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End-to-End Delay Distribution Analysis for
Stochastic Admission Control in

Multi-hop Wireless Networks
Wanguo Jiao, Min Sheng, Member, IEEE, King-Shan Lui, Senior Member, IEEE, and Yan Shi, Member, IEEE

Abstract—Admission control is important in achieving QoS
guarantees in multi-hop wireless networks. An efficient admission
control algorithm requires an accurate estimation of the end-to-
end delay distribution of the network. In this paper, we propose
a method to estimate the end-to-end delay distribution under
the general traffic arrival process and Nakagami-m channel
model. We firstly propose a novel two-dimensional Markov Chain
to model the node behaviors in a multi-hop multi-rate IEEE
802.11 network that is subject to interference and error prone
channel. By combining the basic Probability theory and Network
Calculus, we analyze the delay a packet experiences at each hop
along a path. The per-hop delay result is used to develop the
distribution of the end-to-end delay of a randomly chosen path.
We then develop an admission control scheme for the traffic with
stochastic QoS guarantees. Finally, through simulation results, we
verify the accuracy of our analytical model and the effectiveness
of the proposed algorithm.

Index Terms—Stochastic admission control, end-to-end delay,
IEEE 802.11 DCF, multi-hop wireless networks, effective band-
width.

I. INTRODUCTION

W ITH growing demand for real-time applications over
wireless networks, increasing attention has been paid

to real time quality-of-service (QoS) guarantees in wireless
networks. The QoS requirements, in terms of delay bounds,
delay variations, and delay violation probabilities, of different
applications are very diverse [1]. For example, some applica-
tions, such as control signaling of cellular networks, require
hard guarantees that all packets must arrive the destination
within a certain delay bound. On the other hand, most
multimedia applications, including voice over internet phone
(VoIP), multimedia streaming, and online game, can tolerant a
certain probability of QoS violation [2]. The QoS guarantees
of these applications are referred as soft QoS guarantees. The
delay requirement of applications requiring soft QoS guaran-
tees can be expressed as Pr(ETE DELAY > Dmax) ≤ ε,
which means the probability that the delay of the traffic
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TABLE I
COMPARISONS BETWEEN THE ANALYTICAL RESULTS IN ADMISSION

CONTROL

mean value
delay jitter acceptable delay

maximum delay
violation probability

mean value
variance

√ × ×
upper bound × √ ×

CDF
√ √ √

exceeding Dmax should be smaller than ε. Because of the
randomness property of wireless networks, such as wireless
channel unreliability and sharing, providing hard guarantees
is impossible. In this paper, we focus on soft QoS guarantees
for real-time applications in multi-hop wireless networks.

Different protocols at different layers have been developed
to provide QoS guarantees. In the medium access control
(MAC) layer, the classical protocol IEEE 802.11e allocates
different MAC parameters according to the priorities of the
traffic. Nevertheless, it cannot guarantee the QoS required
by the traffic [3]. There are a lot of QoS routing algorithms
developed at the network layer. They attempt to find the best
route in terms of largest available bandwidth or minimum end-
to-end delay to provide hard guarantees [4], [5]. Unfortunately,
these QoS routing algorithms may not be suitable for the
traffic with soft QoS requirements. To provide QoS guarantees
efficiently, we need an admission control algorithm, such
that after understanding the QoS provided by the current
network, we can reject infeasible requests before spending
any effort in serving them. This paper aims at designing
stochastic admission control (SAC) for real-time applications
(Web browsing, and online game) that have stochastic end-to-
end delay constraints. To achieve this goal, we first need to
understand the probabilistic end-to-end delay performance of
the network.

Numerous works [4]–[19] have been done to analyze the
end-to-end delay of multi-hop wireless networks. Some works
just focused on finding the mean value or the variance of end-
to-end delay [4]–[8], [11], [12]. However, the mean value and
the variance alone cannot provide enough information for soft
QoS guarantees. On the other hand, the cumulative distribution
function (CDF) can reflect the probabilistic property of delay,
which is very useful for providing soft QoS guarantees.
Several efforts have been done to provide probabilistic bounds
of end-to-end delay of wireless multi-hop networks [9], [13]–
[19]. Table I provides a comparison of several delay metrics
in admission control.

1536-1276/14$31.00 c© 2014 IEEE
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We consider three types of QoS requirements: 1) mean value
and delay jitter; 2) acceptable delay; and 3) maximum delay
and violation probability. The QoS requirement in term of
mean value (E[T ]) and delay jitter (ξ) means the average end-
to-end delay of the flow is not allowed to be larger than E[T ]
and the variance of the end-to-end delay is smaller than ξ.
Acceptable delay means the delay of the flow must not exceed
the acceptable threshold at all time. The QoS requirement
in term of maximum delay and violation probability means
the delay should not exceed the maximum delay by a certain
probability, which is a soft QoS requirement. There is a “

√
”

in the box when a certain metric provides enough information
for the admission control algorithm, such that it can make
a decision to admit or reject the flow with a certain QoS
requirement. Metric mean value and variance cannot admit
flows with acceptable delay and soft QoS requirements appro-
priately because it does not tell the maximum delay. Similarly,
metric upper bound is not good enough because it does not
provide mean value or probability information. On the other
hand, according to probability theory, the CDF reflects both
mean value and delay upper bound. Therefore, the distribution
of end-to-end delay is a more suitable metric for admission
control.

Unfortunately, most of the existing models derived the
delay distribution by assuming the channel is ideal in the
sense that the channel has constant capacity and is error
free [4]–[8], [11], [12], [16], [17]. However, a main feature
of wireless networks is that the wireless channel is time-
varying and unreliable. Ideal channel assumption ignores the
retransmissions caused by channel errors or outage, leading to
inaccurate analytical results. To capture the influence of non-
ideal channels on delay performance, the effective capacity
function has been proposed to model QoS capacity of wireless
channel at the data link layer in [20]. The authors in [13],
[14] extended the results in [20] to multi-hop mesh networks.
Since these results are based on the assumption that the traffic
arrival rate is constant, they cannot be applied to networks with
dynamic traffic arrival rate. To the best of our knowledge, there
is no existing model that can accurately estimate the end-to-
end delay distribution of multi-hop wireless networks with
bursty traffic over time-varying and unreliable channels.

In additions, there is an important factor that influences
the delay performance of multi-hop wireless networks but has
been usually ignored in previous analyses. Due to the transmis-
sion characteristic of electromagnetic signals, the interference
range of signals is often larger than the transmission range.
Therefore, in multi-hop wireless networks, a node locating
outside the sensing range of an existing communication may
interfere this transmission. We refer this problem as the hidden
interfering terminal problem1, which will be explained in
Section II. Although this issue would prolong the delay a
packet suffers, to the best of our knowledge, no existing
work considers that. In this paper, we incorporate the delay
introduced by the hidden interfering terminal problem when
we calculate the packet service time.

1Note that the hidden interfering terminal problem is different from the
hidden terminal problem. While the hidden terminal problem has been solved
by the RTS/CTS scheme of the IEEE 802.11 protocol, the scheme cannot
resolve the hidden interfering terminal problem.

Our main contributions in this paper can be concluded as
follows. First, we are the first to investigate the influences of
traffic burstiness and channel unreliability on end-to-end delay
in a multi-hop 802.11 network. We achieve it by proposing an
analytical model to analyze the end-to-end delay distribution
of the multi-hop 802.11 network with the Markovian arrival
process and slow fading channels. Second, we study the
influence of the hidden interfering terminal issue on end-to-
end delay and derive a formula for calculating the end-to-end
delay distribution that incorporates this factor. Third, based on
the estimation of the end-to-end delay distribution, an efficient
stochastic admission control algorithm (SACA) is developed
to provide soft guarantees for the traffic with stochastic QoS
requirements.

The reminder of this paper is organized as follows. In
Section II, we present an overview of related works. The
network model is described in Section III. We analyze the
distribution of node delay in Section IV and the distribution
of the end-to-end delay in Section V. In Section VI, we verify
the analytical results through simulations. In Section VII, the
applications of the analytical results are introduced and the
SACA is described. The simulation results of the SACA are
also presented to demonstrate the efficiency of the algorithm.
At last, we conclude the paper in Section VIII.

II. RELATED WORK

Before introducing our work, we first give an overview of
end-to-end delay analysis in this section. Since the end-to-
end delay performance plays an important role in the QoS
guarantees of real-time applications, there are many works
on end-to-end delay analysis of wireless networks. However,
since the end-to-end delay of multi-hop wireless networks is
affected by the routing protocol, the MAC protocol, the quality
of the physical channels, and mutual interference including
inter-flow and intra-flow interference, calculating end-to-end
delay for multi-hop networks is very challenging.

In [10], the authors derived the big-O expression of the
end-to-end transmission delay of a network with both static
and mobile nodes under perfect scheduling and routing. Some
research efforts [7], [12] have been devoted to obtain the
lower bound of the average end-to-end delay for every flow
in the networks with predefined routing paths and perfect link
scheduling. Some other works focused on the mean value or
variance of end-to-end delay [4]–[6], [8] by considering the
effect of the MAC protocol alone. All these works did not
analyze delay distribution.

There are some available works on the distribution of the
end-to-end delay. In [11], the CDF of end-to-end delay in
a network with classical random linear network coding and
automatic repeat re-quest (ARQ) has been analyzed. Reference
[15] only considered channel error of an ARQ network model
in the analysis. The real-time queuing network theory was
used to derive end-to-end delay distribution when the network
is heavily loaded in [18]. Wang et al. in [17] provided the dis-
tribution of the end-to-end delay of wireless sensor networks
with the Poisson arrival process and error-free channels. All
these works assumed the channel capacity is a constant, which
is not practical in wireless networks.
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Fig. 1. Hidden interfering terminal problem.

Recently, network calculus has been extended to calculate
probabilistic delay bounds of multi-hop wireless networks.
In [9], [19], the authors derived the probabilistic end-to-end
delay upper bound in the information-theoretic perspective. An
important practical method characterizing delay distribution
was proposed in [13], [14], which is based on the effective
capacity theory [20]. The simulation results in [13], [14]
verified that the effective capacity theory is a useful tool
to model the wireless channel with time-varying capacity.
However, there are two reasons why these works are not
suitable for distributed multi-hop wireless networks. First, they
assumed the traffic arrival rate at each node was constant,
which does not agree with the bursty and diverse nature of
the traffic. Second, these works did not consider the effects
of channel sharing and transmission collisions caused by
uncoordinated access policy in distributed networks.

The IEEE 802.11x standard system has been vigorously
developed recently. At the same time, more and more de-
vices support IEEE 802.11 series. These two facts prompt
IEEE 802.11 wireless access to be more and more popular.
Hence, analyzing the end-to-end delay so as to provide QoS
guarantees for real-time applications in this kind of wireless
networks is an important problem. Nevertheless, as discussed
before, there is no accurate analytical model for analyzing
the end-to-end delay distribution of such networks. In this
paper, we focus on calculating the distribution of the end-to-
end delay of multi-hop IEEE 802.11 distributed coordinated
function (DCF) networks with general arrival process and
error-prone multi-rate channels. The RTS/CTS scheme is used
to coordinate node transmissions at the MAC layer. Authors in
[4], [21], [22] have estimated the mean value and the variance
of end-to-end delay under this scheme.

However, an important issue influencing node delay has not
been considered. In [4], [21], [22], the authors assume a packet
transmission must be successful when CTS is successfully
received by the sender. Nevertheless, it may not be true if
the interference range is larger than the transmission range.
Fig. 1 illustrates the hidden interfering terminal problem.
In the figure, the interference range is two hops while the
communication range is one hop. Suppose that A wants to
talk to B. A sends a RTS to B, and B replies a CTS. A then
starts data transmission. Before the transmission completes, D
wants to talk to E. Because node D could not hear the data
transmission from node A to node B, the RTS will be sent
by node D, and this RTS will destroy the data packet from
node A to node B. There is no existing delay analytical model
considers this problem.

To fill the research gap, we propose an analytical model to
calculate the distribution of the end-to-end delay for a multi-
hop wireless network in this paper. The model considers traffic
burstiness, hidden interfering terminal problem, and multi-rate
error-prone channels.

III. NETWORK MODEL

Let N and F denote the set of the nodes and the set of traffic
flows in the network, respectively. The nodes are uniformly
and independently distributed over a torus area. The path of
each flow f ∈ F has been predetermined. Unlike [13], [14]
which assumed the nodes can send and receive at the same
time, we consider the scenario where each node is equipped
with a single bidirectional half-duplex antenna. Since the node
delay is affected by the traffic arrival process, data link layer
protocol, and the signal modulation at the physical channel,
we will introduce our network model for each factor below.

A. Traffic Arrival Process

Traditionally, to simplify the analytical model, it is assumed
that the traffic arrival process at each node is either a de-
terministic process, a Poisson process, or always saturated.
However, the measurements of real traffic suggest that the
traffic arrival process is self-similar and long-range dependent,
and no random process model can capture all the properties of
the traffic arrival process [23]. The Markov modulated Poisson
process (MMPP) is a doubly stochastic process with the arrival
rate varying according to a multi-state ergodic continuous-
time Markov chain [24]. Some works have proved that the
QoS performance can be approximated well when the MMPP
is used to model the traffic arrival process [24]–[28]. The
more states an MMPP has, the more accurate the results will
be, but, both computational and analytical complexities rise
with the number of states. In [26], the authors demonstrate
that the two-state MMPP (MMPP2) strikes a good balance of
complexity and accuracy. In this paper, we assume the traffic
arrival process of each node i is an MMPP2 with parameters
(r1, r2, λ1, λ2), where ri and λi are the transition rate and
arrival rate of state i, i =1,2, respectively.

According to the effective bandwidth theory [29], the ef-
fective bandwidth function αB(u) characterizes the minimum
bandwidth required when the required QoS level of the traffic
is u. The effective bandwidth function of an MMPP2 with
parameters (r1, r2, λ1, λ2) has been given in [29].

B. Data Link Layer

The RTS/CTS scheme of 802.11 DCF protocol is used
as the MAC protocol. Lack of space forbids describing the
802.11 DCF protocol in detail. Interesting readers please refer
to [30], [31]. As mentioned earlier, because the transmission
range is shorter than the interference range, the network suffers
from the hidden interfering terminal problem. The backlogged
packets are served in first-in-first-out order.

We assume the buffer size of each node is infinite, and then
no packet will be dropped due to buffer overflow. However,
in practice, the buffer size is finite. To verify this assumption,
we simulate 15 different queue models, and the results are
shown in Fig. 2. The average service rates and queue sizes
of all queue models are the same, and are 10 packets/s and
100 packets, respectively. From Fig. 2, we can find the drop
probabilities of all queue models are no more than 1.4% when
the traffic arrival rate is 9 packets/s (heavy load). As we
assume the network is under a stable situation, nodes are never
in overload condition. Thus, the assumption of no packets are
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dropped due to buffer overflow is acceptable for most practical
scenarios.

C. Physical Layer

Almost all IEEE 802.11x protocols support multiple trans-
mission modes (corresponding to different channel rates):
802.11b protocol has four transmission modes, 802.11a pro-
tocol provides eight transmission modes, and 802.11g even
supports twelve channel rates. In this paper, we assume an
adaptive modulation and coding (AMC) scheme is used. The
AMC scheme has K transmission modes.

Our work can be applied to any physical channel model
which assumes the channel does not change within a sin-
gle transmission. To illustrate the analysis, we choose the
Nakagami-m fading channel model as the physical channel
model in this paper because the Nakagami-m fading channel
model can be applied to a large class of slow fading channels.
For example, the Rayleigh channel model can be represented
by putting m to be 1.

Let πk denote the stationary probability that mode k is
used. The calculation for πk can be found in [32]. Denote
the transmission error probability as ek when mode k is used.
According to [32], the packet error probability at the physical
layer can be calculated as

per =

K∑
k=0

πkek. (1)

Assume that exactly one packet can be encapsulated in one
PHY frame and all frames have the same size of L bits with
the help of padding bits. Hence, when mode k is used, the time
of transmitting one packet is dk = L

rk
(s), where rk bits/s is

the channel rate when mode k is used. The distribution of the
packet transmission time at the physical layer (Tp t) can be
derived as

Pr(Tp t = x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πK , x = dK

πK−1, x = dK−1

...

π1, x = d1

π0, x = 0

. (2)

A wireless network with multi-rate channels can be ana-
lyzed by choosing the appropriate K. In a single-rate channel
network, K = 1. The corresponding Tp t and per can be
calculated by applying K = 1 into Eq. (2) and Eq. (1).

IV. PER-HOP DELAY ANALYSIS

The distribution of the end-to-end delay can be derived by
using the distribution of per-hop delay because the end-to-
end delay is the sum of per-hop delay along the path. In this
section, we will derive the distribution of the delay a packet
experiences in a random node in the network described in
Section III. This node delay contains two parts: access delay
and queuing delay. While queuing delay is the amount of time
that a packet spends in the buffer before it becomes the head of
the queue, access delay is the time duration from the moment
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Fig. 2. Packets drop rates of different queue models under different
arrival rates. “M” is Poisson process, “D” is deterministic process, “P” is
Pareto distribution, “E” is Erlangian distribution, “H” is Hyper-exponential
distribution, “ONOFF” is on-off model, and “MMPP” is MMPP2.

the packet becomes the head of queue to it is successfully
transmitted or dropped. Queuing delay is determined by the
traffic arrival process and the distribution of access delay.
Hence, we first analyze access delay.

The hidden interfering terminal problem should be consid-
ered in access delay analysis. The access delay can be obtained
through analyzing the MAC protocol. Hence, we first propose
a Markov Chain to model node behaviors at the MAC layer
which includes hidden interfering terminal phenomenon.

A. MAC Protocol Analysis

Denote the probability that a station attempts to transmit
packets in a random slot by ptr, and the failure probability of a
transmission by pfail. The hidden interfering terminal problem
is statistically independent of RTS collision and transmission
error. RTS collision and transmission error are independent of
each other. Hence, pfail can be expressed as

pfail = 1− (1− pcol)(1− pcor)(1 − per), (3)

where per is the packet error probability developed in Eq. (1),
pcol is the probability that a collision occurs when a node is
transmitting RTS, and pcor is the probability that the data
transmission is interrupted by hidden interfering terminals.
Denote the number of neighbors and hidden interfering ter-
minals of the tagged node by Nng and Nhd, respectively. pcol
and pcor can be expressed as pcol = 1 − (1 − ptr)

Nng and
pcor = 1− (1− ptr)

Nhd , respectively.
All nodes in the network are identical, thus, it is enough to

analyze the behavior of one node to predict the behavior of
other nodes. Fig. 3 shows our novel two-dimensional Markov
chain, which is used to characterize the tagged node with an
MMPP2 arrival process and Nakagami-m fading channel.

In Fig. 3, state Empty represents there is no packet in
the buffer. The traffic arrival process is an MMPP2 with pa-
rameters (r1, r2, λ1, λ2). Empty state contains two sub-states,
Empty 1 and Empty 2, representing the arrival process of node
in state 1 and state 2, respectively. The transition probability
from Empty i to Empty j is denoted by pij , i, j = 1, 2 and pij
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Fig. 3. The Markov Chain for a random node in multi-hop wireless networks.

satisfies{
p12 = 1− exp(−r1Tslot), p11 = 1− p12

p21 = 1− exp(−r2Tslot), p22 = 1− p21
, (4)

where Tslot is the slot length which is defined by the standard.
In IEEE 802.11b [30], Tslot = 20μs, while in IEEE 802.11g,
Tslot = 9μs.

Bi-dimensional state (j, k) in Fig. 3 represents the tagged
node is at the j-th backoff stage and the backoff counter value
is k at a randomly chosen slot. The backoff stage number
j is incremented by 1 after each unsuccessful transmission
as long as it is smaller than R. At the same time, the
contention window size is doubled until it is larger than the
maximum value 2mW0, where W0 is the initial contention
window size defined in the protocol [30]. The value of k
will be decremented by 1 if the channel is idle during a
whole slot. When it reaches zero, the station transmits. The
value of k is set according to j and the transmission result.
If the transmission fails, j is changed to j+1 and the value
of k is uniformly chosen in the range [0,Wj+1]; otherwise, j
becomes 0 and the range of the value of k is [0,W0]. In the
Markov chain shown in Fig. 3, ρ represents the probability that
after a packet transmission is completed, there is at least one
packet in the buffer. ρ has the same meaning as the utilization
in the queuing theory, which is the fraction of the time in
which the server is busy. Thus, according to the queuing
theory, ρ = λ̄ ∗ T̄ser, where λ̄ is the average arrival rate and

λ̄ = r1+r2
λ1r2+λ2r1

for the MMPP2 case, and T̄ser is the average
packet service time2. We will discuss T̄ser in Section IV-B.
According to the previous description, the one-step transition
probabilities satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(j, k − 1|j, k) = 1− pf , j ∈ (0, R), k ∈ (2,Wi − 1)

q(j, k|j, k) = pf , j ∈ (0, R), k ∈ (1,Wi − 1)

q(j, k|j − 1, 0) = pfail/Wi, j ∈ (1, R), k ∈ (0,Wi − 1)

q(0, k|j, 0) = ρpsuc/W0, j ∈ (0, R−1), k ∈ (0,W0−1)

q(Empty|j, 0) = (1− ρ)psuc, j ∈ (0, R−1)

q(0, k|R, 0) = ρ/W0, k ∈ (0,W0 − 1)

q(Empty|R, 0) = 1− ρ,

q(0, k|Empty) = pgen/W0, k ∈ (0,W0 − 1)

,

(5)
where pf is the probability that the backoff node finds the
channel is busy and freezes the backoff counter, psuc is the
probability that a frame is successfully transmitted, pfail =
1 − psuc, and pgen is the probability that at least one packet
comes to MAC layer during one slot. For an MMPP2 case,
pgen = r2

r1+r2
(1−e−λ1Tslot)+ r1

r1+r2
(1−e−λ2Tslot). Let q(j,k)

be the probability of the node in state (j, k). From Fig. 3
and the transition probabilities in Eq. (5), the transmission
probability of the tagged node can be derived as

ptr=
(1− pR+1

fail )

(1 − pfail)
[(∑R

j=0 (1+
Wj−1

2(1−pf )
)pjfail

)
+ 1−ρ

pgen

] . (6)

It is worth noting that in Eq. (6), there is still one unknown
parameter: pf , which is the probability that the channel is
busy in a random slot when the tagged node is in backoff
state. Referring to Fig. 3, a backoff node enters a backoff state
from either a transmission state or from a previous backoff
state. Note that a node enters a backoff state towards the end
of a time slot. When the tagged node enters a backoff state,
the channel may become either busy due to a transmission
started by other nodes, or stay idle for the entire duration of
a standard slot. Therefore, a two-state Markov Chain shown
in Fig. 4 is presented to model channel state from the tagged
node’s perspective. Through solving this Markov Chain, the
value of pf can be derived.

In Fig. 4, states Idle and Busy represent the channel is in
idle state and the channel is captured by other nodes from
the tagged node’s point of view, respectively. The probability
that the tagged node enters a backoff state and senses the
channel is idle equals the probability that none of its neighbors
(Nng) transmits packets. If the channel is busy, the tagged
node finds the channel is idle in the next slot when none
of involved nodes who make the channel busy chooses 0
as the backoff value. Note that to keep our model tractable,
although different nodes have different backoff window sizes,
we do not consider this difference. Instead, we approximate
the probabilities of selecting zero as a new backoff counter
value by using the average backoff window size (W̄ ). So the

2In this paper, “average packet service time” is the same as “average access
delay”. In the rest of the paper, we using these two terms interchangeably.
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Idle BusyIIp

IBp

BBp fail suc

Fig. 4. State transition diagram of channel state.

transition probabilities in Fig. 4 satisfy⎧⎪⎨
⎪⎩
PII = (1− ptr)

Nng , PIB = 1− PII

PBI =
Nng∑
n=1

Inv(n)(1 − 1
W̄
)n, PBB = 1− PBI

, (7)

where W̄ is the average backoff window size over all states,
Inv(n) is the probability that there are n neighbors transmit
packets. Inv(n) can be computed as Inv(n) = Cn

Nng
pntr(1−

ptr)
Nng−n, where Cr

a =
(
a
r

)
= a(a−1)···(a−r+1)

r! . When a
node chooses Wj as the backoff window size, it has suf-
fered j transmission failures. Hence, W̄ can be calculated as

W̄ =
R∑

j=0

pjfailWj . According to Markov chain theory, the

probability of Idle state PI and the probability of Busy state
PB satisfy {

PI = PIPII + PBPBI

PB = PIPIB + PBPBB

. (8)

Substituting Eq. (7) into Eq. (8), we can derive PI and PB

by using the normalized condition: PI + PB = 1. When the
tagged node senses the channel is busy, it freezes the backoff
counter. Therefore, pf is the same as PB , and pf can be
expressed as

pf = PB =
PIB

PIB + PBI
. (9)

B. Access Delay Calculation

The effects of traffic burstiness, channel unreliability, and
hidden interfering terminals have been analyzed in Section IV-
A. We now use the analysis results to calculate the distribution
of access delay.

According to the transmission process of a random packet
shown in Fig. 3, the distribution of access delay Tser can be
expressed as

Pr(Tser = t) =

R∑
r=0

prfailpsuc Pr(Ttr,r = t), (10)

where psuc and pfail have been obtained in Section IV-A,
Ttr,r is the time that a packet who suffers r, 0 ≤ r ≤ R,
retransmissions before it is transmitted successfully experi-
ences. Thus, Ttr,r includes the time caused by r unsuccessful
transmissions, r backoffs, and the last successful transmission.
Ttr,r can be expressed as

Ttr,r = Tsuc + rTfail +

r∑
j=0

Tbofj, (11)

where Tsuc, Tfail and Tbofj are the times required by a
successful transmission, an unsuccessful transmission, and the

j-th backoff, respectively. According to the standard [30], Tsuc

can be expressed as

Tsuc = DIFS+3∗SIFS+RTS+CTS+Tp t+ACK. (12)

The values of DIFS, SIFS, RTS, CTS and ACK are constants
defined in the standard [30]. By substituting Eq. (2) into Eq.
(12), the distribution of Tsuc can be derived.

Unlike existing works which only consider transmission
failures caused by collisions, we also consider non-collision
failures because of transmission errors and hidden interfering
terminals. Note that the time spent on transmission failure
caused by transmission error is equal to the time caused by
hidden interfering terminals. Let Tfail c and Tfail ei represent
the amounts of time caused by transmission collision and non-
collision case, respectively. According to the standard [30],
Tfail c and Tfail ei can be expressed as

Tfail c = DIFS +RTS + SIFS + CTS. (13)

Tfail ei = DIFS+2∗SIFS+RTS+CTS+Tp t+EIFS.
(14)

As shown in Eq. (13), Tfail c is a constant. Substituting Eq.
(2) into Eq. (14), the distribution of Tfail ei can be derived.
When the transmission is unsuccessful, while the probability
that the transmission fails due to transmission collision is
pcol

pfail
, the probability of the data transmission failure caused by

non-collision is pfail−pcol

pfail
. As a result, Tfail can be calculated

as

Pr(Tfail = x)=

{
pcol

pfail
, x = Tfail c

pfail−pcol

pfail
Pr(Tfail ei = x), others

.

(15)
When the transmission fails due to transmission collision,

the failure time is Tfail c. Therefore, Pr(Tfail = Tfail c) is
pcol

pfail
. In other case when the transmission failure is caused by

non-collision, the failure time is Tfail ei. That is, Tfail has the
same distribution as Tfail ei with the probability pfail−pcol

pfail
.

Therefore, Pr(Tfail = x) is pfail−pcol

pfail
Pr(Tfail ei = x).

Denote the actual length of a backoff slot by T ′
slot. If

the backoff node finds the channel is busy, it will freeze
the backoff counter. Then T ′

slot �= Tslot, and T ′
slot is not a

constant. Therefore, Tbofj cannot be expressed as Pr(Tbofj =
kTslot) = 1/Wj , k ∈ [0,Wj − 1], as in the previous work
[31]. To obtain the distribution of Tbofj , we first derive the
distribution of T ′

slot.
When the backoff node senses the channel is idle, T ′

slot =
Tslot. Therefore, Pr(T ′

slot = Tslot) is (1−ptr)
Nng . As shown

in Fig. 4, when the channel is busy, it may be a collision,
a non-collision, or a successful case. The time spent on a
collision, a non-collision, and a successful case are Tfail c,
Tfail ei, and Tsuc, which have been analyzed before. When
more than one neighbor sends RTS, the channel is captured by
a collision and T ′

slot = Tfail c + Tslot. Therefore, Pr(T ′
slot =

Tfail c + Tslot) is
∑Nng

i=2

(
Nng

i

)
pitr(1− ptr)

Nng−i. When the
backoff node senses the channel is busy because of a success-
ful case, a backoff slot contains a successful transmission and
a standard slot. That is, T ′

slot has the same distribution as Tsuc

with the probability Nngptr(1−ptr)
Nng−1(1−pcor)(1−per).

Therefore, Pr(T ′
slot = x) is Nngptr(1 − ptr)

Nng−1(1 −
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Pr(T ′
slot = x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1− ptr)
Nng , x = Tslot

Nng∑
i=2

(
Nng

i

)
pitr(1− ptr)

Nng−i, x = Tfail c + Tslot

Nngptr(1− ptr)
Nng−1(1− per)(1 − pcor) Pr(Tsuc = x− Tslot), x = Tsuc + Tslot

Nngptr(1− ptr)
Nng−1(1− (1− pcor)(1 − per)) Pr(Tfail ei = x− Tslot), x = Tfail ei + Tslot

. (16)

pcor)(1−per) Pr(Tsuc = x−Tslot). Similarly, the probability
that the channel is busy because of a non-collision case is
Nngptr(1 − ptr)

Nng−1(1 − (1 − pcor)(1 − per)). Therefore,
the distribution of T ′

slot can be calculated as Eq. (16).
Using the distribution of T ′

slot in Eq. (16), the distribution
of Tbofj can be computed as

Pr(Tbofj = x) (17)

=

{
1/Wj, x = 0

Pr(kT ′
slot = x)/Wj , k ∈ [1,Wj − 1], x �= 0

.

By substituting Pr(Tsuc = x), Eq. (15), and Eq. (17) into
Eq. (11), the distribution of Ttr,r can be derived as Eq. (18).

After substituting Eq. (18) into Eq. (10), the distribution of
access delay Tser can be calculated. From Eq. (18), we find
that Tser is not continuous but discrete, and it has finite values
denoted by T = {T1, T2, · · · , Tm, · · · , TM}. According to
probability theory, the mean value of access delay which is
used in calculating ρ can be calculated as

T̄ser =
∑
t∈T

tPr(Tser = t). (19)

Equation (10) indicates that Tser is a function of pfail
which depends on ptr as shown in Eq. (3). Equation (6) of ptr
contains a parameter ρ whose calculation depends on the mean
value of Tser. Therefore, ptr, pfail, and Tser depend on each
other. To obtain the distribution of access delay, we must solve
non-linear equations. We develop a simple iterative algorithm
to solve these non-linear equations. Algorithm 1 gives the
details. In the algorithm, εt is the tolerable calculation error,
and ptr 1 ∈ (0, 1) is the initial value of ptr.

Algorithm 1 Obtain Pr(Tser = t)

1: Input: Nng, Nhd, Tp t, per, r1, r2, λ1, λ2, R,W0,m, εt;
2: Initialization: ptr 1 = 1, ptr = 0.01, T ser = T p t;
3: while |ptr − ptr 1| > εt do
4: ptr 1 = ptr;
5: pfail = 1− (1− p

Nng

tr 1)(1 − pNhd
tr 1)(1 − per);

6: Substitute pfail, ptr 1 and Tp t into Eq. (10-18) to
derive Pr(Tser = t);

7: Use Eq. (19) to calculate T ser ;
8: Substitute pfail and T ser into Eq. (6) to get a new

value for ptr.
9: end while

10: Output: Pr(Tser = t) and the set T .

C. Queuing Delay Analysis

As mentioned before, queuing delay is a function of access
delay and traffic arrival process. Given the traffic arrival

process, the queuing delay can be calculated based on the
distribution of access delay. Queuing theory provides an
accurate queuing delay estimation of systems with memoryless
arrival or memoryless service process. However, queuing
theory no longer works well in estimating delay distribution
when neither the traffic arrival process nor the service process
is memoryless [33]. The distribution of access delay shown
in Eq. (10) indicates that it has many discrete values which
do not obey a geometric distribution. We can conclude that
both the arrival process and the service process are not mem-
oryless, and queuing theory cannot be applied to analyze the
distribution of queuing delay. Recently, effective bandwidth
theory has been widely used to obtain the QoS performance
of computer networks, such as queuing delay of a system with
general arrival process [29]. In this section, we apply effective
bandwidth theory to obtain queuing delay.

Let the effective bandwidth function of a certain traffic
arrival process be αB(u) (u is the QoS exponent) and the
channel rate be C. We further let θ∗ be the solution of
αB(u) = C. According to the effective bandwidth theory
[29], the distribution of queuing delay (W) can be calculated
as Pr(W > x) = γ exp(−xCθ∗), where γ is the probability
that the buffer is nonempty.

The formula cannot be applied directly when the channel
rate is not a constant, which is the situation considered in
this paper. Fortunately, with the help of probability theory,
effective bandwidth theory can be extended to calculate the
distribution of queuing delay of the system with multiple
service rates.

The access delay of the tagged node in Eq. (10) has finite
values, as a result, we can extend effective bandwidth theory
[29] to analyze queuing delay of the tagged node. We first
derive the distribution of queuing delay when the service
rate is one element of T , and then calculate the distribution
of queuing delay when consider all values of service time
using probability theory. As shown in Eq. (10), the proba-
bility that packet service time Tser equals Tm, Tm ∈ T , is
Pr(Tser = Tm). Tser = Tm means that the tagged node can
serve 1/Tm packets in one second. Given effective bandwidth
function αB(u), the distribution of queuing delay WTm when
the channel rate is 1/Tm satisfies

Pr(WTm ≤ x) = 1− γTm exp(−xθ∗Tm
/Tm),

where θ∗Tm
can be obtained through solving the equation

αB(u) = 1/Tm.
The distributions of queuing delay when the service time

equals other elements in T can be calculated in the same
way. The queuing delay (Tque) has the same distribution as
WTm with the probability Pr(Tser = Tm). According to
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Pr(Ttr,r = t) =

t∑
x=0

t−x∑
y=0

Pr(Tsuc = x) Pr(
∑r

j=0
Tbofj = y) Pr(Tfail = t− x− y). (18)

probability theory, the distribution of queuing delay (Tque)
can be calculated as

Pr(Tque ≤ x) =
∑

Tm∈T

Pr(Tser = Tm) Pr(WTm ≤ x). (20)

So far, access delay and queuing delay have been obtained.
The node delay is composed of access delay and queuing
delay, and node delay (Tsig) satisfies Tsig = Tser + Tque.
According to Eq. (10) and Eq. (20), by applying probability
theory, the distribution of node delay (Pr(Tsig ≤ x)) can be
derived as

Pr(Tsig ≤ x) =
∑

Tm∈T

Pr(Tser = Tm) Pr(Tque ≤ (x− Tm)).

(21)

V. END-TO-END DELAY DISTRIBUTION CALCULATION

Using the distribution of node delay given in Eq. (21),
we calculate the end-to-end delay distribution of an arbitrary
communication pair in the network in this section.

A. End-to-End Delay Derivation

Let rpf = (h0, · · ·hHf
) denote the routing path of flow

f, f ∈ F , where Hf ≥ 1 is the number of hops of flow f,
hi ∈ N, 0 ≤ i ≤ Hf is the i-th hop node. Since end-to-end
delay can be calculated through summing up the per-hop delay
along the path, the end-to-end delay of rpf can be expressed
as Tete,rpf

=
∑Hf−1

i=0 Thi,sig , where Thi,sig is the node delay
of the i-th hop (hi).

The distribution of node delay Pr(Thi,sig ≤ x) of the i-
th hop hi is shown in Eq. (21). According to probability
theory, the probability density function (PDF) of Thi,sig can
be computed as

fhi,sig(t) =
dPr(Thi,sig ≤ t)

dt
. (22)

As Tete,rpf
=

∑Hf−1
i=0 Thi,sig , the probability that Tete,rpf

is smaller than x can be expressed as

Pr(Tete,rpf
≤ x) = Pr(

Hf−1∑
i=0

Thi,sig ≤ x). (23)

Substituting Eq. (22) into Eq. (23), the distribution of
Tete,rpf

can be calculated as

Pr(Tete,rpf
≤ x) (24)

=

∫ x

0

(fh0,sig ∗ fh1,sig ∗ · · · ∗ fhHf−1,sig)(t)dt,

where (f ∗ g)(t) is the convolution of f(t) and g(t).
We have investigated the computational complexity when

only one transmission mode is used, and found that Tser has
more than ten thousand values. It implies that the computa-
tional complexity of calculating Tser , which is solving non-
linear equations, is very high. When the number of transmis-
sion modes at the physical layer increases, the complexity

increases quickly. From the end-to-end delay formula (Eq.
(24)), we notice that the calculation of end-to-end delay
depends on node delay distribution, which just contains three
parameters: Pr(Tser = Tm), γTm and θ∗Tm

. To reduce the
complexity, we propose a simple sampling algorithm to ap-
proximate these three parameters and calculate the end-to-end
delay distribution based on these sample results.

B. A Sampling Algorithm

As discussed in Section IV-C, given the effective bandwidth
function αB(u) and the distribution of service time Pr(Tser =
Tm), γTm and θ∗Tm

, the end-to-end delay distribution can be
calculated. We propose a sample algorithm in this sub-section.
In this algorithm, we first obtain the arrival process parameters.

Authors in [26] provided a method to calculate the parame-
ters of MMPP2. To obtain the effective bandwidth function of
the traffic arrival process, we first employ the method proposed
in [26] to estimate the parameters of MMPP2, and then
substitute the results into the formula of effective bandwidth
function in [29].

Given αB(u) and Tm, θ∗Tm
can be calculated. Since γTm

is the probability that the buffer is nonempty, γTm can be
calculated as λ̄Tm according to queuing theory. Assume the
distribution of the service time is known, then, T is known,
and the corresponding θ∗Tm

and γTm can be calculated. Then,
substituting these θ∗Tm

and γTm into Eq. (24), the distribution
of the end-to-end delay can be obtained. Therefore, a sampling
algorithm is proposed to obtain Pr(Tser = Tm).

According to the analysis in Section IV, during sampling,
Tser should be recorded from a packet becomes the head of
the queue, instead of from the moment it is being transmitted.
First, we take S samples over Titvl and record the latest
packet service time (Tsn) at each sampling epoch. We use
the sample values of Tsn to approximate the distribution
of packet service time Tser . Let Tsmin = min

1≤n≤S
{Tsn},

Tsmax = max
1≤n≤S

{Tsn}. Then, [Tsmin, Tsmax] is split into

P, P ≥ 100, none-overlapping intervals. The number of
sample values falling in [Ts,p, Ts,p+1], 0 ≤ p ≤ P , is recorded,
and then these numbers are used to compute the frequency of
the sample values falling in this interval. According to the law
of large numbers, the frequency can be used to approximate
the distribution of service time. Hence, we use the frequency
of the sample values falling in [Ts,p, Ts,p+1], 0 ≤ p ≤ P , to es-
timate the probability that the service time is (Ts,p+Ts,p+1)/2.
Though the more the sample values, the more accurate the
result will be, more memory will be needed to keep the
samples. According to [20], we set S = 2000 and Titvl = 2s
in this paper.
γTm and θ∗Tm

are calculated using the sample results. By
substituting γTm , θ∗Tm

and Pr(Tser = Tm) into Eq. (24), the
end-to-end delay can be computed.
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TABLE II
AMC PARAMETERS

Model 1 2 3 4 5 6
channel rate (Mbps) 2 4 6 9 12 18
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Fig. 5. Access delay distribution for different channel rates.

VI. SIMULATION RESULTS

To validate the accuracy of our analytical model, we com-
pare the analytical results with simulation results in OPNET
simulator. The MAC protocol parameters, such as the dura-
tions of DIFS, SIFS, as well as RTS, CTS, and ACK control
frames, are the same as defined in 802.11 standards [30]. The
channel is Rayleigh fading channel by setting Nakagami-m
fading parameter m=1. Without loss of generality, we assume
the interference range is twice the transmission range. We first
demonstrate our methodology on the topology shown in Fig. 1
where each node uniformly chooses one of its neighbors as the
destination of its packets. We set λ1 = λ2, and the MMPP2 is
regressed to a Poisson process. The traffic arrival rate of each
node is 25packets/s, and the packet size is 1024Bytes. While
the “Single-rate” corresponds to set K=1 and the channel rate
is 2Mbps, “Multi-rate” corresponds to K = 6 and the channel
rates are given in Table II. Other AMC parameters are the
same as Table II in [32]. The average SNR is 2.0. The results
of access delay and end-to-end delay are shown in Fig.5 and
Fig.6, respectively.

To observe the impact of hidden interfering terminals, we
compare the results of the scenarios without (“Single-rate”
and “Multi-rate”) and with (“Single-rate Hidden” and “Multi-
rate Hidden”) hidden interfering terminals. From Figs. 5-6,
it can be found that hidden interfering terminals degrade the
delay performance and AMC can improve delay performance
through enhancing the quality of transmission at the physical
layer. The results in Fig. 5 indicates that our method can
provide good estimations for access delay of both multiple
channel rates and single channel rate with and without hidden
interfering terminals. Note that all communications in Fig. 1
are single hop. The results in Fig. 6 verify the accuracy of our
method in estimating node delay.

We now study the performance in a uniform topology which
has 64 nodes that are uniformly and randomly distributed over
a 1km×1km area. We choose a 6-hop path in a network to
observe the delay. Each node in the network, except the source
and the destination of the observed path, randomly chooses
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Fig. 6. End-to-end delay distribution for different channel rates.
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Fig. 7. End-to-end delay distribution under different traffic loads.

another node as the destination. We observe the end-to-end
delay of the path under different traffic loads. The results are
shown in Fig. 7.

In Fig. 7, the x-coordinates are delay values a packet
experiences, and the y-coordinates are the CDF of the end-
to-end delay of the path. While the blue lines with symbols
are the simulation results, the red lines without symbols are
analytical results. The analytical results are calculated using
the sampling results which are collected by the sampling
algorithm. We verify our model under different traffic load
situations: a) low load = 1 packets/s, b) moderate load = 4
packets/s, and c) high load = 7 packets/s. The size of the
packets is 1024Bytes. From Fig. 7, we can conclude that
our method provides a good estimation for end-to-end delay
distribution. Note that the end-to-end delay under “high load”
looks very steep. In the simulation, the buffer size is 32
packets. When the network is in high load, some packets will
be dropped due to overflow and the buffer is full with high
probability. As a result, the queuing delay is a dominant part
of the node delay. Meanwhile, when the buffer is often full,
MAC layer is in saturation and access delay fluctuates less.
Therefore, the node delay performance becomes more stable,
and the end-to-end delay CDF becomes flat after a certain
value.

To investigate the effect of path length on end-to-end delay,
we also investigate the end-to-end delay performance of four
flows in a sparse topology with 25 nodes and each node
only has two neighbors. The four flows have different path
lengths: two shorter paths (flow2 and flow3) with 3 hops
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Fig. 8. End-to-end delay distribution for different flows on a sparse topology.
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Fig. 9. End-to-end delay distribution for different flows on random topology.

and two longer paths (flow1 and flow4) with 8 hops. The
arrival rates of flow1 and flow3 are 20 packets/s, and each
packet is 256 bits. Flow2 and flow4 generate 25 packets of
size 512 bits per second. The results are shown in Fig. 8.
Further, we observe the influence of the node density on delay
performance. We generate a topology in which nodes are not
uniformly distributed. That is, the node densities in some areas
are larger than in others. The node density of flow1 and flow2
are larger than flow3 and flow4. Flow1 and flow4 inject 20
packets of size 256 bits per second in the network while flow2
and flow3 inject 25 packets of size 512 bits per second. The
results are shown in Fig. 9.

In Fig. 8 and Fig. 9, while the solid lines are the simulation
results, dashed lines are the analytical results. Comparing the
results of flow2 and flow4 or flow1 and flow3 in Fig. 8, we
can find that the end-to-end delay grows with path length.
From the results shown in Fig. 8, the end-to-end delay of
flow4 is larger than flow1, we can conclude the higher the
packet arrival rate of the flow, the larger the end-to-end delay.
Similarly, in Fig. 9, the comparison of flow1 and flow2 or
flow3 and flow4 indicates that the higher node density results
in larger delay.

From Fig.8 and Fig. 9, we can conclude that our method
is more suitable for smaller delay. For larger delay, our
results are not precise due to the range of access delay is
large. In the sampling algorithm, P is constant, and larger
[Tsmin, Tsmax] range results in a wider range in [Ts,p, Ts,p+1].
The large interval leads to inaccurate estimation for access
delay. Though increasing P can improve the accuracy, it will
immensely slow down calculation speed and require more
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Fig. 10. The flow diagram for stochastic admission control algorithm.

memory. From the results shown in Figs. 7-9, P = 200 can
provide an acceptable estimation for most cases.

VII. STOCHASTIC ADMISSION CONTROL ALGORITHM

As an important property of wireless channel is unrelia-
bility, hard QoS guarantees described in [20] are impossible
in wireless networks. As discussed in Section I, soft QoS
guarantees require the distribution of delay which has not been
well studied in available literature. In traditional admission
control, the average delay is used as the admission control
metric. If the average end-to-end delay is smaller than Dmax,
which is the maximum delay the flow can tolerate, this flow is
admitted into the network; otherwise, it is rejected. There are
many applications in wireless networks requiring soft QoS
guarantees. To guarantee soft QoS requirements of flows in
wireless networks, a stochastic admission control algorithm
(SACA) based on our end-to-end delay results is proposed.

The soft QoS requirement in term of end-to-end delay
performance is often represented as

Pr(Tete > Dmax) ≤ ε, (25)

where Tete is the end-to-end delay of the path, Dmax is
the maximum tolerable delay, and ε is the tolerant violation
probability. According to the QoS information (Dmax and ε)
provided by the request, the source node determines whether
the current network delay can fulfill this requirement.

The flowchart of the SACA is illustrated in Fig. 10. Since
many routing protocols, such as Dynamic Source Routing
(DSR) protocol, can carry path information in route requests
and route replies, the delay parameters can be stored in these
messages. It is not necessary to define a new type of packets
for collecting delay information. When a node receives a
new flow request, it first checks whether it has the end-
to-end delay information for this flow. If there is no delay
information or the information has expired, the source node
sends a request for obtaining end-to-end delay information.
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Fig. 11. The end-to-end delay distribution of different admission control algorithms.
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Fig. 12. The throughput comparison of different AC algorithms.

If up-to-date information is available, the source node admits
the flow coming in if the end-to-end delay satisfies Eq. (25);
otherwise, rejects.

To demonstrate the advantage of SACA, we compare the
performance of the network using SACA with networks
without QoS guarantees and with the hard QoS guarantees.
When there is no admission control algorithm (NO AC), all
flow requests are admitted. The hard guarantee (hard AC)
ensures there is no packet experiences the end-to-end delay
larger than Dmax, and the soft admission control algorithm
(soft AC) guarantees the probability that the end-to-end delay
is more than Dmax is less than ε. The difference between
hard AC algorithm and SACA is that hard AC uses the delay
upper bound as the metric. In hard AC algorithm, when the
maximum delay is larger than Dmax, this flow is rejected. In
the simulation, Dmax = 0.1 and ε = 5%. We investigate four
flows imposed on the network shown in Fig. 1. The arrival rate
of each flow is 25packets/s and the packet size is 512Bytes.
The start times of flow1 (from A to E), flow2 (from C to
E), flow3 (from B to E) and flow4 (from D to E) are 1s,
500s, 1000s and 1500s, respectively. The end-to-end delay
performance is shown in Fig. 11 and the throughput of the
network is illustrated in Fig. 12. Note that “Total” and “QoS”
in Fig. 12 are the total packets and the packets satisfying the
delay requirement received by the destination, respectively.

From Fig. 11, we can find hard AC algorithm (Hard AC)
obtains better delay performance at the expense of rejecting
more flows (only 2 flows are admitted). Though when there is

TABLE III
FLOW PARAMETERS

flows start time
arrival rate
(packets/s)

packet size
(bits) QoS requirement

flow1 1s 40 256
Dmax = 0.1s,

ε = 5%

flow2 501s 50 512
Dmax = 0.2s,

ε = 5%

flow3 1001s 50 512
Dmax = 0.1s,

ε = 5%

flow4 1501s 40 256
Dmax = 0.2s,

ε = 5%

no admission control (NO AC), more flows (4 flows) are ad-
mitted, the stochastic delay requirement cannot be guaranteed.
Based on guaranteeing soft QoS requirement, SACA (Soft
AC) admits more flows than hard AC algorithm. Throughput
results shown in Fig. 12 demonstrate that hard AC can ensure
the end-to-end delay of packets is not larger than Dmax. In
“NO AC”, more packets are admitted in the network, and
more packets satisfy the delay requirement when compared to
SACA. However, after 1000s, the packets satisfying the delay
requirement account for no more than 87% of total admitted
packets. It indicates that the QoS requirement of admitted
flows is not guaranteed because more than 13% packets are
dropped due to delay unsatisfied. In our SACA, the ratio of
the packets satisfying delay requirement to the total packets
is larger than 97.5%.

To further observe the efficiency of SACA, we compare
the throughput of SACA with traditional admission control
algorithm on the sparse topology introduced in Section VI.
There are four flows in the network and the main parameters
are given in Table III. The throughput of the four flows and
the whole network are given in Figs. 13-17.

In these figures, the x-coordinates are simulation time, and
the y-coordinates are throughput of the flows. We compare
the throughput under three cases: no admission control (NO
AC), a traditional admission control algorithm uses average
end-to-end delay (Hard AC3) as the metric and SACA (Soft
AC). When the destination node receives a packet, it checks if
the packet satisfies the QoS requirement. If not, the packet is
dropped. The throughput satisfying the QoS requirements of
flow1, flow2, flow3, flow4 and the whole network are shown
in Fig. 13, Fig. 14, Fig. 15, Fig. 16 and Fig. 17, respectively.

3“Hard AC” in this simulation scenario is different from Figs. 11-12, which
represents traditional admission control algorithm.



JIAO et al.: END-TO-END DELAY DISTRIBUTION ANALYSIS FOR STOCHASTIC ADMISSION CONTROL IN MULTI-HOP WIRELESS NETWORKS 1319

500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

5

6

7

8

x 10
4

t (s)

T
hr

ou
gh

pu
t (

bi
ts

/s
)

 

 

NO AC
Hard AC
Soft AC

Fig. 13. The throughput of flow1.
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Fig. 14. The throughput of flow2.

In these figures, the solid lines are the results of NO AC, the
dash lines are Hard AC and the dotted lines are SACA. From
the figures, we can find the throughput employing our method
is obviously larger than the others. Therefore, we can conclude
that the SACA is more efficient than the traditional method
which uses average end-to-end delay as metric (Hard AC).

VIII. CONCLUSION

In this paper, we proposed an analytical model for node
delay distribution in a multi-hop wireless network and ex-
tended this work to calculate the end-to-end delay distribution
of a random path. We then developed a stochastic admission
control algorithm to provide soft QoS guarantees. To validate
the accuracy of our analytical model and the efficiency of the
proposed algorithm, we tested the estimation performance of
the proposed model in several scenarios and investigated the
performance of the algorithm at both packet-level and flow-
level. In the future, we would like to apply our results to the
joint admission control and QoS routing problem.
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