
Title SDB: A Secure Query Processing System with Data
Interoperability

Author(s) He, Z; Wong, WK; Kao, BCM; Cheung, DWL; Li, R; Yiu, SM; Lo, E

Citation

Proceedings of the 41st International Conference on Very Large
Data Bases, Kohala Coast, Hawaii, 31 August-4th September
2015. In Proceedings of the VLDB Endowment, 2015, v. 8 n. 12, p.
1876-1887

Issued Date 2015

URL http://hdl.handle.net/10722/215525

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38078119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


SDB: A Secure Query Processing System with Data
Interoperability

Zhian He† Wai Kit Wong* Ben Kao§ David Wai Lok Cheung§
Rongbin Li§ Siu Ming Yiu§ Eric Lo†

†Department of Computing, The Hong Kong Polytechnic University
*Department of Computing, Hang Seng Management College
§Department of Computer Science, The University of Hong Kong

{cszahe, ericlo}@comp.polyu.edu.hk, wongwk@hsmc.edu.hk, {kao, dcheung, rbli, smyiu}@cs.hku.hk

ABSTRACT
We address security issues in a cloud database system which em-
ploys the DBaaS model — a data owner (DO) exports data to a
cloud database service provider (SP). To provide data security, sen-
sitive data is encrypted by the DO before it is uploaded to the SP.
Compared to existing secure query processing systems like CryptDB
[7] and MONOMI [8], in which data operations (e.g., compari-
son or addition) are supported by specialized encryption schemes,
our demo system, SDB, is implemented based on a set of data-
interoperable secure operators, i.e., the output of an operator can
be used as input of another operator. As a result, SDB can sup-
port a wide range of complex queries (e.g., all TPC-H queries)
efficiently. In this demonstration, we show how our SDB proto-
type supports secure query processing on complex workload like
TPC-H. We also demonstrate how our system protects sensitive in-
formation from malicious attackers.

1. INTRODUCTION
Advances in cloud computing has recently led to much research

works on the technological development of cloud database sys-
tems that deploy the Database-as-a-service model (DBaaS). Com-
mercial cloud database services, such as Amazon’s RDS1 and Mi-
crosoft’s SQL Azure2, are also available. Under the DBaaS model,
a data owner (DO) uploads its database to a service provider (SP),
which hosts high-performance machines and sophisticated database
software to process queries on behalf of the DO. The SP thus pro-
vides storage, computation and administration services. There are
numerous advantages of outsourcing database services, such as highly
scalable and elastic computation to handle bursty workloads. Also,
with multi-tenancy, cloud databases can greatly reduce the total
cost of ownership.

1http://aws.amazon.com/rds/
2https://sql.azure.com/

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

An important issue of cloud database applications is data secu-
rity. To protect sensitive data, the plain values of data should not
be revealed even to the SP [5]. The common practice is to encrypt
sensitive data before it is uploaded to the SP. The SP thus provides
a reliable repository with storage and administration services (such
as backup and recovery). To process queries, the encrypted data
has to be shipped back to the DO, which has to process the sensi-
tive data by itself. The powerful computation services given by the
SP is mostly lost.

In order to leverage the computation resources of the SP in query
processing, a few secure query processing systems, like CryptDB [7]
and MONOMI [8], have been developed. A weakness of these sys-
tems is that each data operation (e.g., comparison or addition) is
supported by a specialized encryption scheme. These schemes are
generally not data interoperable, i.e., the output of an operator can-
not be used as input of another because different operators employ
different encryption methods. As a result, existing approaches pro-
vide limited native supports to complex queries that involve mul-
tiple types of operators. For instance, CryptDB can only support
4 out of 22 TPC-H queries without significantly involving the DO
or extensive precomputation in query processing. Trusted DB [3]
and Cipherbase [2] take a hardware approach to provide data se-
curity. Since specific hardware is required, these approaches are
generally more expensive than software approaches, which can be
implemented using off-the-shelf machines. A detailed discussion
of the above systems can be found in [9].

Our system, SDB, takes another approach that is based on the
Secure Multiparty Computation (SMC) model [11]. With secret
sharing, each plain value is decomposed into several shares and
each share is kept by one of multiple parties. While no party can
recover the plain values by its own shares, a protocol executed by
the parties can be defined to compute a deterministic function of
the values. To implement the protocol, SDB provides a set of user-
defined functions (UDFs) at the SP such that secure query process-
ing can be performed on any relational engine that supports UDF
(e.g., PostgreSQL, Vertica, Hive, Spark SQL [1], etc.). A distin-
guishing feature of SDB is that all UDFs operate on secret shares
and so they all work on data in the same encrypted space. SDB
thus provides data interoperablility, which allows a wide range of
complex queries to be expressed and processed. As an example, all
TPC-H queries can be natively processed by SDB.

2. TECHNICAL OVERVIEW
In this section, we provide a brief overview of the SDB system

[9]. We first describe our secret sharing scheme and then talk about

1876



the system architecture.

2.1 Secret Sharing
We employ a secret sharing scheme between the DO and the SP.

Each sensitive data item v is split into two shares, one kept at the
DO and another at the SP. We use JvK to denote a sensitive value
(the JK symbolizes that the value is secret and should be kept in a
safe). We call the share of JvK to be kept at the DO, denoted by vk,
the item key of JvK. The share of JvK kept at the SP is denoted by
ve, which is regarded as the encrypted value of JvK. The security
goal is to prevent attackers from recovering the set of sensitive data
JvK’s given their encrypted values ve’s. The whole procedure is
described below.

The DO maintains a secret numbers g and a public key n. The
number n is generated according to the RSA method, i.e., n is the
product of two big random prime numbers ρ1, ρ2. The number g is
a positive number that is co-prime with n.3 Define,

φ(n) = (ρ1 − 1)(ρ2 − 1). (1)

We have, based on the property of RSA,

(aed mod n = a) ∀a, e, d such that ed mod φ(n) = 1.

Consider a sensitive column A of a relational table T of N rows
t1, . . . , tN . The DO assigns to each row ti in T a random row id
ri. Moreover, the DO randomly generates a column key ckA =
〈m,x〉, which consists of a pair of random numbers. We require
0 < ri,m, x < n.

To simplify our discussion, let us assume that the schema of T is
(row-id,A). (Additional columns of T , if any, can be handled simi-
larly.) The idea is to store table T encrypted on the SP. This consists
of two parts: (1) Sensitive values in column A are encrypted using
secret sharing based on the column key ckA = 〈m,x〉 and the row
ids. (2) Since the row ids are used in encrypting columnA’s values,
the row ids have to be encrypted themselves. In our implementa-
tion, row ids are encrypted by an existing encryption scheme SIES
[6].

The reason why row-id and A are encrypted differently is that
row ids are never operated on by our secure operators (i.e., we as-
sume row ids are not part of user queries). Hence, a simpler encryp-
tion method suffices. On the other hand, sensitive data is encrypted
using secret sharing so that computational protocols can be defined
to implement our secure operators. The secret sharing encryption
process consists of two steps:

Step 1 (item key generation). Consider a row with row id r and
a sensitive value (of A) JvK. Under secret sharing, our objective is
to split JvK into an item key vk and an encrypted value ve. Con-
ceptually, ve is kept at the SP and vk is kept at the DO. Since we
want to minimize the storage requirement of the DO, the item key
vk is materialized on demand and is generated from the column key
ckA (which is stored at the DO) and the row id r, which is stored
encrypted at the SP. Specifically,

§Definition 1. (Item key generation) Given a row id r and a
column key ckA = 〈m,x〉, the item key vk is given by,

vk = gen(r, 〈m,x〉) = mg(rx mod φ(n)) mod n.

For simplicity, in the following discussion, we sometimes omit
“mod φ(n)” in various expressions with an understanding that the

3In our implementation, ρ1 and ρ2 are 1024-bit numbers and so n
is 2048-bit.

exponent of the above formula is computed in modular φ(n). So,
we write,

vk = gen(r, 〈m,x〉) = mgrx mod n. (2)

Step 2 (Share computation). Shares of JvK are determined by a
multiplicative secret sharing scheme. While vk is one of the share,
the other share ve, which is considered the encrypted value of JvK,
is computed by the following encryption function E .

§Definition 2. (Encrypted value) Given a sensitive value JvK
and its item key vk, the encrypted value ve is given by,

ve = E(JvK, vk) = JvKv−1
k mod n, (3)

where v−1
k denotes the modular multiplicative inverse of vk, i.e.,

vkv
−1
k mod n = 1.

To recover JvK, one needs both shares vk and ve and compute

JvK = D(ve, vk) = vevk mod n. (4)

Figure 1 summarizes the whole encryption procedure and illus-
trates how sensitive data (e.g., a column A) is transformed into en-
crypted values ve’s. It also shows that the DO only needs to main-
tain a column key, while the SP stores the bulk of the data.

A [[v]]

2

4

3

row-id
r A [[v]]

1 2

2 4

8 3

row-id
E(r)

item
key vk

encrypted 
value ve

E(1) 8 9

E(2) 32 22

E(8) 32 34

E(r) ve

E(1) 9

E(2) 22

E(8) 34

column key
ckA=<m,x>

<2,2>DO SP

secret
sharing

vk = gen(r,<m,x>)

Figure 1: Encryption procedure (g = 2, n = 35)

2.2 System Architecture
The original architecture of SDB that we published in [9] con-

sists of a standalone secure query processing engine that is built
on top of a traditional relational engine. That architecture simply
treated the relational engine as a data store and did not leverage
any of its access methods and fault-tolerance components. In this
demonstration, we present our new SDB architecture. Figure 2
shows the new architecture of SDB. The architecture consists of
two parts: (1) a lightweight SDB proxy at the DO and (2) a rela-
tional engine with a set of UDFs provided by SDB at the SP. In
our prototype, we integrate SDB with Spark SQL by implement-
ing the secure operators in a set of Hive UDFs. SDB can eas-
ily support any other relational engine by implementing a set of
UDFs that work with that particular system. This new architecture
pushes all the computations back to the underlying engine through
UDFs. Consequently, SDB now enjoys all the benefits such as
fault-tolerance, parallel-execution, and scalability provided by the
underlying Spark SQL engine.

The SDB proxy is responsible for:

• Storing column keys for sensitive data in its key store.

• Accepting SQL queries from the application.

1877



SDB UDFs

SDB Proxy

Data Owner (DO) Service Provider (SP)

Application
Query

Result

SparkSQL

Rewritten 
Query

Encrypted 
Result

SparkSQL
Spark SQL

Query 
Rewrite1

2 3

45
key store

Figure 2: SDB Architecture

• Rewriting the SQL operators that involve sensitive columns
to their corresponding UDFs, and then submitting rewritten
queries to the SP.

• Receiving encrypted results from the SP and decrypting them
using their corresponding column keys.

• Finally, sending the decrypted results back to the application.

The SP provides an unmodified relational engine with a set of
SDB UDFs. The engine at the SP is responsible for:

• Storing the plain values of insensitive data and the secrete
shares of sensitive data.

• Processing rewritten queries.

• Returning encrypted results back to the SDB proxy.

Let us illustrate query rewriting by an example. Consider two
sensitive columns A and B of a table T , whose column keys are
ckA = 〈mA, xA〉 and ckB = 〈mB , xB〉 , respectively. Suppose
an application issues the following query:

SELECT A × B AS C
FROM T

The SDB proxy will rewrite the above query as below:

SELECT row−id, sdb multiply(Ae,Be,n) AS Ce
FROM T

whereAe,Be and Ce stand for the encrypted values of columnsA,
B, and C, respectively. The number n is the public key stored at
the DO as mentioned before.

According to the protocol of multiplication described in [9], the
actual computation carried out by sdb multiply is:

sdb multiply(Ae, Be, n) = Ae ×Be mod n

Recall that to decrypt the result Ce, we need the item keys Ck
of C (Equation 4), which are generated by row ids and the column
key ckC of C (Equation 2). Hence, the row-id is added in the
rewritten query. Besides, in the case of multiplication, the SDB
proxy computes the corresponding column key ckC as below.

ckC = 〈mA ×mB , xA + xB〉

Note that the SP cannot get any secret keys in the process. The
computation is thus secure. Readers are referred to [10] for details
about the proof of correctness for the above computation.

2.3 Security
We consider three kinds of knowledge that an attacker may ob-

tain by hacking the SP. We explain our security levels against those
attackers’ knowledge.

Database (DB) Knowledge — The attacker sees the encrypted
values ve’s stored in the DBMS of the SP. This happens when
the attacker hacks into the DBMS and gains accesses to the disk-
resident data.

Chosen Plaintext Attack (CPA) Knowledge — The attacker is
able to select a set of plaintext values JvK’s and observe their as-
sociated encrypted values ve’s. For example, an attacker may open
a few new accounts at a bank (the DO) with different opening bal-
ances and observe the new encrypted values inserted into the SP’s
DB. We remark that while CPA knowledge is easy to obtain for
public key cryptosystems, it is much harder to get under the cloud
database environment. This is because the attacker typically does
not have control on the number, order, and kinds of operations that
are submitted by other users of the system and so it is difficult for it
to associate events on plain values with the events on the encrypted
ones.

Query Result (QR) Knowledge — The attacker is able to see the
queries submitted to the SP and all the intermediate (encrypted) re-
sults of each operator involved in the query. QR Knowledge may
be obtained in a few ways. For example, the attacker could have
compromised the SP to inspect the instructions the client sends to
the SP and the computations carried out by the SP. Or the attacker
could intercept messages passed between the client and the server
over the communication channel. We remark that it is typically
more difficult to obtain QR Knowledge than DB Knowledge. This
is because data in computation is of transient existence in mem-
ory while data on disk persists. The window of opportunity for an
attacker to observe desired queries and their (encrypted) results is
thus limited. Moreover, there are sophisticated industrial standards
to make a communication channel highly secure.

Our security goal is to prevent an attacker from recovering plain-
text values JvK’s given that the attacker has acquired certain combi-
nations of knowledge listed above. First, we argue that DB knowl-
edge is typically easier to obtain than the others and so we assume
that the attacker has DB knowledge. Second, it has been proven
that no schemes are secure against an attacker that has both CPA
knowledge and QR knowledge [4]. Therefore, we assume that the
attacker does not have both of these knowledges. Fortunately, as
we have explained, CPA and QR knowledges are typically difficult
to obtain in a cloud database environment and so the chances of an
attacker having both is small. Our system, SDB, is designed to be
secure against the following threats:

• DB+CPA Threat: The attacker has both DB knowledge and
CPA knowledge.

• DB+QR Threat: The attacker has both DB knowledge and
QR knowledge.

Readers are referred to [10] for proofs of SDB being secure
against the above threats.

3. DEMONSTRATION
In the demonstration, we will show a prototype of SDB that is

integrated with Spark SQL. The system will also be instrumented
from the perspective of an adversary — an administrator can get
access to the disk and memory at any instant. We will use two
machines in the demonstration. Machine MDO demonstrates the
client machine running the SDB proxy. Machine MSP demon-
strates the server machine running Spark SQL with the set of SDB
UDFs loaded.

The steps of the demonstration is presented as follows.

1878



1. An attendee chooses the secure column, upload a
dataset to the SP, examining the key store in the SDB
proxy.
First, we will invite an attendee to use MDO , which has a sample
local database D1. D1 has not been encrypted and is supposed to
be the original dataset owned by the attendee.

Next, the attendee can select D1 and go into a setting page that
allows the attendee to choose the attributes that need to be pro-
tected. In this step, we let the attendee choose any attributes that
she deems appropriate.

After the security settings, the attendee will be invited to click
the “Upload” button to upload D1 to the SP (which is operated
by SDB). After the uploading is complete, she shall see another
database of the same name (i.e., D1), but with a little security lock
shown next to its icon. That is the key store of the original database
D1. The attendee will be invited to check the size of the key store
and also the content.

Figure 3: Machine MDO: The data owner sends a query to the
SDB Proxy

2. The attendee submits queries to SDB from the data
owner side.
In this step, the attendee will be invited to use MDO to submit
queries from the data owner side to SDB. The attendee will first
open a query view of the secured database D1 (Figure 3) and then
she can pose any SQL queries. The page will show the rewritten
query that is actually executed by the server. The attendee will also
be invited to note the query execution time that is broken down
into a client cost and a server cost. Specifically, the client cost is
composed of query parsing time, query rewriting time, and result
decryption time. In the demonstration, we show that these costs are
subtle compared with the total cost.

Execution at the SP. Sensitive data remains 

encrypted during the entire computation.

Figure 4: Machine MSP : Memory dump at the service
provider

3. The attendee observes the memory dump of SDB at
the server side
When the attendee is submitting queries from the client machine to
SDB (Step 2), she will also be invited to look at the memory dump
of SDB at MSP (Figure 4). This step aims to tell the attendee that
the query processing step does not expose any sensitive information
at any point of the computation.

Acknowledgements
The paper is supported by GRF Grant 17201414 and FDS grant
(UGC/FDS14/E05/14) from Hong Kong Research Grant Council.

We would also thank the anonymous reviewers for their com-
ments and suggestions.

4. REFERENCES
[1] Spark SQL https://spark.apache.org/sql/.
[2] A. Arasu, S. Blanas, K. Eguro, M. Joglekar, R. Kaushik,

D. Kossmann, R. Ramamurthy, P. Upadhyaya, and
R. Venkatesan. Secure database-as-a-service with cipherbase.
In SIGMOD, 2013.

[3] S. Bajaj and R. Sion. Trusteddb: a trusted hardware based
database with privacy and data confidentiality. In SIGMOD,
2011.

[4] A. Boldyreva, N. Chenette, and A. O’Neill. Order-preserving
encryption revisited: Improved security analysis and
alternative solutions. In CRYPTO, 2011.

[5] A. Chen. GCreep: Google engineer stalked teens, spied on
chats. Gawker, September 2010
http://gawker.com/5637234/.

[6] S. Papadopoulos, A. Kiayias, and D. Papadias. Secure and
efficient in-network processing of exact sum queries. In
ICDE, 2011.

[7] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan. Cryptdb: processing queries on an
encrypted database. CACM, 2012.

[8] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich.
Processing analytical queries over encrypted data. In
PVLDB, 2013.

[9] W. K. Wong, B. Kao, D. W. L. Cheung, R. Li, and S. M. Yiu.
Secure query processing with data interoperability in a cloud
database environment. In SIGMOD, 2014.

[10] W. K. Wong et al. Secure query processing with data
interoperability in a cloud database environment. Technical
Report TR-2014-03, Department of Computer Science,
University of Hong Kong, 2014.

[11] A. C. Yao. Protocols for secure computations (extended
abstract). In FOCS, 1982.

1879


