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Objectives. To evaluate the differences in prognostic values of static and dynamic PET-CT in nasopharyngeal carcinoma (NPC).
Material and Methods. Forty-five patients who had static scan were recruited. Sixteen had dynamic scan. The primary lesions were
delineated from standardized uptake value (SUV) maps from static scan and 𝐾

𝑖
maps from dynamic scan. The average follow-up

lasted for 34 months. The patients who died or those with recurrence/residual disease were considered “poor outcome”; otherwise
they were considered “good outcome.” Fisher’s exact test and ROC analysis were used to evaluate the prognostic value of various
factors. Results. Tumor volume thresholded by 40% of maximal SUV (VOLSUV40) significantly predicted treatment outcome (𝑝 =
0.024) in the whole cohort. In 16 patients with dynamic scan, all parameters by dynamic scan were insignificant in predicting the
outcome.The combination of maximal SUV, maximal𝐾

𝑖
, VOLSUV40, and VOL𝐾𝑖37 (the tumor volume thresholded by 37%maximal

𝐾
𝑖
) achieved the highest predicting accuracy for treatment outcome with sensitivity, specificity, and accuracy of 100% in these 16

patients; however this improvement compared to VOLSUV40 was insignificant. Conclusion. Tumor volume from static scan is useful
in NPC prognosis. However, the role of dynamic scanning was not justified in this small cohort.

1. Introduction

Nasopharyngeal carcinoma (NPC) is an aggressive head
and neck cancer that is common in Southern China and
South East Asia. Positron emission tomography-computed
tomography (PET-CT) using 18F-fluoro-2-deoxy-D-glucose
(FDG), namely, FDG PET-CT, provides combined anatomic
and metabolic information in one examination. Studies
have shown that PET-CT has the potential value in the
early treatment and posttreatment assessment by improving
the differentiation between residual/recurrent disease and
postchemoradiation fibrosis [1, 2] and may serve as prog-
nostic indicators especially in patients with locoregionally
advanced disease [3]. Standardized uptake value (SUV) and
the metabolic tumor volume have been demonstrated to be

useful for prognostication in NPC patients in some studies
but these findings have not been consistent [4–9].Thismay be
due to limitations of SUV-based parameters as follows; SUV
is calculated by dividing the FDG concentration of a voxel
(or a region) at a single time point by the administered FDG
activity normalized to a measure of distribution volume such
as body weight, mass, or volume. It can be affected by various
factors such as the amount of dose administered, condition
of the body such as excretion rate of the tracer and body fat
content, and the uptake time after tracer administration [10].
Also, metabolic tumor volume, usually acquired by using a
SUV value as the threshold, and the delineation of tumor
margins based on SUVmaps are influenced by the factors that
affect the accuracy of SUVmeasurement [11, 12].Moreover, as
SUV is a relative measurement, the parameters derived from

Hindawi Publishing Corporation
BioMed Research International
Volume 2015, Article ID 582614, 7 pages
http://dx.doi.org/10.1155/2015/582614

http://dx.doi.org/10.1155/2015/582614


2 BioMed Research International

it are specific to a machine and cannot be applied to different
machines.

To mitigate the shortcomings of SUV, especially to
address the single time-point and static nature of thismethod,
absolute quantitative analytic methods using dynamic PET-
CT scan have been applied for studying the pattern of
FDG metabolism in tissue [13–15]. These methodologies,
first developed by Phelps et al. [13] for studying cerebral
metabolism, have been applied to other tissues and have
been suggested to be more reliable in reflecting glucose
metabolism than the conventional method of using SUV for
quantitation [15, 16]. It is also expected that the maps of
the net influx constant of FDG from plasma into tissue (𝐾

𝑖
)

derived from dynamic PET-CT scan provide better contrast
between tumor and normal tissues than SUV and hence
lead to more accurate tumor segmentation [17]. It has been
shown that kinetic analysis using dynamic FDG PET was
helpful for diagnosis of central nervous system lymphoma
and for differentiation between high-grade glioma and CNS
lymphoma [18, 19]. Dimitrakopoulou-Strauss et al. reported
that in multiple myeloma, non-small cell lung cancer, and
soft-tissue sarcomas the combined use of the parameters by
dynamic PET scan and parameters by conventional SUV led
to higher accuracy in predicting the treatment outcome [20–
22].

We have previously studied the technical feasibility of
performing dynamic PET-CT in the evaluation of NPC and
found it feasible in characterizing the glucose metabolism of
NPC [23]. However, we have not studied the clinical utility of
dynamic scan in NPC.The purpose of the study is to evaluate
the potential differences in prognostic values of static and
dynamic FDG PET-CT scan parameters in NPC patients.

2. Material and Methods

2.1. Patients. This study was approved by The University of
Hong Kong Institutional Review Board. Newly diagnosed
patients with histologically proven nonmetastatic NPC were
recruited after awritten informed consent was obtained.NPC
patients were eligible if they met the following criteria: stage
M0 according to AJCC staging system [24], serum glucose
level < 140mg/dL before the PET-CT scan, and tumor size
> 1 cm in all dimensions to avoid significant partial volume
effect.

2.2. PET-CT Techniques. All consecutive NPC patients who
had conventional whole-body FDG PET-CT scan in our unit
and fulfilled the selection criteria betweenApril 2009 and July
2011 were recruited. Patients recruited between October 2010
and July 2011 also had dynamic PET scans. All scans were
performed on a hybrid PET-CT scanner (Discovery VCT, GE
Healthcare, NJ, USA).

CT scan of the head and neck region including both
the carotid arteries and the tumor was first performed
using the following protocol: field of view: 50 cm, pixel
size: 0.98 × 0.98 × 2.5mm, spiral CT pitch: 0.984:1, kVp:
120 kV, and gantry rotation speed: 0.5 s, without contrast
injection. Then, dynamic PET scan was performed in the
same region as the CT scan, starting simultaneously with

18F-FDG injection. 18F-FDG of 222–370MBq (5MBq/kg)
was given intravenously. The dynamic PET time sequence
comprised 6 frames of 10 seconds each, 4 × 15 seconds, 4
× 30 seconds, 7 × 3 minutes, and 5 × 5 minutes (26 time
frames in 50minutes) in 3Dmodewith the field of view being
40 cm. Attenuation correction for PET data using CT images
was performed and images were reconstructed into 256 × 256
matrix using an ordered-subset expectation maximization
iterative algorithm (14 subsets and two iterations). After
the dynamic scan and a 10-minute rest, the conventional
whole-body PET scan (static PET) was performed with these
parameters: 6 bed positions, 2.5 minutes per bed position,
70 cm × 70 cm field of view, and 3D mode.

The same scanning parameters were used for the whole-
body PET-CT scan for patients who did not have an addi-
tional dynamic PET-CT scan after intravenous administra-
tion of 18F-FDG (5MBq/kg) and a 60-minute uptake time.

2.3. Image Analysis. According to Patlak et al. [25], 𝐾
𝑖
is

obtained from a plot constructed from the time-activity
curves of FDG concentration in plasma and in the tumor, as
shown in this equation:

𝐶
𝑡 (𝑡)

𝐶
𝑝 (𝑡)
= 𝐾
𝑖

∫
𝑡

0
𝐶
𝑝 (𝜏) 𝑑𝜏

𝐶
𝑝 (𝑡)

+ 𝑉
0
, (1)

where 𝐶
𝑡
(𝑡) and 𝐶

𝑝
(𝑡) are, respectively, tumor and plasma

FDG activity at time 𝑡; 𝜏 is the integration time variable;
the slope 𝐾

𝑖
calculated from the regression is the net influx

constant; 𝑉
0
is a constant representing the initial volume of

tracer distribution in both the tissue and blood. The arterial
input function 𝐶

𝑝
(𝑡) was calculated using the method in our

previous publication [23]. For each patient with dynamic
scan, the map of 𝐾

𝑖
was calculated from the dynamic PET

images by using the tool imlook4d (free downloaded from
http://dicom-port.com/) developed by Jan Axelsson based on
Matlab 7 (Mathworks Inc., Natick, MA, USA).

The map of SUV was also calculated from the conven-
tional whole-body PET scan, according to this equation:

SUV = 𝐶 (𝑡)
𝐷/𝑊lbm

, (2)

where𝐶(𝑡) is the FDGconcentration (inMBq/kg or kBq/g) in
tissue at time 𝑡when this last frame of PET scan is performed,
𝐷 is the injected FDG dose (in MBq) at the time of injection
(𝑡 = 0), and𝑊lbm is the lean body mass.

Themaximal SUVvalue (SUVmax) andmaximal𝐾
𝑖
value

(𝐾
𝑖
max)were recorded for each primaryNPC lesion. Besides,

a series of thresholds, namely, 30%∼60% of SUVmax on
the static PET images and 𝐾

𝑖
max by dynamic PET scan,

were used to delineate the primary NPC lesions from the
normal tissues and calculate the tumor volumes as VOLSUV30
∼VOLSUV60 and VOL

𝐾𝑖30
∼VOL

𝐾𝑖60
, respectively [26, 27].

2.4. Treatment and Follow-Up. Three patients had radio-
therapy only, and all the other patients had chemoradio-
therapy. Radiotherapy was performed with 4∼6MV photon
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(Varian Medical Systems, Palo Alto, USA). The dose to
gross tumor in nasopharynx and involved neck nodes had
a range of 68∼70Gy while the dose to the neck had a
range of 60∼66Gy in 33∼35 fractions. Primary chemotherapy
was mainly concurrent cisplatin, 100mg/sqm at D1, 22, 43
of radiotherapy. Patient may have additional adjuvant or
induction chemotherapy for up to 3 cycles with cisplatin (80
or 100mg/sqm D1) and 5 FU (1000mg/sqm D1∼4 or D1–
D5, for adjuvant and induction chemotherapy, resp.). After
completion of treatment, patients were followed up every 1-
2 months in the first year and every 3–6 months from the
second year posttreatment.Nasopharyngeal scope and biopsy
were routinely performed at 10 weeks after radiotherapy.
The clinical follow-up period was 2.5∼51.4 months (mean,
34.1 months; SD, 11.2 months) for this NPC cohort. The
patients who died or had residual disease or recurrence
during the follow-up period were considered to have “poor
outcome,” and those without evidence of disease on routine
nasopharyngeal biopsy and on subsequent clinical follow-up
were considered to have “good outcome.’’

2.5. Statistical Analysis. The correlation between SUVmax
and 𝐾

𝑖
max was evaluated by using Pearson’s correlation. The

difference between SUV-derived tumor volumes (VOLSUV)
and 𝐾

𝑖
-derived tumor volumes (VOL

𝐾𝑖
) was analyzed by

using two-sample 𝑡-test and Bland-Altman analysis.
To study the prognostic value of the PET-CT parame-

ters, that is, SUVmax, 𝐾
𝑖
max, and various metabolic tumor

volumes (VOLSUV30∼VOLSUV60 and VOL
𝐾𝑖30
∼VOL

𝐾𝑖60
), the

cut-off value of each parameter was determined by receiver
operating characteristics (ROC) analysis and all patients were
then divided into two groups by this cutoff. Fisher’s exact
test was employed to compare the statistical proportions of
poor outcome or good outcome in these two subgroups.
Furthermore, multivariate ROC analysis was performed to
evaluate the value of different factors or different combina-
tions of factors in predicting the treatment outcome. The
binary logistic regression algorithm was used for different
combinations, and the predicted probability was produced
and used as a new variable. Finally this new variable was
reentered as the test variable in the ROC analysis [28].

All statistical analyses (except ROC curve comparison)
were performed using PASW Statistics 20 (IBMCorporation,
Armonk, NY).The comparison of ROC curve was performed
in MedCalc (MedCalc Software, Mariakerke, Belgium). A
two-sided 𝑝 value less than 0.05 was considered statistically
significant.

3. Results

Forty-five NPC patients, including 29 with static whole-body
PET-CT scan only and 16 patients with both the static and
dynamic PET-CT scan, were recruited. Patient demographics
and clinical details are shown in Table 1.Themean age of this
cohort was 52.5 years (SD 12.3 years, range 28.0∼79.0 years).
SUVmax ranged from 3.6 to 24.0 (mean, 9.7; SD, 5.1), and
VOLSUV40 ranged from 2.4 to 60.1 cm3 (mean, 15.2; SD, 11.3).

In the 45 cases cohort, 8 had poor outcome. By testing a
series of thresholds (30%∼60% of SUVmax), it was found that

Table 1: Patient characteristics (𝑛 = 45; 16 patients with dynamic
scan included).

Baseline characteristic
Age (years)
Range 28∼79
Median 52.5
Standard deviation 12.3

Gender
Number of females 11 (24%)
Number of males 34 (76%)

Stage information Number of patients (%)
T-stage
1 4 (9%)
2 7 (15%)
3 25 (56%)
4 9 (20%)

N-stage
0 1 (2%)
1 6 (14%)
2 27 (60%)
3 11 (24%)

VOLSUV40 was a significant predictor of treatment outcome
according to Fisher’s exact test; with a cutoff of 20 cm3,
the large tumor volume group (VOLSUV40 > 20 cm

3) had a
significantly higher proportion of patientswith poor outcome
than the small tumor volume group (50% versus 11%, 𝑝 =
0.024). SUVmax was not significant in Fisher’s exact test.

The details of patients with dynamic PET-CT scan are
shown in Table 2. There are 12 males and 4 females with a
median age of 50.0 years and a range of 31.0∼69.0 years. Of
the 16 patients, two had residual disease whilst 14 were alive
without evidence of disease at last follow-up. SUVmax ranged
from 3.9 to 24.0 (mean, 8.8; SD, 5.0); 𝐾

𝑖
max ranged from

0.031 to 0.221min−1 (mean, 0.076min−1; SD, 0.049min−1);
VOLSUV40 ranged from 5.2 to 27.5 cm3 (mean, 16.0 cm3; SD,
6.8 cm3). SUVmax and 𝐾

𝑖
max were highly correlated (𝑟 =

0.970, 𝑝 < 0.001) as shown in Figure 1. None of the
parameters from dynamic scan was significant in predicting
the treatment outcome according to Fisher’s exact test (for 16
patients with dynamic scan only).

By testing a series of thresholds (30%∼60% of 𝐾
𝑖
max),

it was found that with the threshold of 37% 𝐾
𝑖
max, the

tumor volume (VOL
𝐾𝑖37

) was not significantly different from
VOLSUV40 (𝑝 = 0.773, paired 𝑡-test). VOL𝐾𝑖37 ranged from 3.7
to 51.6 cm3 (mean, 16.7 cm3; SD, 11.6 cm3). Figure 2 shows the
results of Bland-Altman analysis of the difference between the
tumor volumes with a series of thresholds. Tumor volumes
measured using VOL

𝐾𝑖37
were closest to tumor volumes

measured using VOLSUV40 and the differences were within
the confidence interval (Figure 2(b)). As shown in Table 2,
tumor volumes by 𝐾

𝑖
maps were correlated with VOLSUV40

by SUV maps with Pearson’s correlation coefficient of 0.684,
0.689, 0.699, and 0.688 for VOL

𝐾𝑖35
, VOL

𝐾𝑖37
, VOL

𝐾𝑖40
, and

VOL
𝐾𝑖50

, respectively. With the same threshold of 40% on
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Table 2: Details of the NPC cohort with dynamic PET-CT (𝑛 = 16).

Number Age Sex SUVmax 𝐾
𝑖
max VOLSUV40 VOL

𝐾𝑖37
𝑇 𝑁 Status

1 39 M 6.2 0.052 25.7 15.8 3 3 NED
2 31 F 7.7 0.052 27.5 51.6 4 3 NED
3 38 M 13.4 0.130 14.4 15.7 2b 1 NED
4 51 M 3.9 0.039 13.7 7.4 1 2 NED
5 55 M 11.0 0.095 10.2 11.1 3 3 NED
6 34 F 6.2 0.072 9.8 11.0 4 2 NED
7 42 M 7.4 0.051 17.9 21.7 3 1 NED
8 64 M 8.9 0.069 17.5 20.2 2 2 NED
9 65 M 5.4 0.031 17.8 16.1 3 2 NED
10 69 M 6.8 0.046 16.7 24.5 1 2 NED
11 43 M 24.0 0.221 9.9 10.1 4 2 NED
12 38 F 5.5 0.051 22.0 28.6 3 3 AWD
13 61 M 14.3 0.127 6.7 3.7 3 2 NED
14 57 M 8.4 0.061 15.3 14.2 3 3 NED
15 63 M 5.0 0.038 26.4 11.3 3 3 AWD
16 50 F 6.7 0.081 5.2 3.7 3 2 NED
Notes: age (years), age at diagnosis; SUVmax, the maximum standardized uptake value;𝐾𝑖max (min−1), the maximum net influx constant of FDG from plasma
into tissue; VOLSUV40, tumor volume in cm3 calculated in SUV maps using the threshold of 40% SUVmax; VOL𝐾𝑖37, tumor volume in cm3 calculated in 𝐾𝑖
maps using the threshold of 37%𝐾𝑖max; TNM, tumor-nodemetastases stage by AJCC staging system; NED= no evidence of disease; AWD= alive with disease.
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Figure 1: Scatter plots show significant relationship by Pearson’s
correlation between SUVmax and𝐾

𝑖
max with 𝑟 = 0.964, 𝑝 < 0.001.

both 𝐾
𝑖
maps and SUV maps, it was observed that VOL

𝐾𝑖40

has a tendency to be bigger than VOLSUV40 (Figure 2(c)).
Table 3 shows the results of multivariate ROC analysis

for evaluating the static PET-CT (SUVmax, VOLSUV40) and
dynamic PET-CTparameters (𝐾

𝑖
max,VOL

𝐾𝑖37
) in classifying

the patients with poor outcome or good outcome. VOLSUV40
achieved the highest predicting accuracy (88%) among
these four parameters. The combination of SUVmax with
VOLSUV40 did not increase the predicting value, while the
combination of VOLSUV40 and VOL

𝐾𝑖37
showed a tendency

of higher AUC (area under curve in ROC analysis); however,
the difference between the AUCs of the two ROC curves
was insignificant (𝑝 = 0.832). The combination of all these

Table 3: Results of receiver operating characteristics (ROC) analysis
for studying the static PET-CT and dynamic PET-CT parameters
in classifying the patients (𝑛 = 16) with poor outcome and good
outcome.

Parameter Sen Spe Acc AUC
SUVmax 100% 79% 81% 0.857
VOLSUV40 100% 86% 88% 0.893
SUVmax & VOLSUV40 100% 86% 88% 0.893
𝐾
𝑖
max 100% 71% 75% 0.839

VOL
𝐾𝑖37

100% 43% 50% 0.679
𝐾
𝑖
max & VOL

𝐾𝑖37
100% 71% 75% 0.821

SUVmax & 𝐾
𝑖
max 100% 79% 81% 0.857

VOLSUV40 & VOL
𝐾𝑖37

100% 86% 88% 0.929
SUVmax & 𝐾

𝑖
max &

VOLSUV40 & VOL
𝐾𝑖37

100% 100% 100% 1.000

Notes: Sen, sensitivity; Spe, specificity; Acc, accuracy; AUC, area under the
ROC curve.

four parameters showed the highest accuracy (100% versus
88%) and the highest area under the ROC curve (1.000
versus 0.893) compared to VOLSUV40 alone, indicating that
this combination may predict better in treatment outcome.
However, the difference between the AUCs of the two ROC
curves was also found insignificant (𝑝 = 0.768).

4. Discussion

Our results showed that in this NPC cohort, the net influx
constant 𝐾

𝑖
max from Patlak graphical analysis was highly

correlated with SUVmax in the primary tumor. This corre-
lation echoes previous publications and has been explained
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Figure 2: Agreement between static PET-CT and dynamic PET-CTwith different thresholds in the estimation of primary tumor volumes; (a)
PET volume with the threshold of 40% SUVmax (VOLSUV40) versus PET volume with the threshold of 35% 𝐾

𝑖
max (VOL

𝐾𝑖35
), (b) VOLSUV40

versus PET volumewith the threshold of 37%𝐾
𝑖
max (VOL

𝐾𝑖37
), (c) VOLSUV40 versus PET volumewith the threshold of 40%𝐾

𝑖
max (VOL

𝐾𝑖40
),

and (d) VOLSUV40 versus PET volume with the threshold of 50%𝐾
𝑖
max (VOL

𝐾𝑖50
). The mean of the two volumes compared is plotted against

the difference, and themiddle line in the figures is themean of the differences, whereas the upper and lower lines represent the 95% confidence
intervals (mean ± 1.96 × SD).

well in the literature [29–32]. Briefly, according to the kinetic
model [25], 𝐾

𝑖
stands for the net flux of FDG that is

transported from plasma into the tissue and then metabo-
lized, while SUV is the overall FDG uptake in a voxel or
a region normalized to injected dose and body weight [10].
The significant correlation indicates that the overall FDG
uptake is mainly composed of themetabolized FDG in tissue.
However, there are some differences between SUVmax and
𝐾
𝑖
. As shown in the results of the correlation analysis in our

cohort, 94% (𝑅2 = 0.97 ∗ 0.97 = 0.94) of the SUVmax was
determined by 𝐾

𝑖
and 6% was not. This can be explained

by the following reasons: 𝐾
𝑖
reflects only the uptake rate

of FDG which is metabolized while SUV measurement also
includes the unmetabolized fraction of FDG;𝐾

𝑖
accounts for

the FDG available to the tumor cells while SUV accounts

for the overall FDG uptake including the FDG in plasma
[30].

In our study, we found that with the threshold of 40%
𝐾
𝑖
max, the metabolic volumes were systematically bigger

than the volumes measured using a threshold of 40%
SUVmax (Figure 2). This finding was in accordance with
the previous results comparing these parameters in lung
cancer and gastrointestinal cancer. In lung cancer, it was
reported that for all lesions, with the same threshold of 50%,
the volumes by the maps of glucose metabolism rate (this
parameter is calculated bymultiplying𝐾

𝑖
by a constant for the

subject) were significantly smaller than the volumes by SUV
maps [17]. In another paper comparing the metabolic tumor
volumes obtained from static PET and dynamic PET images,
generally the SUV-derived tumor volumes were bigger than
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the 𝐾
𝑖
-derived tumor volumes [33]. It was proposed that

there might be lower background intensity in 𝐾
𝑖
maps [34].

One reason for the higher background intensity in SUV
images is that SUV uptake consists not only of trapped
or metabolized FDG but also of free and nonmetabolized
FDG which exists in blood vessels or the intercellular space
and so forth. This finding is noteworthy when using the 𝐾

𝑖

maps for the calculation of metabolic tumor volumes. This
comparison between the volumes derived by𝐾

𝑖
map or SUV

map also indicates that VOL
𝐾𝑖

may have more potential in
radiotherapy planning because with 𝐾

𝑖
map the boundary

can be more clear-cut and so the delineation can be more
accurate [34].

PET-CT derived metabolic tumor volume may have an
impact on the management of patients with NPC in terms
of prognostication. It was reported that PET-derived primary
tumor volumes by a threshold of 50% SUVmax were useful
in predicting the patient outcomes with larger metabolic
tumor volumes associated with shorter overall survival [26].
Recently, the volume by a SUV value of 2.5 was also shown to
be an independent risk factor in predicting the PFS and OS
inmetastatic NPC patients by Chan et al. [35]. Our result was
generally in accordance with these reported findings and has
shown the predicting value of metabolic tumor volume given
the appropriate threshold of the metabolic PET parameter in
the prognosis of NPC patients.

To analyze the role of dynamic scan in improving the
predictive value and as an adjunct parameter, multivariate
ROC analysis based on binary regression was performed
to study the impact of the combination of these factors.
Although the combination of all four parameters, and the
combination of only VOLSUV40 and VOL

𝐾𝑖37
, tended to

achieve higher accuracy than VOLSUV40 only, a significant
difference was not achieved. In some cancer types, this
combination of parameters produces higher predicting value
in patient survival [20, 21, 36]. Dimitrakopoulou-Strauss
et al. reported that in patients with multiple myeloma the
combined use of several predictor variables, namely, SUV,
𝑘
3
, and fractal dimension (the last two were from dynamic

scan) led to the highest correct classification rate of the group
with longer survival [20], and in the patients with metastatic
soft-tissue sarcomas the combined use of mean SUV and
𝐾
1
led to the highest accuracy of the classification between

the nonresponders and responders [21]. In our study, the
improvement, albeit small, suggests that the combination
of dynamic and static PET parameters may improve the
accuracy of prognostication in NPC patients. It is possible
that the insignificant findings may be due to the statistical
error caused by the small cohort of 16 patients and the much
smaller group of only 2 patients with poor outcome. We
hence concluded that the usefulness of dynamic scan was not
proven in our study. Larger studies with longer follow-up are
suggested.

5. Conclusion

In summary, the results of this study showed that the glu-
cose metabolism parameters (𝐾

𝑖
versus SUV; VOL

𝐾𝑖
versus

VOLSUV) by dynamic and static scanning of PET-CT were

significantly correlated. Metabolic tumor volume using a
threshold of SUVmax 40% (VOLSUV40) from static scan is
useful in predicting patient outcome. However the role of
dynamic PET-CT scanning in predicting outcome was not
justified in this small NPC cohort.
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