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Abstract 

Water pollution worsens the problem of disinfection byproducts (DBPs) in drinking water 

supply. Biodegradation of wastewater organics produces soluble microbial products (SMPs), 

which can be important DBP precursors. In this laboratory study, a number of enhanced 

water treatment methods for DBP control, including enhanced coagulation, ozonation, and 

activated carbon adsorption, were evaluated for their effectiveness in treating SMP-

containing water for the DBP reduction purpose. The results show that enhanced coagulation 

with alum could remove SMPs only marginally and decrease the DBP formation potential 

(DBPFP) of the water by less than 20%. Although ozone could cause destruction of SMPs in 

water, the overall DBPFP of the water did not decrease but increased after ozonation. In 

contrast, adsorption by granular activated carbon (GAC) could remove the SMP organics 
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from water by more than 60% and reduce the DBPFP by more than 70%. It is apparent that 

enhanced coagulation and ozonation are not suitable for the removal of SMPs as DBP 

precursors from polluted water, although enhanced coagulation has been commonly used to 

reduce the DBP formation caused by natural organic matter (NOM). In comparison, activated 

carbon adsorption is shown as a more effective means to remove the SMP content from water 

and hence to control the wastewater-derived DBP problem in water supply. 

 

Key words: Disinfection byproducts (DBPs); Soluble microbial products (SMPs); Enhanced 

coagulation; Ozonation; Activated carbon adsorption 

 

1. Introduction 

Disinfection is a vital step in water treatment to eliminate pathogens and prevent the 

transmission of waterborne diseases. However, use of chemical disinfectants such as chlorine 

often results in the formation of disinfection byproducts (DBPs) in water with a potential 

health risk. Trihalomethanes (THMs) and haloacetic acids (HAAs) are the two most prevalent 

groups of organic DBPs formed during chlorination [1]. Because of an increasing health 

concern, the U.S. Environmental Protection Agency (EPA) has set more stringent regulatory 

limits in recent years for four THM and five HAA compounds in drinking water [2]. To 

comply with the regulation, a great deal of effort has been made to improve the water 

treatment process and hence to lower the DBP level in the finished water. 

Natural organic matter (NOM) in freshwater supply has been considered as the major 

precursor of DBPs [3,4]. However, the DBP problem can also be attributed to water pollution 

caused by human activities. Water pollution has become one of the most serious global 

environmental problems, especially in developing countries that are experiencing rapid 

population and economic growth. Many surface water bodies, such as rivers and lakes, are 
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used for both wastewater disposal and fresh water withdrawal for municipal use. Researchers 

have found that organic pollutants in wastewater could become DBP precursors in the 

receiving water, leading to more DBP formation in water supply [5-7]. 

Soluble microbial products (SMPs) are organic compounds that are released by 

microorganisms into water during substrate metabolism and microbial decay [8]. SMPs are 

the majority of effluent organic matter (EfOM) in biologically treated wastewater [9-11]. 

Meanwhile, organics in the less treated wastewater effluent would also undergo 

biodegradation in the receiving water, and SMPs are the final products of the natural 

biodegradation process [12,13]. Thus, wastewater-based SMPs may become important DBP 

precursors in natural water that would worsen the DBP problem in water supply [14-16]. Our 

previous study indicates that SMPs have different properties from NOM as DBP precursors 

[13]. SMPs contain more biomolecules, e.g. proteins and polysaccharides, and less aromatic 

structures, in comparison to NOM that is dominated by humic substances. Moreover, and 

SMPs consist of a large fraction of small molecules lower than 1k Da. Although SMPs are 

less reactive than NOM with chlorine disinfectants, they can form more harmful DBPs such 

as N-containing DBPs. However, there are few studies focusing on the removal of SMPs in 

water treatment for the DBP control purpose. Granular activated carbon adsorption has been 

considered to be a promising method for organic removal [8]. Certain SMP molecules could 

be biologically degraded, although a long acclimation time and a long biodegradation period 

are required [17]. It was also reported more than 50% of SMPs could be removed or retained 

by the treatment with a membrane bioreactor [18]. However, these experimental studies did 

not evaluate the effectiveness of the treatment on reduction of DBP formation potentials in 

relation to the SMP removal. 

To address the wastewater-derived DBP issue for polluted water resources, there is a need 

to evaluate the effectiveness of common DBP reduction technologies for SMP removal and 
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DBP reduction. The present study was designed to focus on SMPs as a group of DBP 

precursors in polluted surface waters. SMPs were produced purposely by organic 

biodegradation to form a "pure SMP solution" for the experimental study. Laboratory tests 

were conducted to treat the SMP water using the common DBP control processes, including 

enhanced coagulation, ozonation, and activated carbon adsorption. The efficiency of each 

method for SMP removal was determined, and the related change in DBP formation potential 

of the water after treatment was also evaluated. 

 

2. Materials and methods 

2.1 SMP solutions 

Biological organic degradation was conducted in batch reactors to produce SMPs in water. 

Glucose was used as the main substrate that can be completely degraded, leaving only SMPs 

as soluble organics in the solution. The biodegradation experiments were carried out in 10-L 

bioreactors placed in a temperature-controlled biochemical oxygen demand (BOD) incubator 

at 20 °C (Velp Scientifica). Glucose (Unichem) was dissolved in Milli-Q water (Millipore) to 

have a dissolved organic carbon (DOC) concentration of about 200 mg L-1. Seed biomass was 

activated sludge collected from a domestic sewage treatment works (Stanley STW) in Hong 

Kong. The seed sludge was dosed into the bioreactors as the seed biomass at a suspended 

solid (SS) concentration of 10 mg L-1. NH4Cl, FeCl3, CaCl2, and MgSO4 were added as 

nutrients according to the guidelines for running the BOD tests [19]. The water pH was 

maintained at around 7 with a phosphate buffer solution consisting of 8.5 mg L-1 KH2PO4, 

33.4 mg L-1 Na2HPO4·7H2O, and 21.7 mg L-1 K2HPO4. During the biodegradation, the 

solution in the bioreactors was aerated by an air pump at an air flow rate of 4 L min-1 to 

provide oxygen. After incubation for 5 d, the suspension was filtered through 0.45 µm mixed 

cellulose esters membranes (Millipore) to remove the sludge and all suspended solids. It was 
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found that glucose could be completely degraded in the bioreactors after no more than 3 days, 

and the organic substances dissolved in the filtrate were SMPs. The SMP solutions had a 

DOC of around 20 mg L-1, which were used as the water samples for the subsequent studies 

on SMP removal and DBP formation potentials (DBPFPs).  

 

2.2 Enhanced coagulation 

 Standard jar tests were conducted to determine the efficiency of SMP removal by 

enhanced coagulation. For each jar test, the SMP solution was placed into 6 beakers (200 mL 

each) that were situated on a jar test apparatus (ZR4-6, Zhongrun). Alum (Al2(SO4)3∙18H2O, 

Riedel-de Haen) was added as the coagulant into the SMP solutions at doses of 0, 20, 40, 60, 

80, and 100 mg L-1. The doses were chosen according to the enhanced coagulation guidance 

by U.S. EPA [20]. Immediately after dosing of the coagulant, pH of the water was adjusted to 

6.5 with 1 N NaHCO3 (BDH) and 0.1 N Na2CO3 (BDH) solutions. The jar test procedure 

consisted of rapid mixing at 200 rpm for 2 min, slow mixing at 20 rpm for 25 min, followed 

by sedimentation for 20 min. After the jar test coagulation and sedimentation, the 

supernatants were collected and filtered, and the solutions were then analyzed for the DOC 

concentration and the UV absorbance at 254 nm (UV254) and tested for the DBPFP values. 

 

2.3 Ozonation 

Ozone was produced by an oxygen-fed ozone generator (Enaly) at an oxygen supply rate of 1 

L min-1. The ozone stock solution was obtained by aeration for 3 min to dissolve ozone into 

ultrapure water. The water was prior purged with N2 gas for 2 min and chilled to 4 °C to 

increase the ozone solubility. The ozone stock solution was then dissolved into ultrapure 

water to have a series of ozone concentrations of 14, 10, 6, 2, and 1 mg L-1. The ozone 

solutions were then mixed with the SMP solutions at a ratio of 1:1 (v:v) to result in final 
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ozone dosing concentrations of 7, 5, 3, 1, and 0.5 mg L-1. The doses were chosen according to 

Alternative Disinfectants and Oxidants Guidance Manual by U.S. EPA for DBP precursor 

control [21]. The mixtures were sealed and left overnight in dark for reaction. After the 

ozonation overnight, the ozone concentration in water was measured and no residual ozone 

was detected. The ozonated SMP solutions were filtered and then analyzed for the organic 

contents and tested for DBPFPs. 

The ozone concentration in a solution was determined following the ultraviolet adsorption 

method. The solution with ozone was measured by a UV-visible spectrophotometer (UV/VIS 

Lambda 25, Perkin Elmer) with a 1-cm cuvette cell for its UV absorbance at 258 nm (UV258). 

The ozone concentration (mg L-1) in water was calculated from its linear relationship with 

UV258 using )480002950/(2583 ×=UVO  [22]. 

 

2.4 Activated carbon adsorption 

Adsorption experiments were conducted using granular activated carbon (GAC) for the 

removal of SMPs and related DBPFPs. Before use, the GAC (Merck) was washed with 

ultrapure water for several times to remove impurities and then dried completely at 105 °C. 

The batch adsorption isotherm experiments were performed following the standard 

procedures [23]. In brief, for an adsorption test, the SMP solution was placed into a series of 

250-mL flasks (100 mL each), and GAC was added into the flasks at different doses, i.e. 0.05, 

0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, and 25.6 g L-1. The similar dosage range of activated 

carbon has been used in other studies for treatment of polluted source water [24-26]. The 

solution pH was controlled at around 7 with the phosphate buffer during the adsorption tests. 

The flasks were sealed and placed on a shaker (S150, Stuart) at 25 °C with a rotation speed of 

100 rpm, and all batch adsorption tests lasted for 12 hr. Preliminary tests showed that the 

SMP organic adsorption by GAC could reach equilibrium within 6 hr. After the GAC 
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adsorption, the SMP solution from each flask was filtered, followed by organic analysis and 

the DBPFP test.  

The amount of SMPs adsorbed by the unit amount of GAC, Qe, can be calculated by  

W
VCCQ eo

e
)( −

=         (1)  

where Co and Ce are the initial and final DOC concentrations in the SMP solution, 

respectively, V is the volume of solution (100 mL), and W is the weight of GAC dosed for 

adsorption. 

The GAC adsorption of main SMP components, including polysaccharides (PSs), proteins 

(PNs), and humic-like substances (HSs), were also investigated. A higher initial DOC 

concentration (1000 mg L-1) of feeding glucose solution was used for the high detection 

limits (2 mg L-1) of these SMP components. The GAC doses were 8, 16, 32, 64, 128, and 256 

g L-1. The polysaccharide concentration was determined according to the phenol-sulfuric acid 

method using glucose as the standard [27], and the protein and humic substance contents 

were analyzed by a UV/VIS spectrophotometer (UV/VIS Lambda 25, Perkin Elmer) 

following the modified Lowry method using bovine serum albumin (Sigma) and humic acid 

(Fluka) as the standards, respectively [27].  

The effects of the solution pH and the particle size of GAC on the SMP adsorption result 

were further characterized. The pH values tested included 3, 5, 7, 9, and 11, which were 

adjusted with either HCl (Sigma) or NaOH (BDH) solutions, while the same GAC dose of 

3.2 g L-1 was applied for adsorption. No obvious pH change was found after the adsorption 

tests. For the GAC size effect, the following five different size ranges were tested: >2.0, 1.2-

2.0, 0.4-1.2, 0.2-0.4, and <0.2 mm. GAC was separated into the different size ranges by a 

series of sieves. The specific surface area of activated carbon granules was determined 

following the Brunauer-Emmett-Teller (BET) method using an adsorption analyzer (Flow 
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Sorb II-2300, Micromeritics). The activated carbon dose used for adsorption was also at 3.2 g 

L-1, while the pH was controlled at around 7. 

 

2.5 Determination of the DBPFP 

DBPFP tests were conducted to evaluate the quantity and reactivity of the organics as 

DBP precursors in the water samples. The DBP formation tests were carried out by 

chlorinating the filtered water samples in accordance with the Standard Methods [28]. For 

each DBPFP test, a 100-mL water sample was chlorinated with NaOCl (Unichem), and the 

resulting solution was incubated in dark for 7 days at pH 7.0±0.2 with a 0.5 N phosphate 

buffer. To ensure the presence of free chlorine residual after the incubation, chlorine demand 

tests were conducted, i.e., the water samples were dosed with 100 mg L-1 Cl2, incubated for 

12 h, and the amount of free chlorine residual was measured. The NaOCl dose for the DBPFP 

test that would result in a free chlorine residual of between 3 and 5 mg L-1 was then 

determined. The actual free chlorine residual in the chlorinated water after 7 d of incubation 

was also measured, and only the samples that had a residual chlorine concentration ranging 3-

5 mg L-1 were used for DBP determination. Immediately after the incubation, excessive 

chlorine in the water samples was quenched with NH4Cl (BDH), and the DBP compounds 

formed in the chlorinated water were extracted. 

The water samples were analyzed for the following main groups of DBPs: THMs and 

HAAs (the most predominant and commonly regulated DBP groups), trihaloacetaldehydes 

(the third largest group of organic DBPs in chlorinated water), halopropanones (commonly 

detected in chlorinated water after the previous three groups), and nitrogenous DBPs (N-

DBPs) including haloacetonitriles and trihalonitromethanes (at lower concentrations but 

imposing a higher health risk). EPA Method 551.1 was adopted for liquid-liquid extraction 

and the subsequent chemical analysis for THMs, trihaloacetaldehydes, halopropanones, and 
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N-DBPs [29]. Methyl tert-butyl ether (MTBE, BDH) was used as the solvent for the liquid-

liquid extraction. For HAA measurement, EPA Method 552.3 was used [30]. HAAs in water 

were extracted by liquid-liquid extraction with MTBE. Derivatization was then performed on 

the extract by adding acidic methanol at a 1:1 (v/v) ratio. 

The DBP species in the extracts were analyzed using an HP 6890 gas chromatograph (GC) 

coupled with an HP electron capture detector (ECD) (Agilent). The GC system was equipped 

with a DB-35MS capillary column (Agilent) having a configuration of 30 m × 0.32 mm and a 

film thickness of 0.25 µm. An HP 6890 Series automatic liquid sampler was used for the 

sample injection, and an HP GC ChemStation was used for data processing. More details 

about the sample extraction procedures and GC analysis conditions can be found in previous 

studies [13,31]. 

 

2.6 Analytical methods 

The DOC and UV254 of the organic content were measured for each water sample after 

filtration. UV254 indicates the UV absorbance at 254 nm of the organics in a water sample 

that is believed to be closely related to the DBPFP of the water [1]. A UV-visible 

spectrophotometer (UV/VIS Lambda 25, Perkin Elmer) with a 1-cm cuvette cell was used to 

determine the UV254. The DOC was measured by a total organic carbon (TOC) analyzer 

(IL550, Lachat) based on the catalytic combustion-infrared method. The specific UV 

absorbance (SUVA) of the organic matter in water was calculated from the UV254 value 

divided by the DOC concentration, i.e. UV254/DOC. Similarly, the DBPFP yield of the 

organic matter in water was determined from the DBPFP of the water sample divided by the 

DOC value, i.e. DBPFP/DOC. 

 

2.7 Quality assurance (QA) & quality control (QC) 
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The SMP solutions were produced by organic degradation under the same incubation 

conditions as described in Section 2.1. The resulting SMP solutions for different tests had 

similar DOC, UV254, and DBPFP values, indicting the reproducibility of the biodegradation 

incubation and SMP production. All of the experiments and tests were repeated for at least 

three times, and the average results were reported. For measurement of DOC and UV254, the 

sample was measured in triplicate to ensure the accuracy of the results. For DBP analysis by 

the GC, a calibration curve was used for each batch of samples to ensure the reliability and 

accuracy of the DBP quantification. One procedure blank was also placed with each batch of 

samples to verify the background level of the GC detection. An internal standard, 1,2,3-

trichloropropane (Sigma), was also used to check the stability of the GC measurement. Data 

were analyzed statistically using SPSS 18.0 for Windows, and data comparison was made 

using two-independent t-test. 

 

3. Results and discussion 

3.1 SMP solutions 

SMP-containing solutions were prepared from organic biodegradation for the experiments on 

enhanced coagulation, ozonation, and activated carbon adsorption. The model SMP solutions 

had a DOC concentration of 21±5 mg L-1, with a UV254 value of 4.3±0.9 m-1 and SUVA of 

0.21±0.02 L mg-1 m-1 (Table 1). Chlorination of the SMP solutions resulted in DBP formation 

in water, and the DBPs detected included chloroform (CF) for THMs, dichloroacetic acid 

(DCAA) and trichloroacetic acid (TCAA) for HAAs, chloral hydrate (CH) for 

trihaloacetaldehydes, trichloropropanone (TCP) for halopropanones, dichloroacetonitrile 

(DCAN) for haloacetonitriles, and trichloronitromethane (TCNM) for trihalonitromethanes. 

The total DBPFP of the SMP solutions was 1036±41 µg L-1, and the DBPFP yield of the 

SMPs in water was 51±14 µg mg-1-DOC 1 (Table 1). Chloroform was the most abundant 
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DBP species formed, followed by DCAA, TCAA, and CH, while TCP, DCAN, and TCNM 

were found at trace levels. 

 

3.2 Enhanced coagulation 

Alum was dosed into the SMP water from 20 to 100 mg L-1 for enhanced coagulation. At 

the elevated alum doses, floc formation during the jar test followed by sedimentation was 

well observed. Enhanced coagulation at the alum dose of 100 mg L-1 could significantly 

(p<0.05) reduce the UV254 of the SMP solution from the initial value of 4.6 to 3.6 m-1. DOC 

concentration also showed significant (p<0.05) decrease from 21 to 18 mg L-1 after the 

enhanced coagulation and sedimentation (Fig. 1(a)). The SUVA value decreased only slightly 

from 0.22 to 0.20 L mg-1 m-1 at the alum dose of 100 mg L-1. 

Enhanced chemical coagulation could result in certain reductions of the DBPFPs of the 

SMP solutions, as the DBPFP value (841 µg L-1) of the treated water was significantly lower 

(p<0.05) than the original DBPFP of the SMP water (1053 µg L-1). However, a 20% DBPFP 

reduction may not be sufficient for the DBP control purpose, and the DBPFP yield decreased 

slightly from 49 to 46 µg mg-1-DOC (Fig. 1(b)). More specifically, the CF and CH formation 

potentials decreased from the initial values of 282 and 325 µg L-1 to 242 and 297 µg L-1, 

respectively (Fig. 1(c)). A higher level of reduction in HAA formation was observed, as the 

DCAA and TCAA formation potentials decreased from 285 and 155 µg L-1 to 218 and 79 µg 

L-1, respectively. Chemical coagulation is believed to be more effective for removing more 

hydrophobic substances [32]. Compared to THM precursors, HAA precursors are supposed 

to be more hydrophobic [4], which would therefore be removed more effectively by enhanced 

coagulation. However, generally speaking, enhanced coagulation does not appear to be an 

effective means to remove wastewater organic-derived SMPs as DBP precursors from water. 
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Enhanced coagulation has been suggested and used as a practical and effective method 

for NOM removal and DBP control in water supply [33]. Chang et al. found that an alum 

dose of 20 mg L-1 could reduce the NOM content by 25%, the THMFP by 69%, and the 

HAAFP by 69%, and as the alum dose increased to 100 mg L-1, the NOM removal increased 

to 66% [34]. Freese et al. also reported reductions of up to 50% for THMFP and between 40 

and 70% for the organic carbon and color using enhanced coagulation [35]. Coagulation is 

more effective and selective in removing hydrophobic and/or large organic compounds than 

hydrophilic and/or small organic chemicals [33,36,37]. Compared to NOM, SMPs are mainly 

composed of small and hydrophilic molecules [11,16,38]. Thus, as shown by the alum 

coagulation results, the effect of enhanced coagulation on SMP removal is largely limited. 

While enhanced coagulation is effective to remove NOM for DBP control, it is apparent that 

chemical coagulation is not efficient for the removal of SMP-based DBP precursors from 

polluted water. 

 

3.3 Ozonation 

For the ozone doses applied into the SMP water, from 0.5 to 7.0 mg L-1 (0.03 to 0.43 mg-

O3/mg-DOC), the resulted DOC reduction was not significant (p<0.05). However, the UV254 

value was reduced significantly (p<0.05) from 3.3 to 0.8 m-1 at a high ozone dose (Fig. 2(a)). 

Although ozonation could not mineralize SMP substances, it might lead to the destruction of 

organic molecules, resulting in lower UV254 and SUVA values. However, despite of the 

reduction in UV absorbance, the overall DBPFP of the SMP solutions did not decrease but 

increased significantly (p<0.05) from 1035 to 1252 µg L-1 after ozonation. The DBPFP yield 

of the ozonated SMPs also increased accordingly (Fig. 2(b)). More specifically, the CF and 

CH formation potentials increased considerably after ozonation, as the average values 

increased from 313 to 375 µg L-1 for CF and from 335 to 577 µg L-1 for CH (Fig. 2(c)). The 



13 
 

nitrogenous DBP, TCNM, also increased from 1 to 11 µg L-1. The HAA formation potentials 

however became lower after ozonation, as DCAA and TCAA decreased from 228 and 157 µg 

L-1 to 178 and 110 µg L-1, respectively. 

Ozone was expected to destruct organic substances, which would lead a shift of the 

organics to smaller and more hydrophilic molecules or a change of the organics from a 

polyaromatic nature to a more polysaccharidal and proteinaecous nature [39]. The resulting 

functional groups after ozonation, such as carboxyl and hydroxyl, can be more reactive in 

chlorination to give rise to more CF and CH formations [40,41]. However, the destruction of 

aromatic structures might lead to a decrease in HAA formation. Nonetheless, the increase in 

other DBP species, especially CH, exceeded the reduction of HAA formation. For NOM, 

there were also reports that organic removal could not be achieved by ozonation at the ozone 

doses between 0.5 and 1.5 mg mg-1 DOC [42]. Bekboleta et al. found that ozone did not 

decrease but increased the THMFPs of the NOM-containing water from 44.2 to 45.6 μg mg-1 

C, likely due to the formation of more reactive sites on NOM in forming THMs upon 

chlorination [39]. Thus, it can be concluded that ozonation alone is not a proper method to 

remove SMPs and other organics for DBP control in water treatment. 

 

3.4 Activated carbon adsorption 

Adsorption by activated carbon was shown to be highly efficient to remove both DOC 

and UV254 from the SMP water. At a GAC dosing content of 25.6 g L-1, DOC was reduced 

from 26 to 9 mg L-1 (Fig. 3(a)). As a result of SMP removal by GAC adsorption, the DBPFP 

of the SMP solutions decreased significantly (p<0.05). For the four main DBP species, GAC 

at a dosage of 25.6 g L-1 decreased the CF formation potential from 335 to 106 µg L-1, DCAA 

from 242 to a trace level of 16 µg L-1, TCAA from 201 to 92 µg L-1, and CH from 204 to 75 
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µg L-1 (Fig. 3(c)). The highest reduction was achieved for DCAA in comparison to other 

DBPs, indicating a preferential removal of DCAA precursors by GAC adsorption. 

Activated carbon was highly capable of removing SMPs from water and hence reducing 

its DBP formation during chlorination (Fig. 3(b)). The total DBPFP of the SMP solution was 

reduced from 988 to 294 µg L-1 by GAC adsorption at a dose of 25.6 g L-1. The DBPFP yield 

also decreased as the GAC dose increased (Fig. 3(b)). Other research has indicated that 

activated carbon preferentially adsorbs nonpolar organic compounds that are considered to be 

typical precursors of THMs and HAAs [3]. The present results suggest that GAC would 

adsorb preferentially the SMPs with a high DBPFP yield, leaving the SMPs in the solutions 

with a lower DBP formation reactivity. The linear adsorption isotherms for DOC and DBPFP 

of SMP solutions also indicated the efficient organic removal by activated carbon (Fig. 4(a) 

& (b)). 

GAC has been reported to be highly effective to remove NOM and related DBP formation 

potentials in water [34,43,44]. Kristiana et al. reported that GAC could remove NOM by 70% 

and its DBP formation by 80-95% [43]. Another study on NOM found that GAC dosed at 2.4 

g L-1 could reduce the DOC, THMFP, and HAAFP of the water by 96%, 92%, and 96%, 

respectively [34]. Although the removal of SMPs by GAC appeared to be less efficient than 

that reported for NOM, the present study shows that GAC adsorption is an effective method 

for decreasing SMP-based DBP formation in water. 

The GAC adsorption of the three main SMP components, including polysaccharides, 

proteins, and humic-like substances, were also specified (Fig. 5). The raw SMP solution had a 

concentrated DOC of 123 mg L-1 with 36.2 mg L-1 polysaccharides, 4.9 mg L-1 proteins, and 

12.6 mg L-1 humic-like substances. After GAC adsorption at a high dose of 256 g L-1, the 

concentrations decreased to 12.6 mg L-1 for polysaccharides, 1.8 mg L-1 for proteins, and 5.1 

mg L-1 for humic-like substances (Fig. 5(a)). GAC displayed a greater adsorption capability 
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for humic-like substances than for polysaccharides and proteins as shown by their adsorption 

isotherms (Fig. 5(b)). Adsorption by GAC is more effective for the removal of humic-like 

substances that are considered as the predominant DBP precursors in water. The lab result is 

consistent with the finding of other studies on activated carbon adsorption for the removal of 

typical DBP precursors such as NOM [3].  

In general, activated carbon adsorption is shown to be much more effective than enhanced 

coagulation and ozonation for removing SMPs from water. SMPs are known to contain more 

biomolecules and less aromatic structures compared to NOM, with a large fraction of small 

molecules lower than 1k Da [13]. As discussed previously, enhanced coagulation is not an 

effective means for the removal of SMPs from water because of the small size and 

hydrophilic nature of SMP molecules. In comparison, GAC is supposed to be more efficient 

to remove small SMP molecules by adsorption, Although activated carbon prefers to adsorb 

humic-type materials, it can also perform well in the adsorption of hydrophilic and small 

organic molecules [34], leading to a much reduced DBPFP of the water as observed in the 

present study. 

 The efficiency of SMP removal by GAC adsorption would be affected by not only the 

SMP properties but also other factors, such as the particle size of GAC and pH of the solution 

[45,46]. In this study, the effects of pH and GAC size on SMP adsorption were evaluated at a 

GAC dose of 3.2 g L-1. When the initial pH of the SMP solutions changed from 3 to 11, the 

resulting DOC after GAC adsorption tests decreased slightly, while the UV254 value showed 

little change (Table 2). It is apparent that the GAC adsorption of SMP-based DBP precursors 

is not sensitive to the change in solution pH. In comparison, when the size of GAC became 

smaller, the removals of both DOC and UV254 by adsorption increased considerably (Table 2). 

Hence, a smaller GAC size is more favorable to the adsorption of SMPs. The final DBPFP of 

the SMP solution after the adsorption by smaller GAC (< 0.2 mm) was 348 µg L-1, which was 
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much lower than that of 477 µg L-1 after the adsorption by larger GAC (>2.0 mm). This may 

be explained by the different specific surface area of GAC of different size groups. It is 

known that an increase in specific surface area benefits adsorption [47]. The change of the 

specific surface area of GAC with the granule size was determined during the study. It was 

found that as the GAC size decreased from >2.0 to <0.2 mm, its specific surface area 

increased from 762.2 to 871.5 m2 g-1. Such an increase of the specific surface area apparently 

contributed to the additional SMP removal by the adsorption of smaller GAC in comparison 

to the test by larger GAC. 

 

4. Conclusions 

• SMPs resulted from biological organic degradation can be important DBP precursors in 

water. Enhanced coagulation with alum could reduce DOC and UV254 of the SMP 

solution only marginally, and the reduction in DBP formation by enhanced coagulation 

was less than 20%. Although ozone could cause destruction of SMPs in water and reduce 

its UV absorbance, the overall DBPFP of the SMP solution would not decrease but 

increase after ozonation. Upon ozonation of the SMPs, more active sites for chlorination 

were apparently formed, leading to more formation of THMs and CH. Thus, both 

enhanced coagulation and ozonation are not suitable for removing SMPs from polluted 

water for the DBP control purpose.  

• Adsorption by activated carbon can effectively remove both the SMP organics and UV 

absorbance, with the respective removal efficiencies of 64% and 59%. The DBP 

formation potential of the SMP water can be reduced by more than 70% after GAC 

adsorption. While GAC is highly efficient for the removal of larger and humic-like 

molecules, it is also effective for the removal of smaller and hydrophilic molecules from 

water. Hence, activated carbon adsorption is shown as an effective treatment method to 
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remove SMPs for DBP reduction in water supply. Nonetheless, more effective treatment 

technologies still need to be developed for the control of wastewater-derived DBP 

problems in polluted water supplies. 
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Figure captions: 

 

Fig. 1. Treatment results for the SMP water after enhanced coagulation and sedimentation as a 

function of the alum dosage: (a) DOC and UV254; (b) overall DBPFP sum and DBPFP 

yield; (c) the formation potentials of different DBP species. 

Fig. 2. Treatment results of the SMP water after ozonation as a function of the ozone dosage: (a) 

DOC and UV254; (b) overall DBPFP sum and DBPFP yield; (c) the formation potentials 

of different DBP species. 

Fig. 3. Treatment results of the SMP water after GAC adsorption as a function of the GAC 

dosage: (a) DOC and UV254; (b) overall DBPFP sum and DBPFP yield; (c) the formation 

potentials of different DBP species. 

Fig. 4. Adsorption isotherms for (a) DOC and (b) DBPFP of the SMP solution by GAC 

adsorption. 

Fig. 5. GAC adsorption of main SMP components (polysaccharides, proteins and humic-like 

substances): (a) changes of the equilibrium concentrations after adsorption as a function 

of the GAC dosage; (b) adsorption isotherms for the SMP components by GAC 

adsorption. 
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Table 1. Characteristics of the model SMP water prepared for the DBP control tests by 
enhanced coagulation, ozonation and activated carbon adsorption. 
 

 Coagulation Ozonation Adsorption Mean 

DOC (mg L-1) 21 16 26 21 

UV254 (m-1) 4.6 3.3 4.9 4.3 

SUVA (L mg-1 m-1) 0.22 0.20 0.19 0.21 

DBPFP 
(µg L-1) 

CF 282 340 335 319 

DCAA 285 228 242 252 

TCAA 155 157 201 171 

CH 325 335 204 288 

TCP 2 2 3 3 

DCAN 1 1 1 1 

TCNM 2 2 3 2 

DBPFP sum (µg L-1) 1053 1065 990 1036 

DBPFP yield (µg mg-1-DOC) 51 66 38 52 
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Table 2. Effects of the solution pH and the GAC particle size on the treatment results of the 
SMP water by GAC adsorption (GAC dose = 3.2 g L-1, and results are presented as the 
mean±standard derivation of three tests). 
 

 pH 

3 5 7 9 11 

DOC (mg L-1) 14±2 13±2 13±1 13±1 12±2 

UV254 (m-1) 3.1±0.1 3.3±0.1 3.2±0.1 3.2±0.2 3.5±0.1 

DBPFP (µg L-1) 420±63 418±8 454±15 397±41 434±38 

 GAC size (mm) 

>2.0 1.2-2.0 0.4-1.2 0.2-0.4 <0.2 

DOC (mg L-1) 16±1 16±1 13±2 10±1 8±1 

UV254 (m-1) 3.4±0.2 3.6±0.2 2.7±0.1 2.8±0.1 2.2±0.1 

DBPFP (µg L-1) 477±21 465±39 414±22 385±13 348±35 

 

 

 



26 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 1. Treatment results for the SMP water after enhanced coagulation and sedimentation as a 
function of the alum dosage: (a) DOC and UV254; (b) overall DBPFP sum and DBPFP yield; (c) 

the formation potentials of different DBP species. 
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Fig. 2. Treatment results of the SMP water after ozonation as a function of the ozone dosage: (a) 
DOC and UV254; (b) overall DBPFP sum and DBPFP yield; (c) the formation potentials of 

different DBP species.
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Fig. 3. Treatment results of the SMP water after GAC adsorption as a function of the GAC 
dosage: (a) DOC and UV254; (b) overall DBPFP sum and DBPFP yield; (c) the formation 

potentials of different DBP species. 
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Fig. 4. Adsorption isotherms for (a) DOC and (b) DBPFP of the SMP solution by GAC 
adsorption. 
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Fig. 5. GAC adsorption of main SMP components (polysaccharides, proteins and humic-like 
substances): (a) changes of the equilibrium concentrations after adsorption as a function of the 

GAC dosage; (b) adsorption isotherms for the SMP components by GAC adsorption. 
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