
sidered to follow the same probability density function [13]. A
normal distribution N(μ, σ) is used to generate the SOC when
an EV starts plugging into the grid, with X being the initial
battery SOC, i.e.,

X = μ+
√

2σ erf−1 (2p− 1), p ∈ (0, 1) (2)

where μ and σ are the mean and variance of the normal distri-
bution, and erf−1 is the inverse error function with probability p.

The locations of the EV buses are selected through a random
number generator. The six buses between no. 1 and no. 33 are
generated as {l1, . . . , l6}. The ratio of the energy consumption
at each bus is produced in a similar way. Namely, {r1, . . . , r6}
are randomly generated, and the energy consumption of EV
aggregation x is calculated by

εx = εT
rx∑nx

x=1 rx
. (3)

The constant-current constant-voltage charging method is
commonly adopted to prolong the battery lifespan. A typical
charging profile for the lithium-ion (Li-ion) battery is shown in
Fig. 2(b) [14]. Thus, the EV charging power and energy storage
can be estimated using the charging profile during the whole
EV parking period. The EV charging load can be shifted to off-
peak hours by using the delayed charging strategy, in which the
start time for charging for the early arrived EV is postponed for
3 h. The power consumption under the uncontrolled charging
and delayed charging are shown in Fig. 2(c). It can be observed
that the resulting peak load is increased with uncontrolled EV
charging, but a simple delayed charging tactic can curtail the
overall peak load.

III. VEHICLE-TO-GRID REGULATION

FOR COST MINIMIZATION

A. Formulation of V2G Optimization Problem

A V2G energy scheduling method is proposed to minimize
the overall operating cost of the distribution grid where a large

portion of electricity is produced by wind power. The total
operating cost (TOC) of this power grid can be expressed as

TOC =

H∑
t

Ng∑
gi

Fi(Pgi, t) +

H∑
t

Ng∑
gi

Fi(Qgi, t)

+

H∑
t

NDG∑
DGi

(
aiP

2
DGi, t

+ bPDGi, t + c
)

+

Nev∑
EVi

H∑
t

rEVi, tPEVi, t

+

Nev∑
EVi

ρEVi

(
ELEVi

−
H∑
t

PEVi, t

)

+
H∑
t

NES∑
i

ρcapPESi
(4)

where the first component is the cost of electricity purchased
from the transmission network with Pgi, t being the power
injected to the distribution grid through the substation located at
bus i. The injected reactive power at the time index t is denoted
Qgi, t, and Fi(Qgi, t) is the price paid for reactive power supply
[15]. The third component represents the operating cost of
distributed generator i with the supplied power PDGi, t at time t.
The cost regarding EV charging and V2G services are presented
in the fourth and fifth terms, respectively. rEVi, t denotes the
revenue paid for providing V2G regulation with PEVi, t being
the power output of the ith EV aggregation when participating
in V2G regulation. The penalty for not meeting the battery
charging requirement is computed with ρEVi

being the price
for unserved electricity, and ELEVi

is the amount of electricity
to fully charge EVs by the end of the charging period. The
cost for reserve capacity to accommodate the volatile renewable
energy generation is represented by the last term of (4), with
ρcap being the price and PESi

being the regulation power of the
ith installed energy storage facility.

Customers are offered multiple electricity tariffs by the
utilities to encourage the consumption shift from on-peak to
off-peak periods. This paper adopts a double-tariff structure,
composed of a high daytime tariff and a low night tariff for
different timeslots of a day [2], [16]. In addition to two time-
of-use rates on normal days, a critical peak pricing (CPP)
is imposed to offset the maximum peaks that only occur on
“critical days” in a year [16]. Since the reactive power is not
billed in the electricity pricing, the corresponding cost in (4) is
set to zero. Thus, the first two components with respect to the
cost of purchased energy in (4) can be expressed as

H∑
t

Ng∑
gi

Fi(Pgi, t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

H∑
t
ρpk, t

Ng∑
gi

Pgi, t t ∈ (8 : 00, 22 : 00)

H∑
t
ρoff, t

Ng∑
gi

Pgi, t other time on normal days

H∑
t
ρcpp, t

Ng∑
gi

Pgi, t critical peak hours

(5)
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where ρpk, t and ρoff, t are the peak tariff and the off-peak tariff
of time t, respectively, and ρcpp, t is the electricity price of
critical peak hours.

EVs are preferably charged at night to absorb the excessive
wind power, and arranged to feed power back to the grid to
level the peak load. By virtue of EV battery storage, those
expensive distributed generators such as diesel generators can
be excluded from the normal operation; thus, the operating cost
of the distributed generators described in (4) can be eliminated
if the cost for wind power is assumed zero as the wind power
aggravates the variation of the daily load profile so that the
peaking generation units and spinning reserves are deployed
for regulation up and regulation down services. Thus, a penalty
term for overload and oversupply is introduced to reflect the
cost induced by the regulation capacity. Since only one price is
practically given for positive regulation and negative regulation
in many energy markets, one V2G revenue is considered in (4)
for V2G energy scheduling, which can be rewritten as

TOC =
H∑
t

ρt

Ng∑
gi

Pgi, t +
H∑
t

ρol(Pgi − Pup)

+

H∑
t

ρos(Plp − Pgi) +

Nev∑
EVi

rEVi

H∑
t

PEVi, t

+

Nev∑
EVi

ρEVi

(
ELEVi

−
H∑
t

PEVi, t

)
(6)

where pol and pos are the penalty price for overload and
oversupply, respectively; and Pup and Plp are the upper and
lower boundaries of the power demand, respectively.

The objective function Min(TOC) is subjected to the follow-
ing constraints. The power balance constraint is expressed as

Pg, t =

Nev∑
EVi

PEVi, t +

NWG∑
WGi

PWGi, t +

Nb∑
Li

PLi, t + Ploss, t (7)

where Pg, t, PLi, t, and Ploss, t are the generation power, load
power, and power losses, respectively; and the power output of
EV fleets and wind power generators are denoted PEVi, t and
PWGi, t, respectively. Meanwhile, the power output limits for
EV power regulation are given by

PEV,min ≤ pEVi
(t) ≤ PEV,max (8)

0 ≤EEVi, int +

∫
pEVi

(t) dt ≤ EEVi,max (9)

where pEVi
(t) is the charging or discharging rate of the EV

aggregation i; PEVi,max and PEVi,min are the upper and lower
boundaries of the EV charging/discharging power, respectively;
and EEVi,max and EEVi, int are the maximum and initial en-
ergy storage of the EV aggregation i, respectively. The energy
stored in the battery should always maintain between zero and
the maximum capacity.

The expected value of energy absorbed is the integral of V2G
power, which is given by∫

pEVi
(t) dt = EEVi,max − EEVi, int (10)

TABLE II
SIMULATION PARAMETERS FOR POWER GRID

where EEVi,max and EEVi, int are determined based on the
power capacity, the scale of EV aggregation, and the SOC
increment. The charging energy limits are governed by

SOCmin ≤ SOCid(t) ≤ SOCmax

SOCid(H) ≥ SOCfinal (11)

which indicates that the SOC in each EV should not be lower
than SOCfinal at the end of the charging period and varies within
the usable range from SOCmin to SOCmax. In this case, the
three SOC values are set to 80%, 0%, and 100%, respectively.
The expected increment of energy storage in the aggregation
can be calculated by

EEVi
(t) =

NEVi∑
id=1

(SOCid(t)ECid)Fcpi
(12)

where SOCid and ECid represent the SOC and the battery
capacity of EV id, respectively; NEVi

is the total number
of vehicles in the ith EV aggregation; and Fcpi

denotes the
compensation factor to account for unplanned departures of
EVs during the scheduled period.

The optimization problem can be readily solved by using the
solvers provided in the MATLAB optimization toolbox. In this
case study, the optimal EV power over the charging period is
obtained by using the interior point method.

B. Stochastic Optimal Control Algorithm

The parameters adopted for simulation are mainly taken from
the previous studies [1], [2], and [5], as listed in Table II. The
compensation factors for unplanned departure are uniformly
distributed in the interval [0.65, 0.95]. The number of EVs
distributed at different buses indicates the size of each EV
aggregation. In real situation, the ratio should be measured in
accordance with the actual capacity of EV charging infrastruc-
ture. In this case, a random number sequence {11 16 14 13 9
6} is used in the simulation. The V2G power capacity exhibits
a high degree of diversity in the location, temporal availability,
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Fig. 3. V2G ratio at different locations.

Fig. 4. Average SOC variation at different locations.

and charging demand. Thus, probabilistic analysis is conducted
for the proposed optimization problem. The scheduled V2G
power at each bus is analyzed by Monte Carlo simulations,
where 100 samples of the EV fleet are generated and used.
For each simulation, a set of V2G power profile is produced
by solving the optimization problem, and the average value is
calculated by

PEVi, t =
1
M

M∑
j=1

P
(j)
EVi, t

(13)

where M is the number of Monte Carlo simulations. An index
of the V2G ratio is purposely developed to estimate the power
fed back to the grid by discharging EVs at different locations,
which is expressed as

rV2G, i =

D∑
d=1

PEVi, d, PEVi, d ∈ {PEVi, t|PEVi, t < 0}

T∑
t=1

PEVi, t

(14)

where rV2G, i is the V2G ratio of EV aggregation at bus i, and
d is the time slot when EVs are scheduled to discharge their
batteries. As shown in Fig. 3, the location of EV aggregation in
a power network has decisive impact on the V2G ratio, which
varies widely depending on the solution of optimal control
algorithm. Aggregations 2 and 4 have the biggest disparity
and thus are selected to investigate the SOC variation. Fig. 4
shows the average SOC variation of EVs at the two different
locations. Although the SOC curves differ due to different
charging/discharging processes, the target SOC is achieved by
the end of charging period.

Fig. 5. Energy storage over the charging period for two EV aggregations
under uncontrolled scenario and V2G optimization.

Fig. 6. Maximum, minimum, and average bus voltages during the EV charg-
ing period.

C. Analysis of Simulation Results

To evaluate the performance of the optimal control algo-
rithm, the nominal values of variables are taken from Monte
Carlo simulations. The operating cost in V2G optimization is
$US 11 940, which is less than the $US 13 060 in the uncon-
trolled EV charging scenario. The operating cost is reduced
because the demand profile is flattened by V2G energy schedul-
ing, thus avoiding the penalty for overload or oversupply. The
electricity cost is also cut down since the peak tariff time
is shortened by the peak shaving effect of V2G operation.
The EV energy profile over the charging period is shown in
Fig. 5. Among EVs aggregated at different distribution feeders,
the EV aggregations of largest and smallest sizes are selected
to demonstrate the changes in EV energy storage. Both of
EV aggregations reach the predefined level of battery energy
by the end of the charging period. The bus voltage in the
distribution grid is an important factor of power quality, and
should be maintained within the standard range [17]. The
maximum, minimum, and average values of the bus voltage
over the V2G optimization period are plotted in Fig. 6. It can
be observed that there is smaller voltage deviation when using
V2G optimization.

The participation of EVs in the V2G control scheme in
response to different revenues is examined by comparing V2G
power output in high and low revenue settings. The changes in
the pattern of V2G power regulation for the two selected EV
aggregations are plotted in Fig. 7, in which the high revenue
is denoted #1 and the low revenue is denoted #2. The EV
participation declines as the revenue paid by the distribution
system operator (DSO) for V2G control becomes high because
the cost associated with V2G power to supply the peak demand
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Fig. 7. Comparison of V2G participation with high and low revenues.

Fig. 8. Power allocation of V2G power aggregation.

is increased. The lower revenue helps bring more EVs into
the V2G optimization, but it only offers low incentive to EV
owners. Thus, appropriate V2G revenue should be negotiated
to ensure the mutual benefits of DSO and EVs contracted to
the V2G scheme. The V2G revenue rEVi, t must be able to
compensate the additional cost on EVs for V2G operation,
which is mainly composed of battery degradation and power
loss in energy conversion [2], and then should be able to
generate additional profit for EV owners. Meanwhile, the DSO
can reduce the operating cost by utilizing EV battery energy for
load leveling and regulation services.

IV. VEHICLE-TO-GRID REGULATION

FOR COST MINIMIZATION

A. V2G Power Aggregation

EV energy storage can be employed for providing frequency
regulation and should get paid in the ancillary service market.
The integrated energy management is designed to utilize the
EV energy storage to perform V2G cost optimization while
effectively stabilizing the frequency. EVs are dispensed into five
groups to perform the multifunctional control scheme, and idle
EVs are tapped for frequency regulation. As shown in Fig. 8,
the group division is mainly determined by the driving pattern,
the SOC of onboard battery, and departure time.

• Group I (charging at the maximum rate): The EVs with
least remaining time for fully charging a battery before the
departure time are dispensed to this group.

• Group II (coordinated charging): EVs with modest energy
storage and remaining parking time act as a controllable
load to provide the required aggregated V2G power.

• Group III (providing V2G power): V2G operation mode
feeds power to the grid; EVs with higher SOC and surplus
parking time are eligible for this group.

• Group IV (idle mode): EVs in this group are available for
providing ancillary services such as frequency regulation.

• Group V (driving mode): EVs are used for daily commut-
ing and unavailable for any power grid operation.

EVs move between different groups of operation when the
parking condition and charging state change. EVs on the top of
the list of each operation mode are selected by the aggregator
for a specific control scheme. The formulation of each group is
expressed as

gI = {EVi|SOCI,min ≤ SOCEVi
≤ SOCI,max

tRm,min ≤ tRm,EVi
≤ tRm,max and

rF,EVi
= 1 for V2G set} (15)

tRm,EVi
= td,EVi

− t

+
(SOCed,EVi

− SOCEVi
(t))EEVi,max

PEVi,max
(16)

where tRm,EVi
is the remaining time for each parking EV,

td,EVi
is the departure time of the ith EV, PEVi,max is the

maximum charging rate, gI is the ith group of EVs with
predefined determinant factors such as the range of SOC and
remaining time, and rF,EVi

is the charging facility capable of
reversible power transfer.

The workflow of power allocation to each EV is as follows.
1) Formulate Groups I–V according to (15) and (16).
2) Rank the EVs in each group. For Group I, the EVs are

ranked according to the remaining time, from the least to
the largest. For Group III, the EVs with higher SOC are
on the top of the ranking list.

3) Update the group allocation for each time slot, and dis-
patch EVs from the ranking list. The aggregator serves
to match the dispatched V2G power with the hourly
optimal solution while fulfilling the target SOC before the
departure, i.e.,

pxi, k = pxi,max, if EVi ∈ Group I (17)

if Px, k >

i=NgI∑
i=1

pxi,max

pxi, k =
Px, k −

∑i=NgI
i=1 pxi,max

ngII
, for EVi ∈ Group II

(18)

if Px, k <

i=NgI∑
i=1

pxi,max

pxi, k =
Px, k −

∑i=NgI
i=1 pxi,max

ngII
, for EVi ∈ Group III

(19)

subject to pxi,min < pxi, k < pxi,max, and

pxi, k = 0, for t < ts,EVi
or t > ted,EVi

(20)
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Fig. 9. Schematic diagram of V2G dynamic regulation model with wind
power.

where Px, k denotes the scheduled V2G power for EV ag-
gregation x, and pxi, k denotes the charging/discharging
rate for each individual EV.

B. Distributed V2G Power for Frequency Regulation

The EV aggregation close to the terminal of the wind plant
can be employed to flatten the generation power, as shown in
Fig. 9. The equivalent circuit model is built in simulation to
show the current flow of the battery at the connection point [18],
[19]. The internal resistance is supposed to be constant during
the charge and discharge cycles, in spite of the varying current,
and is specified by the battery manufacturer. The battery cur-
rent, output voltage, and power are calculated as follows:

E =E0 −K
Q

Q− idt
+A exp(−Bidt) (21)

Ubat =E −RIbat (22)

Pbat =nbpUbatIbat (23)

where E and E0 represent the battery open-circuit voltage
and initial constant voltage, respectively; Q and R denote the
battery capacity and internal resistance, respectively; and Ubat

and Ibat are the output voltage and current, respectively. Battery
cells are wired in parallel and series so that the battery power is
multiplied by nbp.

In the integrated energy management, the solution of V2G
optimization PEVi

is used as a parameter of frequency reg-
ulation. The total V2G power at each time step should not
exceed the capacity of electric equipment such as the rating of
transformer tied to the feeder of distribution network, which can
be expressed as

PTmi,min ≤ PEVi
(t) + PLi

(t) + pf (t) ≤ PTmi,max (24)

Fig. 10. Wind speed fluctuation and wind power variation.

Fig. 11. Frequency deviation with and without V2G dynamic power
regulation.

Fig. 12. Power output in V2G frequency regulation.

where PTmi,min and PTmi,max are the upper and lower loading
limits of the primary transformer, and pf (t) is the regulatory
power for frequency stabilization.

The continuous variation of wind speed and the correspond-
ing wind power fluctuation are shown in Fig. 10. V2G power
capacity is limited in the range of +/−40 kW. In the first case,
the full V2G capacity is employed. In the second case, the
maximum power that EVs can supply to the grid is reduced by
25%, considering the time-varying nature of EV energy storage.
The simulation result in the first case is depicted in dotted blue
line, whereas the solid green line represents the second case. As
shown in Fig. 11, the frequency can be successfully stabilized.
The power regulation of EV aggregation in the same timeframe
is plotted in Fig. 12. Owing to the alternating EV charging and
discharging control in response to frequency swell and sag, the
net energy required is almost zero. Thus, the EV energy storage is
not affected, and there is no additional battery degradation cost.

C. Implementation of Control Scheme

As shown in Fig. 9, the wind power generator, EVs, and other
loads are clustered at a certain bus in the test distribution grid.
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TABLE III
CLUSTERED COMPONENTS IN EXPERIMENTAL SETUP

Fig. 13. Measured instantaneous response of battery pack to sudden change
on power output of other components. (a) Output current of electronic load
(3.5 A/div, 100 ms/div). (b) Charging current of battery pack (2.5 A/div,
100 ms/div).

As EVs are employed to locally compensate for the power fluc-
tuation caused by neighboring renewable resources, the overall
power flow of the cluster can be smoothed, thus eliminating
the negative effect on the power quality of the external grid.
The experimental setup utilizes the control signal produced
by simulation software where the load profile, wind power
fluctuation, and corresponding instructions for V2G power are
calculated.

A downscaled experimental setup is built to implement the
simulation algorithm. Three types of components are electri-
cally connected in the network: the load, the resource, and the
battery energy storage. In this case, the electronic load and regu-
lated power supply are used to emulate the load and the varying
wind power generation. The experimental condition is listed
in Table III. These components are tied to an internal 380-V
dc link and connected to the external ac grid through a dc/ac
converter. The converter controller is designed to maintain
the dc link voltage and regulate the output voltage for each
component. Fig. 13 shows the dynamic power regulation of
the battery storage in response to the varying load and sup-
ply. The instantaneous changes of power supply are measured
in Fig. 13(a), and the battery charging/discharging current is
presented in Fig. 13(b). The battery is charged to absorb the
excessive power supply and is discharged when the demand
becomes larger. The power response of the EV battery is
captured to demonstrate its capability of reacting appropriately
to the wind power fluctuation in real time. The unbalanced
power of the network ultimately conveys to the external grid.
The power flow at the connecting point during the transition
period is presented in Fig. 14. It can be observed that the ac
injected into the 220-V electrical power network is distorted

Fig. 14. Measured voltage and current waveforms at the connecting point
of ac power grid (100 V/div, 2.5 V/div, 10 ms/div). (a) Without EV battery
compensation. (b) With EV battery compensation.

in Fig. 14(a) due to the abrupt changes of the wind power
generation. In contrast, the available EV battery is activated to
compensate the same changes in the power network. As shown
in Fig. 14(b), the ac power flow can be stabilized when the
battery storage is deployed for dynamic power compensation.

V. CONCLUSION

In this paper, the wind power generators and EVs with the ca-
pability of V2G operation are integrated in the distribution grid.
A mathematical model of V2G power control is formulated,
which incorporates EV models into power grid optimization.
The V2G optimization method is proposed to schedule the
EV charging and discharging energy to minimize the operating
cost while satisfying the mobility needs and power system
limitations. In addition to V2G optimal energy scheduling, EVs
are also deployed for dynamic power regulation, which requires
fast response to the instantaneous imbalance between the power
supply and demand. V2G power is controlled to mitigate the
power fluctuation and, thus, stabilize the system frequency and
voltage. The simulation results verify effective utilization of
V2G power for multiple purposes. Finally, the hardware-in-the-
loop system is developed to implement software simulation by
regulating power converters, and the measured results validate
the simulation model.
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