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Efficient Notification of Meeting Points for Moving
Groups via Independent Safe Regions

Jing Li, Jeppe Rishede Thomsen, Man Lung Yiu, and Nikos Mamoulis

Abstract—In applications like social networking services and online games, multiple moving users which form a group may wish to be

continuously notified about the best meeting point from their locations. A promising technique for reducing the communication

frequency of the application server is to employ safe regions, which capture the validity of query results with respect to the users’

locations. Unfortunately, the safe regions in our problem exhibit characteristics such as irregular shapes and inter-dependencies, which

render existing methods that compute a single safe region inapplicable to our problem. To tackle these challenges, we first examine the

shapes of safe regions in our problem’s context and propose feasible approximations for them. We design efficient algorithms for

computing these safe regions. We also study a variant of the problem called the sum-optimal meeting point and extend our solutions to

solve this variant. Experiments with both real and synthetic data demonstrate the effectiveness of our proposal in terms of

computational and communication costs.

Index Terms—Query processing, spatial databases

Ç

1 INTRODUCTION

RECENTLY, social networking services in the ad-hoc
mobile environment have attracted significant attention

[1]. Such services exist in many popular social websites
including Facebook and Foursquare.1 Managing the moving
data arising from such services brings new challenges due
to both spatial and social constraints.

In this paper, we propose a novel monitoring prob-
lem, Meeting Point Notification (MPN) for multiple mov-
ing users: given a group of moving users U and a set of
points of interest (POI) P , MPN continuously reports the
optimal meeting point po 2 P to users in U such that the
maximum distance between any user and po is mini-
mized. MPN is motivated by many applications in social
networks, location-based games and massively multi-
player online (MMO) games [2], [3].

A real application relevant to MPN is EchoEcho,2

invented by Google Venture. EchoEcho assists users to
browse their friends’ real-time locations and share their
own. As a highlight feature, EchoEcho allows a user to
continuously observe her friends’ locations regarding to
a predetermined meeting point. Mobile users with such
interests have also been investigated in the collaborative
system research [4].

Furthermore, many popular social networking applica-
tions, e.g., event calendar in Facebook,3 assist users to share
and synchronize event updates. These applications are
designed to detect updates and suggest the necessary rear-
rangements automatically. As an example, consider a new
event created in the event calendar, e.g., enjoying Italian
food together. A group of users {u1, u2, u3} are interested
and participate in it (see Fig. 1a for illustration). The event
calendar initially recommends a restaurant, i.e., p1, based
on the current locations of these users at timestamp t1. How-
ever, due to unpredictable traffic, the velocities of different
users may change and thus the optimal meeting point may
also change. In Fig. 1a, the locations of users change from
uiðt1Þ to uiðt2Þ. Due to a traffic jam, user u1 advances toward
p1 with low speed and reaches u1ðt2Þ. Thus, at timestamp t2,
the optimal meeting point becomes p2. With the help of
MPN, such a change of the optimal meeting point can be
detected and thus subsequent events in the event calendar
can be rearranged in advance.

Besides social networking services,MPN also finds appli-
cation in location-based games, such as the famous outdoor
GPS game, Tourality.4 To win this game, the distributed
players of a team should reach one of geographically
defined spots (POIs) by running, biking or driving as fast as
possible. During a game, MPN can be used to dynamically
adjust the first meeting spot based on real-time locations of
players and thus shorten the meeting time.

Limitations of bandwidth and battery power raise chal-
lenges for mobile search problems, including MPN. Thus,
the main optimization goal for these applications is to mini-
mize communication frequency [5], [6], [7], [8], [9]. This
goal also reduces unnecessary computational workload at
the server because the communication cost between the cli-
ents and the server is reduced. We adopt the same goal:
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minimize the communication frequency, i.e., the frequency
by which users issue update messages to the server.

A straightforward solution is to force each client (i.e.,
user) to communicate with the server periodically (e.g.,
every second). However, this solution incurs huge computa-
tion and communication costs at the server side. We need to
develop an efficient solution that reduces the communica-
tion cost between the server and the users. Previous work
[10], which considers similar applications under road net-
works, only develops techniques that reduce road network
distance computations but does not consider minimizing
the communication cost. Thus, these techniques are inappli-
cable to our problem.

Motivated by this, we propose novel solutions based on
the safe region concept. Safe regions are a set of geographical
regions, one for each user, such that if each user stays
inside her region, the query result will remain the same.
For instance, in Fig. 1b the optimal meeting point is p1 as
long as all users stay in their own safe regions (R1, R2, R3).
The use of safe regions for multiple users raises several
challenges. First, existing safe region computation techni-
ques for a single user are not applicable for computing safe
regions for a group of users, because these regions are not
independent. Second, the safe regions have irregular shapes
(as we demonstrate in Section 3.2), unlike simple-shaped
safe regions considered in previous work (e.g., a Voronoi
cell [11]). Third, it is infeasible to pre-compute the safe
regions for multiple users because multiple safe regions
depend on the multiple locations of moving users, which
are unpredictable.

In our preliminary work [12], we have proposed circular
safe regions that are easy to compute, and tile-based safe
regions that offer better approximations of maximal safe
regions. In this paper, our new contributions include:

� a buffering optimization that avoids repeated index
accesses (see Section 5.4),

� a problem variant called the sum-optimal meeting
point and our solutions for it (see Section 6), and

� additional experiments that demonstrate effective-
ness and efficiency of our new contributions (see
Section 7).

The paper is organized as follows. First, we review
related work in Section 2. Then, we introduce our notations
and define the problem formally in Section 3. Next, we pres-
ent our solutions in Sections 4 and 5, together with their
optimizations. We study the problem variant for the sum-
optimal meeting point in Section 6. Our methods are

evaluated using real and synthetic data in Section 7. Finally,
we conclude our paper in Section 8.

2 RELATED WORK

Previous work on processing moving queries over mobile
data can be classified into two categories: i) report query
results to a single user continuously, e.g., kNN queries [11],
[13], [14], [15], [16], circular range queries [17], moving win-
dow (rectangle range) queries [5], [18]; ii) detect relation-
ships among moving objects, e.g., proximity detection [9]
and constraints monitoring [19].

The safe region concept has been widely used in mov-
ing query processing to reduce the communication cost
between clients and servers. When a user registers a con-
tinuous query, the server will return POIs along with a
safe region. The query result remains the same if the user
stays inside the current safe region. Upon leaving the safe
region, the user requests from the server a updated result
together with a new safe region. The shape of the safe
region depends on the query type, e.g., an order-k Voro-
noi cell for a kNN query [18], or an arc-based region for a
range query [17]. Defining safe regions for our problem is
challenging because: 1) the safe regions for MPN have
irregular shapes and are thus hard to compute; 2) the safe
regions of users are interdependent and the users change
their locations dynamically and unpredictably, rendering
pre-computation techniques (e.g., as Voronoi cells [20])
inapplicable.

Proximity detection [9] helps a user to maintain a list of
friends who are within a distance threshold from her.
Since both the user and her friends are moving, Yiu et al.
[9] proposes self-tuning policies to automatically assign an
adjustable safe region for each user. However, the work of
[9] does not consider POIs where the users are supposed
to meet.

The snapshot version of our problem is equivalent to the
group nearest neighbor (GNN) query [21], which attempts
to find a POI p that minimizes total distance between p and
a set of users’ locations. The group enclosing query [22] is a
specialized GNN, which minimizes the maximum distance
among a POI and the users. Contrary to these works, we
focus on computing safe regions in order to minimize the
communication cost.

The most related work to ours is [10], which focuses on
monitoring GNN in road networks. Our work is different in
two aspects: 1) our problem does not consider the road net-
work; 2) the solutions in [10] aim at minimizing computa-
tions at the server side and thus cannot be applied to solve
MPN. Finally, a related problem [23] is to continuously iden-
tify the object from a given set of moving objects, which is
superior to others with respect to its aggregate distance
toward a set of selected POIs. This problem and its solutions
are also different from our work.

3 PROBLEM SETTING

We first introduce the preliminary concepts and the system
architecture. Then, we illustrate the unique characteristics
of the search space and safe regions in our problem. In the
end, we state our main objectives in this paper.

Fig. 1. Motivation.
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3.1 Preliminaries and System Architecture

We first provide the definitions for distances, the optimal
meeting point, and safe regions. Unless otherwise stated,
we denote both a user and her location by ui. Table 1 sum-
marizes the notations to be used throughout the paper.

Definition 1 (Distances). Let kp; lk be the Euclidean distance
between points p and l. Theminimum distance and themax-
imum distance from a point p to a set/region S are

kp; Skmin ¼ min
l2S
kp; lk (1)

kp; Skmax ¼ max
l2S
kp; lk: (2)

Definition 2 (Optimal meeting point). Given a group of users
U and a data set of points P , the optimal meeting point po is
the point in P with the smallest kpo; Ukmax. It is also called
MAX-GNN [21].

Definition 3 (Independent safe region group). Let m be the
number of users in U . A group of regions R ¼ hRijmi¼1i is said
to be independent if the optimal meeting point po is the same
for every instance of user locations 8 hl1; l2; � � � ; lmi 2
R1 �R2 � � � � �Rm.

Definition 4 (Maximal safe region group). R� ¼ hR�i jmi¼1i is
said to be a set of maximal safe regions if no other (indepen-
dent) set of safe regions R0 ¼ hR0ijmi¼1i satisfies: R0 6¼ R� and
R�i � R0i 8 i ¼ 1 � � �m.

As an example, Fig. 2a illustrates the minimum distances
(from p1 to a circle, and from p2 to a square) and the maxi-
mum distances (from p3 to a circle, and from p2 to a square).
At timestamp t1 (t2) in Fig. 1a, the optimal meeting point for
the locations of u1–u3 at t1 is p1 (p2). As shown in Fig. 1b, the
independent safe regions for three users u1–u3 are R1-R3.
Note that the safe regions (for the optimalmeeting point) can
have irregular shapes; wewill elaborate on this issue shortly.

In this paper, we adopt the client-server architecture
which is widely used in moving query processing [7], [17],
[18]. Fig. 3 illustrates this architecture. The server manages
a data set P of points-of-interest (e.g., restaurants, cafes)
and indexes it by an R-tree. A group of users U wish to

receive notifications of their optimal meeting point po 2 P
from the server continuously. Besides the result po, the
server also reports a safe region Ri to each user ui 2 U . By
Definition 3, the optimal meeting point remains unchanged
if every user ui moves within her safe region Ri. Therefore,
these safe regions serve to reduce the communication fre-
quency of the server (and its computational overhead)
significantly.

The system is triggered when a user ui 2 U leaves her
safe region Ri. Then, ui sends her current location to the
server (Step 1). Next, the server probes the current locations
of other users in the group U (Step 2). Having received
replies from all users in U , the server recomputes and noti-
fies each user ui about the optimal meeting point po and her
corresponding safe region Ri (Step 3). In summary, the
server and users communicate via three types of messages.

As we will show in Section 3.2, maximal safe regions
have irregular shapes and raise challenges in computation
and representation. Our objectives are as follows:

1) Design concise representations for safe regions;
2) Develop efficient algorithms for computing them.
In this paper, we will investigate conservative approxi-

mations for maximal safe regions. Specifically, we will
study circular safe regions in Section 4 and tile-based safe
regions in Section 5.

3.2 Characteristics of Safe Region Group

This section describes the unique characteristics exhibited
by the safe regions in our problem. By Definition 3, the pos-
sible groups of safe regions indeed form a huge search
space: a m � d dimensional space, where m is the number of
users and d is the number of spatial dimensions. For exam-
ple, for two users (m ¼ 2) and the planar space (d ¼ 2), the
search space becomes four-dimensional.

TABLE 1
Notation

Notation Meaning

U a group of users
ui a user or its location
P points of interest
kp; uk Euclidean distance from p to u
kp; Skmax max. dist. from p to a set S, i.e., S is R or U
kp; Skmin min. dist. from p to a set S, i.e., S is R or U

po the current optimal meeting point

kp; Uky the dominant distance under U

kp;Rk> the dominant max. distance underR
kp;Rk? the dominant min. distance underR

u>p the dominant user that contributes to kp;Rk>
u?p the dominant user that contributes to kp;Rk?
R a set of safe regions for U
R� a set of maximal safe regions

Fig. 2. Distance.

Fig. 3. System architecture.
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We first conduct a case study to visualize the search
space for the case m ¼ 2 and d ¼ 1 (i.e, each user location
is just a single value). Fig. 4a shows the locations of two
users u; v and three points-of-interest a; b; c. Fig. 4b illus-
trates the optimal meeting point for every group of loca-
tions for user u; v. Each cell (at ith column, jth row)
contains the optimal meeting point when u ¼ i and v ¼ j.
For instance, the current user locations are u ¼ 3 and
v ¼ 6, so the current optimal meeting point is a (see the
cell at third column, sixth row). For readability, the cells
are colored based on their optimal meeting points (see
Fig. 4b). It appears that the cells with the same color form
a connected ‘hyper-region’ in the high-dimensional search
space, e.g., the diamond-like ‘hyper-region’ for point a.
Unfortunately, we are unable to decompose such a high-
dimensional ‘hyper-region’ into an independent safe
region group hRijmi¼1i for the users. First, two cells with the
same color are not necessarily connected in the spatial
domain. For instance, both groups h3; 9i and h5; 0i for hu; vi
take a as the optimal meeting point. However, user v can-
not travel from location 9 to 0 directly without visiting
locations 1-4, which have other optimal meeting points.
Second, the maximal safe region of a user is restricted by
that of another user. For instance, if the safe region for v is
the interval 5-9, the safe region for u can only be the inter-
val 0-4. Otherwise, if u ¼ 5 but v ¼ 9, the optimal meeting
point is no longer a. Third, the groups of maximal safe
regions obtained from the search space are not unique. For
instance, consider two groups of safe regions: i) h2-4; 3-9i,
and ii) h0-4; 5-9i. Both groups are valid and they take a as
the optimal meeting point. Finally, the safe regions have
irregular shapes, which we will elaborate shortly.

All these are unique characteristics in our problem,
rendering existing safe region techniques [7], [17], [18]
inapplicable.

Shapes of maximal safe regions. We proceed to illustrate the
fact that the maximal safe regions in our problem have
irregular shapes. Fig. 5 shows an example in the two-dimen-
sional space (d ¼ 2) with two users ui (m ¼ 2) and three data
points. The current optimal meeting point is marked as po.

The entire search space cannot be visualized here as it
has m � d ¼ 2 � 2 ¼ 4 dimensions. For the sake of illustration,

we consider the special case that u1 has a fixed location and
then attempt to find the maximal safe region of u2.

Let us examine how the point p1 affects the safe region of
u2 (see Fig. 5a). Consider i) the bisector line between points
p1 and po, and ii) the circle at center p1 with radius ku1; pok.
If u2 moves across the bisector line in i), then both u1 and u2

become closer to p1 than to po. If u2 moves inside the circle
in ii), then the optimal meeting point will be decided by the
‘further-away’ u1, who is closer to p1 than po. Thus, the safe
region (in gray color) is bounded by the shapes i) and ii).

Following a similar argument, we can derive the bound-
aries of the safe region of u2 with respect to the point p2. The
maximal safe region of u2 is restricted by both p1 and p2.
Fig. 5b shows that this region (in gray color) has an irregular
shape.

In general, the maximal safe regions in our problem have
irregular shapes, especially in typical applications which
involve many more users and data points than in the above
example. These irregular safe regions raise two challenges:
i) they are time-consuming to compute, and ii) they are
hard to be represented in a concise manner.

4 CIRCULAR SAFE REGION APPROACH

In this section, we approximate the maximal safe regions of
users by circles due to simplicity. We first study the condi-
tion for verifying a set of safe regions. Then, we design an
algorithm for computing circular safe regions.

4.1 Verification of Safe Regions

An essential task in our problem is to verify whether a set of
regions fRijmi¼1g satisfies Definition 3. By definition, there
are infinitely many instances of user locations in those
regions. It is infeasible to test all the instances one-by-one.

In this section, we plan to establish a conservative condi-
tion for verifying safe regions in an efficient manner. Before
that, we first define dominant distances and dominant user:

Definition 5. Given a data point p 2 P and a user set U , the
dominant distance is defined as

kp; Uky ¼ max
ui2U
kp; uik:

Given a data point p 2 P and a set of safe regionsR, the domi-
nant minimum and maximum distances are defined as:

kp;Rk? ¼ max
Ri2R

kp;Rikmin; (3)

Fig. 4. Optimal meeting point for a two-user group, with objects in 1D
space.

Fig. 5. Safe region example.
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kp;Rk> ¼ max
Ri2R

kp;Rikmax: (4)

A user is denoted as uyp if he contributes to the dominant dis-
tance with respect to point p.

Observe that the optimal meeting point is the point with
the smallest dominant distance kp; Uky. Regardless of the

actual locations of users (in their safe regions), kp;Rk?
serves as a lower-bound of kp; Uky, and kp;Rk> serves as an

upper-bound of kp; Uky. As an example, in Fig. 2b, kp2;Rk?
is the maximum over the minimum distances from p2 to

each region (corner in black), and kp1;Rk> is the maximum
over the maximum distances from p1 to each region (corner
in gray).

We now establish a conservative test (Lemma 1) for ver-
ifying a set of safe regions with respect to a given data
point p 2 P and the optimal meeting point po. This test is
conservative in the sense that it has no false positives but
it may have false negatives, i.e., i) if the test returns true,
then po is definitely optimal when the users remain in R;
ii) if the test returns false, then po may not be optimal. We
denote this test as Verify(R; po; p) throughout the paper.
This test is efficient as its time complexity is OðmÞ.
Lemma 1 (Conservative verification). Given a set of regions
R ¼ fRijmi¼1g, if for a point p 2 P and p 6¼ po

kpo;Rk> � kp;Rk?; (5)

then the dominant distance of po must be smaller than or equal
to that of p.

Proof. For any instance flijmi¼1g of R, by definition of domi-
nant max. (min.) distance, we have

kpo; flijmi¼1gky � kpo;Rk>
and

kp;Rk? � kp; flijmi¼1gky:

Combining both equations with Equation (5), we derive

kpo; flijmi¼1gky � kp; flijmi¼1gky;
which means that all instances inR are valid. tu
As an example, Fig. 6a shows two data points and three

users (with their safe regions). Note that kpo;Rk> ¼
kpo; R2kmax and kp1;Rk? ¼ kp1; R1kmin. Since kpo; R2kmax <

kp1; R1kmin, by Lemma 1, we conclude that p1 cannot replace
po as the optimal meeting point (and thus the safe regions
are valid).

4.2 Algorithm

Although maximal safe regions have irregular shapes,
they can be conservatively approximated as circles. We
now assign each user ui a circular safe region
Ri ¼ �ðui; rÞ, where ui is the current user location and r
is the radius. Note that the same radius r is used across
different Ri.

To reduce the communication cost between the server
and the users, the value r should be as large as possible. The
following theorem decides the maximum radius r such that
the safe regions remain valid.

Theorem 1 (Maximal circles). The maximum radius of circles
for safe regions is

rmax ¼
minp2P	fpogðkp; UkmaxÞ 	 kpo; Ukmax

2
: (6)

Proof. Let Ri ¼ �ðui; rÞ, a circle with radius r and center as
the current user location ui. We have:
kp;Rikmax ¼ kp; uik þ r and kp; Rikmin ¼ kp; uik 	 r.

By substituting these equations into Equation (5) in
Lemma 1, for any point p 2 P 	 fpog, we have

max
ui2U
ðkpo; RikmaxÞ � max

uj2U
ðkp;RjkminÞ;

max
ui2U
ðkpo; uik þ rÞ � max

uj2U
ðkp; ujk 	 rÞ:

By rearranging the terms, we obtain

2r � max
uj2U
ðkp; ujkÞ 	max

ui2U
ðkpo; uikÞ;

which is equivalent to

r � kp; Ukmax 	 kpo; Ukmax

2
: (7)

Note that Equation (7) holds for any point p 2 P 	 fpog.
By taking the minimum value of all kp; Ukmax, we obtain:

rmax ¼ minp2P	fpogðkp;UkmaxÞ	kpo;Ukmax

2 . tu
Algorithm 1 is the pseudo-code for computing circular

safe regions for users. Assume that the data set set P is
indexed by an R-tree. First, the algorithm finds the best
two meeting points by calling an existing algorithm [24]
on the R-tree of P . Note that the second best meeting
point is the point p that contributes to minp2P	fpogðkp;
UkmaxÞ. Then, it computes the maximum radius rmax by
Equation (6) and returns the corresponding circular safe
regions to the users.

Algorithm 1. Circle-MSR ( Set of users U , Dataset P )

1: po; p FindMaxGNN(U , P , 2) " apply algo. in [24]
2: compute the radius rmax " apply Equation (6)
3: for each user ui 2 U do
4: return the safe region �ðui; rmaxÞ to ui

Fig. 6. Verifications of safe regions.
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Discussion. Although circular safe regions can be com-
puted efficiently, they may not tightly capture maximal safe
regions. For instance Fig. 7a contains two users u1-u2 and
three points p1-p2 and po. Since p1 is the next optimal meet-
ing point, according to Equation (6), the radius for circles
are determined by two distances kpo; u1k and kp1; u2k. Thus,
the circular safe regions are depicted in Fig. 7a. In the next
section, we propose a tighter approximation of maximal
safe regions, named the tile-based safe regions, in order to fur-
ther reduce the communication frequency. As illustrated in
Fig. 7b, the tile-based safe regions are much more tighter
than the circular safe regions in Fig. 7a.

We are aware of a tight pruning technique [25] that uti-
lizes half-spaces for deciding whether every point in a
query rectangle R is closer to an object rectangle Oa rather
than another object rectangle Ob. Nevertheless, this tech-
nique is not applicable to our problem because: i) we use
multiple safe regions for multiple users respectively, instead
of using a single rectangle R, and ii) a safe region group
(e.g., hR1; R2i) can be valid even when some part of R1; R2

do not take po as the nearest neighbor (see Fig. 7b).

5 TILE-BASED SAFE REGION APPROACH

A tile, as its name implies, is a square region (with side-
length d). Tiles can be assembled to represent an irregular
shape and thus serve as a tighter approximation of maximal
safe regions. A tile-based safe region can be represented in a
concise manner, as shown in our preliminary work [12]; we
omit these techniques here due to space limitations. In the
remainder of this section, we first show a tighter verification
method for tiles. Next, we design an algorithm for comput-
ing such tile-based safe regions. Then, we propose techni-
ques to optimize the efficiency of tile verification. Finally,
we suggest a buffering optimization that avoids repeated
accesses to an R-tree.

5.1 Divide-and-Conquer Verification for Tiles

We start by showing that the verification condition in
Lemma 1 is not tight. Fig. 6b shows three users u1; u2; u3
and two data points po and p1. Here, u2 is the dominant user
for both points po and p1. Consider the safe region group
R ¼ hR1; R2; R3i. As depicted in Fig. 6b, the max. distance
for poðkpo; R2kmaxÞ is larger than the min. distance for p1
ðkp1; R2kminÞ. By Lemma 1, R cannot be verified. This phe-
nomenon happens due to the dominant min. and max. dis-
tances for the same dominant user (e.g., u2), yet they are
contributed by two different locations inside R2.

On the other hand, if we divide R2 into four smaller tiles

(Ra
2; R

b
2; R

c
2; R

d
2) as shown in Fig. 6b, then R can pass the

verification. Consider the safe region group R0 ¼
hR1; R

a
2; R3i for example. R0 passes the verification since

kpo;R0kmax is less than kp1;R0kmin. Similarly, the safe region

group R00 ¼ hR1; R
d
2; R3i passes the verification since

kpo;R00kmax � kp1;R00kmin. After applying Lemma 1 to the

remaining two groups of safe regions (hR1; R
b
2; R3i;

hR1; R
c
2; R3i), we conclude thatR is valid.

Our next question is how to determine a suitable size d

for a tile s. If d is too small, then many tiny tiles are exam-
ined and incur significant computation cost. If d is too large,
thenRmay not be able to pass the verification.

To tackle this problem, we propose a divide-and-conquer
method for verification (Algorithm 2). The initial size of
the tile swill be discussed in the next section. The parameter
L is used to control the number of recursion levels (and
thus the computation cost). Suppose that R ¼ hR1; R2; . . . ;
Ri; . . . ; Rmi is a valid safe region group (i.e., passed the veri-
fication). The algorithm aims to check whether s is a valid
safe region for user ui with respect to the existing safe
regions R1; . . . ; Ri	1; Riþ1; . . . ; Rm of other users in R. If yes,
then we can guarantee that Ri [ fsg is also a valid safe
region for user ui.

At lines 1-3, we apply a function Tile-Verify to verify
the tile s for the user ui with respect to the safe regions of
other users in R. Efficient implementations of Tile-Verify,
and index pruning techniques (on R-tree), will be studied
in Section 5.3. If s passes the verification, then we add it
into the safe region of ui. Otherwise, we divide s into four
sub-tiles s0, and then call the method recursively on s0

(see lines 5-8). Note that recursion stops when the recur-
sion level L reaches 0.

Algorithm 2. Divide-Verify ( Safe region group R, User
ui, Tile s, Optimal point po, Dataset P , Level L )

1: if 8 p 2 P 	 fpog; Tile-Verify (R; ui; s; p; p
o) is true

then
2: Ri  Ri [ fsg
3: return true
4: flag false
5: if L > 0 then " control the recursion level
6: divide s into four sub-tiles
7: for each sub-tile s0 of s do
8: if Divide-Verify (R; ui; s

0; po; P; L	 1) then
9: flag true

10: return flag

5.2 Algorithm

Having introduced a divide-and-conquer verification
method Divide-Verify, we are ready to present an algorithm
for computing tile-based safe regions (Algorithm 3). Each
safe region Ri is modeled as a set of tiles, so it can be used
to approximate an irregular shape (see Fig. 7a). The main
idea of the algorithm is to browse the tiles around each user
ui in a systematic way, apply verification on them, and then
add valid tiles into a safe region Ri.

Recall that Algorithm 1 computes the safe region of each
user ui as a circle �ðui; rmaxÞ. The maximal tile (square) in
each circle must also be a valid safe region. Thus, we set the

Fig. 7. Comparisons of safe regions.
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tile size d ¼ ffiffiffi
2
p � rmax and add a tile *ðui; dÞ into its corre-

sponding safe region Ri (lines 1-4).
The parameter a specifies the (maximum) number of tiles

to be assigned to each safe region Ri. It can also be used to
bound the number of iterations in lines 5-11. In each itera-
tion, the algorithm examines the safe regions of users in a
round-robin manner.

We call a function Next-Tile to get the next tile s for user
ui. The implementation of Next-Tile will be discussed
shortly. Then, it tests the new tile s with other users’ safe
regions by callingDivide-Verify (line 9). The loop terminates
either when i) the test returns true, or ii) s is empty, i.e.,
Next-Tile has exhausted all tiles for ui.. At the end, the algo-
rithm returns a safe regionRi to each user ui.

Algorithm 3. Tile-MSR ( Set of users U , Dataset P , Tile
limit a, Split level L )

1: compute po and rmax " apply Algorithm 1
2: d ffiffiffi

2
p � rmax " initial tile size

3: for each user ui in U do
4: Ri  f *ðui; dÞ g " initial safe region
5: for t  1 to a do " control running time
6: for each user ui 2 U do " round robin
7: repeat
8: s Next-Tile ( ui; d ) " by tile ordering
9: flag Divide-Verify (R; ui; s; p

o; P; L)
10: until flag ¼ true or s ¼ ;
11: for each user ui 2 U do
12: return the safe region Ri to ui

We examine two possible orderings for NextTile to
select the next tile. In Fig. 8, the tiles are numbered by
the their insertion order. The first tile centered at ui is
numbered as 0.

Undirected ordering. This approach picks the next tile
based on the anti-clockwise order as shown in Fig. 8. When
all tiles in the current layer have been exhausted, it checks
whether some tile in the current layer has been inserted in
the safe region. If yes, then it picks the next tile in an outer
layer and repeats the process. Otherwise, it returns a null

tile, meaning that any subsequent tile cannot become a valid
tile for the user.

Directed ordering. Existing studies [26] show that the
travel direction of a user ui in the near future has a limited
angle deviation u from his current one. u is learned from ui’s
recent travel directions. We can exploit this feature and
examine only the tiles whose subtended angles at ui deviate
by less than u. By incorporating this idea into the above

undirected ordering, we are able to select more tiles that are
likely to cover the future locations of ui. Fig. 8 shows an
example of this directed ordering.

5.3 Efficient Implementation of Tile Verification

The running time of Algorithm 3 is dominated by the time
for verifying tiles, i.e., the recursive Divide-Verify function.
This function needs to invoke the Tile-Verify function for
every point p 2 P 	 fpog (line 1). In this section, we opti-
mize this step in order to reduce the overall running time.
We first study how the Tile-Verify function can be imple-
mented efficiently. Then, we propose a technique for prun-
ing a large portion of points in P 	 fpog without processing
them one-by-one.

Individual Tile Verification (IT-Verify). This is a basic tech-
nique for verifying a new tile s to be allocated to user ui.
Given a valid safe region group hRijmi¼1i for all users, con-
sider a tile group hs1 2 R1; . . . ; si ¼ s; . . . ; sm 2 Rmi which
contains a tile from each user, where (i) si ¼ s, and (ii) sj is a
tile from Rj for any other user uj 6¼ ui.

IT-Verify would enumerate all possible tile groups (as
defined above) and verify them. If any group fails, then s is
not valid as part of the safe region of user ui. However, such
an implementation suffers from high computation cost due
to the huge number of tile groups formed by the safe
regions of other users uj 6¼ ui. The number of such groups is
OðPm

i¼1jRijÞ, where jRij is the number of tiles in the safe
region Ri.

Group Tile Verification (GT-Verify). Instead, we propose an
optimized verification method for the new tile s. The main
idea of GT-Verify is to group tiles and test entire groups col-
lectively, reducing the total number of checks significantly.

We illustrate two main types of grouping strategies.
Fig. 9 depicts two users u1 and u2, the optimal meeting point
po, and a candidate point p1. The new tile s is colored in
gray. In Fig. 9a, the maximum distance between the new tile
and po (kpo; skmax) is the dominant max. distance for two tile
groups hs; s1i and hs; s2i. hs; s1i (hs; s2i) has the dominant
min. distance to p1 incident to s1 (s2). If hs; s2i fails in the

verification test, so does hs; s1i since kp1; hs; s1ik? < kp1;
hs; s2ik? < kpo; skmax. Thus, we can group s1 and s2 and test
hs; s1 [ s2i instead of testing each group individually. In
Fig. 9b, the minimum distance between the new tile and p1
(kp1; skmin) is the dominant min. distance for two tile groups
hs1; si and hs2; si. hs1; si (hs2; si) has the dominant max.
distance to po incident to s1 (s2). If hs2; si fails the verifica-

tion test, so does hs1; si since kpo; hs1; sik>kpo; hs2; sik> >

Fig. 8. Ordering for tiles.

Fig. 9. Examples of GT-Verify.
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kp1; skmin

 > . Thus, we can group s1 and s2 and test
hs1 [ s2; si instead of testing each group individually.

The key observation is that we can categorize tile groups
involving s based on two dominant distances: do ¼ kpo;
skmax and dp ¼ kp; skmin. Using these distances, the tiles
inside a safe region Rj are partitioned into four groups as
shown below

G##j ¼ hs0 2 Rj j kpo; s0kmax < do ^ kp; s0kmin < dpi
G"#j ¼ hs0 2 Rj j kpo; s0kmax � do ^ kp; s0kmin < dpi;
G#"j ¼ hs0 2 Rj j kpo; s0kmax < do ^ kp; s0kmin � dpi;
G""j ¼ hs0 2 Rj j kpo; s0kmax � do ^ kp; s0kmin � dpi:

The following theorem establishes test conditions for
these groups and ensures that they cover all possible tile
groups.

Theorem 2. Let u>po and u?p be the users that realize the dominant
max. distance of po and the dominant min. distance of p,
respectively. Let fsgi be the new tile s to be allocated as the
safe region of user ui. If all tile groups are valid, then the test-
ing for the following safe region groups must be valid:

1) Safe region group R0 ¼ hG##1 ; . . . ; fsgi; G##m i. ui is u>po
and also u?p .

2) Safe region group R0 ¼ hG##1 [G"#1 ; . . . ; fsgi; . . . ;
G##m [G"#m i. ui is u?p and another user uj (ui 6¼ uj)

is u>po .
3) Safe region group R0 ¼ hG##1 [G#"1 ; . . . ; fsgi; . . . ;

G##m [G#"m i. ui is u>po and another user uj (ui 6¼ uj)

is u?p .
4) If ui is not a dominant user and s0 2 Ri exists such

that kpo; s0kmax � do and kp; s0kmin � dp, then all the
tile groups R00 that are not covered in above safe region
group are valid. Otherwise, test all these R00 by calling
Verify(R00; po; p).

Proof. It is easy to see that each tile group is included in the
four types. We prove the converse-negative proposition
of this theorem.

If 1) fails the verification, there exists a tile group

hs1 2 G##j ; . . . ; si ¼ s; . . . ; sm 2 G##m i that have user ui as

the dominant users, which fails the verification.
If 2) fails, there exists s0 2 G"#j for a tile group hs12

G##1 [G"#j ; . . . ; si ¼ s; . . . ; sj ¼ s0; . . . ; sm2 G##m [ G"#m i ( ui

as u?p and user uj as u
>
po ), which fails the verification.

If 3) fails, there exists s0 2 G#"j for a tile group

hs12 G##1 [G#"1 ; . . . ; si ¼ s; . . . ; sj ¼ s0; . . . ; sm2 G##m [ G#"m i
(ui as u

>
po and user uj as u

?
p ), which fails the verification.

For 4), all tile groups R00 involving uj and uk (j 6¼ i and
k 6¼ i) as the dominant users share the same verifications.
If there exists a tile s0 2 Ri s.t. kpo; s0kmax � do and
kp; s0kmin � dp, the group R00 with s0 as the safe region for
user ui is valid in the previous verifications. Thus, R00

with s as the safe region for user ui is valid as well. Oth-
erwise, we check these remaining tile groups R00 by call-
ing Verify(R00; po; p). tu

Based on the above theorem, we design the GT-Verify
(Algorithm 4) that applies the grouping strategy. First, GT-
Verify directly call Verify(R0; po; p) to verify the new tile s
together with all other users’ safe regions in line 1-2. Other-
wise, it partitions each safe region Rj 2 R into four groups
as described previously (line 3). From line 4-11, GT-Verify
behaves as described in Theorem 2 by calling Verify
(R0; po; p) on the partitioned group.

Algorithm 4. GT-Verify(Safe region group R, User ui,
Tile s, Point p, Optimal point po)

1: ifR0 ¼ hR1; . . . ; fsgi; . . . ; Rmi is valid then
2: return true
3: partition each safe region Rj 2 R into four groups
4: if hG##1 ; . . . ; s; G##m i is invalid

or hG##1 [G"#1 ; . . . ; fsgi; . . . ; G##m [G"#m i is invalid
or hG##1 [G#"1 ; . . . ; fsgi; . . . ; G##m [G#"m i is invalid then

5: return false
6: if 9s0 2 Ri s.t. kpo; s0kmax � do and kp; s0kmin � dp then
7: return true
8: for group R00 not covered in above groups do
9: if Verify(R00; po; p) = false then

10: return false
11: return true

Index Pruning. Recall that the Divide-Verify function
invokes the Tile-Verify function (e.g., IT-Verify or GT-Verify)
for every point p 2 P 	 fpog (line 1). In fact, many of such
point p cannot become candidates to replace the optimal
meeting point po.

Motivated by this, we formulate the following theorem to
detect unpromising points that cannot become candidates.

Theorem 3. Given a safe region group R, a point p cannot yield
better dominant distance than po if for any ui 2 U ,

kp; uik > kpo;Rk> þ ryi ; (8)

where ryi is the maximum distance between user ui’s current
location and its safe region boundary.

Proof. By Equation (8), we have

kp;Rk? ¼ maxRi2Rkp;Rikmin by Equation ð3Þ
> maxui2Uðkp; uik 	 ryi Þ
> maxui2Uðkpo;Rk>Þ by Equation ð8Þ
¼ kpo;Rk>:

By Lemma 1, we conclude that p cannot replace po as the
optimal meeting point. tu
In order to retrieve the candidates from P , we tra-

verse the R-tree (of P ) while pruning candidates dis-
qualified by the above theorem. For example, in Fig. 10,
p2 is a candidate but p1 is not a candidate. Similarly, the
pruning technique can be extended to the MBRs in the
R-tree. For instance, MBR2 can be pruned since its min.

distance to u1 is larger than kpo;Rk> þ ry1. On the other
hand, MBR1 contains the potential points since it
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overlaps the circle with radius kpo;Rk> þ ry1 and that

with radius kpo;Rk> þ ry2.

5.4 Buffering Optimization for Index Access

Observe that the computation of tile-based safe regions
(Algorithm 3) invokes the Divide-Verify function multiple
times, causing frequent accesses to the R-tree (of data set P ).
In this section, we present an optimization method so that
Algorithm 3 accesses the R-tree exactly once, regardless of
the number of calls to Divide-Verify.

5.4.1 Buffering Points for Verification

Our idea is to retrieve a subset of points from the R-tree and
only use them in subsequent calls to the Divide-Verify func-
tion. Given a parameter b, we define a distance threshold �b

as follows. We will elaborate how to reduce the sensitivity
of b later.

Definition 6 (Distance threshold). The distance threshold �b

is defined as follows:

�b ¼ kp
bþ1; Ukmax 	 kpo; Ukmax

2
: (9)

where point pj denotes the j-th MAX-GNN of U .

Theorem 4 states that the best b MAX-GNNs (of U) are
sufficient for verifying a group location instance L, pro-
vided that each li 2 L is within distance �b from ui.

Theorem 4 (Buffering condition). Let P �1::j ¼ fp1ð¼ poÞ;
p2; . . . ; pjg be the set of the best j MAX-GNNs. Given a group
location instance L ¼ hl1; . . . ; lmi, if kli; uik � �b holds for
every 1 � i � m, then the MAX-GNN of L cannot be any
point in P 	 P �1::b.

Proof. Let p0 be an arbitrary point in P 	 P �1::b. Note that

kpbþ1; Ukmax � kp0; Ukmax. Combining this with equa-
tion (9), we derive the following:

max
ui2U
ðkpo; uikÞ þ 2�b � max

ui2U
ðkp0; uikÞ: (10)

From the given condition kli; uik � �b, we can obtain:
maxui2Uðkpo; uikÞ�maxui2Uðkpo; likÞ	�b and maxui2Uðkp0;
uikÞ � maxui2Uðkp0; likÞ þ �b. Combining these two

inequalities with equation (10), we get:

max
ui2U
ðkpo; likÞ � max

ui2U
ðkp0; likÞ:

Thus, the MAX-GNN of L cannot be p0. tu
We are now ready to present our buffering method. Spe-

cifically, before computing safe regions, we first retrieve the
best bþ 1 MAX-GNN of U . When we verify a tile s for user
i (Divide-Verify, Algorithm 2), we only process s if
ks; uikmax � �b. This guarantees that the condition
kli; uik � �b in Theorem 4 is always satisfied. Then, we use
the point set P �1::b (instead of the entire P ) in the verification

function. We need not access the R-tree again since we have
retrieved P �1::bþ1 (which contains P �1::b).

5.4.2 Reducing the Sensitivity of Parameter b

Observe that the parameter b exhibits a tradeoff between
the verification cost and the extent of safe regions. A small b
limits the extent of safe regions significantly (due to the dis-
tance threshold �b). To avoid overly small safe regions, we
recommend to use a sufficiently large b. 5 However, the ver-
ification cost is directly proportional to b.

In the following, we provide an efficient implementa-
tion (Algorithm 5) whose verification cost is less sensitive
to b. Now, we consider all b possible distance thresholds:
�1; �2; . . . ; �b. To reduce the verification cost, we pick the
smallest distance threshold �z such that it satisfies the
condition of Theorem 4 for the current safe region group
R and the new tile s. This can be implemented efficiently
in Oðlog bÞ time by binary search (line 2). If such a dis-
tance threshold �z cannot be found, then the verification
returns false as the new tile s violates the condition of
Theorem 4.

Algorithm 5. Buffer-Divide-Verify (Safe region group R,
User ui, Tile s, Optimal point po, Set P �1::bþ1, Level L)

1: dist maxfkui; skmax;maxRj2Rkuj; Rjkmaxg
2: find the minimum slot z such that dist � �z " binary

search
3: if no such z exists then
4: return false
5: 8 p 2 P �1::z 	 fpog; Tile-Verify (R; ui; s; p; p

o) is true then
6: Ri  Ri [ fsg
7: return true
8: apply lines 4-10 of Algorithm 2

6 SUM-OPTIMAL MEETING POINT

In this section, we study a problem variant for the sum-opti-
mal meeting point, which aims to minimize the sum of dis-
tances traveled by users, rather than their meeting time. We
call this problem as Sum-optimal Meeting Point Notification
(Sum-MPN). We first provide a formal definition for this
problem, and then present extensions of our solutions for
this problem.

6.1 Problem Definition

We first provide the definitions for the sum distance and the
sum-optimal meeting point.

Fig. 10. Index pruning.

5. We set b ¼ 100 based on our experimental results.
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Definition 7 (Sum distance). The sum distance from a point p
to a group of users U is

kp; Uksum ¼
X

ui2U
kp; uik:

Definition 8 (Sum-optimal meeting point). Given a group of
users U and a data set of points P , the sum-optimal meeting
point po is the point in P with the smallest kpo; Uksum. It is
also called SUM-GNN [21].

The sum-optimal meeting point is more suitable when a
group of users wishes to minimize the sum of their travel
distances (and thus their total fuel cost). As for the incen-
tive, the users in a group may agree on sharing the total fuel
cost evenly when they reach the meeting point. Specifically,
for those having fuel cost less than the average, they would
contribute the cost difference (from the average) to other
users in the group.

We illustrate an example of the sum-optimal meeting
point in Fig. 11. Assume that the user group is U ¼ fu1; u2g
and the data set is P ¼ fp1; p2g. The sum-optimal meeting
point is p1 with the value kp1; Uksum ¼ 1:5þ 9:5 ¼ 11.

The definitions for independent safe region group and
maximal safe region group (Definitions 3 and 4) are still
applicable in the context of the sum-optimal meeting point.
We proceed to extend our solutions to compute a safe
region group for the sum-optimal meeting point.

Observe that Papadias et al. [21] have studied the snap-
shot version of our problem, i.e., computing the sum-opti-
mal meeting point (called SUM-GNN in their work). In
contrast, we focus on computing safe regions for such a
meeting point.

6.2 Circular Safe Region Approach

Algorithm 1 can be easily adapted to compute a safe region
group for the sum-optimal meeting point. At line 1, we call
the “FindSumGNN” algorithm in [24]. At line 2, we com-
pute the value of rmax by Equation (11). Its correctness is
guaranteed by the following theorem.

Theorem 5 (Sum-optimal maximal circles). The maximum
radius of circles for safe regions is

rmax ¼
minp2P	fpogðkp; UksumÞ 	 kpo; Uksum

2m
: (11)

Proof. Let Ri ¼ �ðui; rÞ, a circle with radius r and center as
the current user location ui. We have: kp; Rikmax ¼
kp; uik þ r and kp;Rikmin ¼ kp; uik 	 r.

By applying the definition of safe regions for Sum-
optimal meeting point, we derive the following inequal-
ity for any point p 2 P 	 fpog:

X

ui2U
ðkpo; RikmaxÞ �

X

uj2U
ðkp;RjkminÞ;

X

ui2U
ðkpo; uik þ rÞ �

X

uj2U
ðkp; ujk 	 rÞ:

By rearranging the terms, we obtain

2m � r �
X

uj2U
ðkp; ujkÞ 	

X

ui2U
ðkpo; uikÞ;

which is equivalent to

r � kp; Uksum 	 kp
o; Uksum

2m
: (12)

Note that Equation (12) holds for any point p 2 P 	 fpog.
By taking the minimum value of all kp; Uksum, we obtain:

rmax ¼ minp2P	fpogðkp;UksumÞ	kpo;Uksum
2m . tu

6.3 Tile-Based Safe Region Approach

Algorithm 3 can be applied to compute a safe region
group for the sum-optimal meeting point. Also, we
adopt the divide-and-conquer method (Algorithm 2) to
check whether a tile s should be inserted into the safe
region Ri of user ui. It remains to discuss how to extend
the optimizations in Sections 5.3 and 5.4 for the sum-
optimal meeting point.

6.3.1 Group Tile Verification

Let hRijmi¼1i be a valid safe region group obtained so far.
Given a new tile s for user ux, we want to verify efficiently
whether the above safe region group is valid after inserting
s into Rx. Let L ¼ hl1; . . . ; lmi be a group location instance,
where lx 2 s and li 2 Ri for all i 6¼ x.

Specifically, we want to verify that, for every instance of
users’ locations L (as stated above), whether kpo; Lksum �
kp0; Lksum holds for every non-result point p0 2 P 	 fpog.
We define the comparison function F ðp0; po; LÞ as

F ðp0; po; LÞ ¼ kp0; Lksum 	 kpo; Lksum
¼

X

li2L
ðkp0; lik 	 kpo; likÞ: (13)

The verification returns false if F ðp0; po; LÞ < 0 for some
non-result point p0 2 P 	 fpog and some group location
instance L.

For a given point p0 2 P 	 fpog, we minimize the value of
F ðp0; po; LÞ in order to check whether it can become nega-
tive. Observe that, in Equation (13), we can minimize the
term kp0; lik 	 kpo; lik for each user ui independently.

It turns out that the loci of kp0; lk 	 kpo; lk ¼ r can be
described by hyperbola curves, as shown in Fig. 12. In this
example, po ¼ ð1; 0Þ and p0 ¼ ð	1; 0Þ. Given a square tile s,
our task is to find the minimum value of kp0; lk 	 kpo; lk
among all location l of s. First, we divide the space

by the axis p0po into the upper half-plane and the lower

Fig. 11. Example for the sum-optimal meeting point.
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half-plane. Observe that, within the same half-plane, the
same hyperbola curve can be either a decreasing curve or
an increasing curve, but not both. As such, the minimum
value along a straight line must occur at either of its end
vertices. To find the minimum value of a tile s, it suffices
to compute the value kp0; vk 	 kpo; vk at: i) each corner v of
s (e.g., A,B,C,D), and ii) any intersection v between s and

the axis p0po (e.g., E, F).
This verification function is summarized as Algorithm 6.

Observe that there are redundant computations during
different calls of the algorithm (lines 6-8). We can apply
memorization techniques to avoid such redundant compu-
tations. The idea is to employm hash tables:H1; H2; . . . ; Hm.
For each user ui, the minimum Fi value for point p0 can be
maintained at the hash entry Hiðp0Þ. Then, we make two
changes to the algorithm:

� replace lines 6–8 by the statement: Fi  Hiðp0Þ
� at line 12, we also execute Hxðp0Þ  minfFx;Hxðp0Þg

because the tile s will be inserted into the safe region
of user ux

Algorithm 6. Sum-GT-Verify(Safe region group R, User
ux, Tile s, Point p, Optimal point po)

1: Fx  1
2: for each vertex or intersection v of tile s do
3: Fx  minfFx; kp0; vk 	 kpo; vkg
4: for each user ui except ux do
5: Fi  1
6: for each tile si of safe region Ri do
7: for each vertex or intersection v of tile si do
8: Fi  minfFi; kp0; vk 	 kpo; vkg
9: if

P
i¼1::m Fi < 0 then

10: return false
11: else
12: return true

6.3.2 Index Pruning

Since it is expensive to invoke the above verification func-
tion for every point p 2 P 	 fpog, we derive the following
theorem to detect unpromising points that cannot become
candidates.

Theorem 6. Given a safe region group R, a point p cannot yield
better result than po if,

kp; Uksum > kpo; Uksum þ 2 �
X

ui2U
ryi ; (14)

where ryi is the maximum distance between user ui’s current
location and its safe region boundary.

The above pruning technique can also be extended to the
MBRs in the R-tree. For instance, a MBR can be pruned if
the value

P
ui2U dminðMBR; uiÞ is larger than the right-side

of Equation (14).

6.3.3 Buffering Optimization for Index Access

The same buffering technique in Section 5.4 can also be
applied here, except that the distance threshold �b is now
obtained from Equation (15) in the following theorem. The
proof is similar to that of Theorem 4 and it is omitted due to
lack of space.

Theorem 7 (Sum-optimal buffering condition). Without
loss of generality, assume that point pj is the jth SUM-GNN
of U , and the set P �1::j contains the best j SUM-GNNs. Given a

parameter b, we define the distance threshold �b as follows:

�b ¼ kp
bþ1; Uksum 	 kpo; Uksum

2m
: (15)

Given an instance of users’ locations L ¼ hl1; . . . ; lmi, if
kli; uik � �b holds for every 1 � i � m, then the SUM-GNN
of L cannot be any point in P 	 P �1::b.

7 EXPERIMENTS

7.1 Settings

In this section, we experimentally evaluate the performance
of our proposed techniques. All methods were imple-
mented in C++ and the experiments were performed on an
Intel Core2Duo 2.66 GHz CPU machine with 8 GB memory,
running on Ubuntu 10.04.

Data set and query workload.We obtain a real data set from
www.pocketgpsworld.com, which consists of N ¼ 21;287 POIs.
We simulate the movement of query users by using both
synthetic and real trajectories: i) GeoLife, a real trajectory set
of taxi drivers released by Microsoft6; ii) Oldenburg, a syn-
thetic trajectory set generated from Brinkhoff’s generator
[27]. Each trajectory set consists of 60 trajectories that have
above 10,000 timestamps. We partition each trajectory set
into 10 user groups and then report the average perfor-
mance on these user groups.

Measures. We evaluate our performance in three aspects:
i) update frequency, which reflects the frequency for users to
issue update messages to the server, and ii) average running
time, which is the computation time for safe regions per
update. iii) Communication cost (packet count), measures the
number TCP packets for messages sent between the server
and the clients. A packet contains at most ð576	 40Þ=8 ¼ 67
(double-precision) values since the typical maximum trans-
mission unit (MTU) over a network is 576 bytes and a
packet has a 40-byte header.7 To represent a shape, we use

Fig. 12. Hyperbola curves for kp0; lk 	 kpo; lk ¼ r.

6. www.microsoft.com.
7. http://tools.ietf.org/html/rfc879.
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three values per a circle, three values per a square, and four
values per a rectangle.

Configurations. We study our proposed solutions with
different variations. Circle denotes the Circle-MSR method
in Section 4. Tile denotes the Tile-MSR method in Section 5
using undirected ordering on tiles and lossless compression in
[12]. Tile-D is a variant of Tile using directed ordering on
tiles. Both Tile and Tile-D apply the GT-Verify function and
index pruning technique. Table 2 presents the default val-
ues and ranges of parameters in our experiments.

Our proposed methods require two extra parameters: i)
the tile limit a, and ii) the split limit L. In our preliminary
work [12], we have investigated the performance of our
methods with respect to these parameters. As the default
setting in [12], we set a ¼ 30 and L ¼ 2 as they achieve a
good trade-off between the the running time and the update
frequency.

7.2 Scalability Experiments (for MPN)

In this section, we compare the circle-based safe regions and
the tile-based safe regions.

Effect of user group size m. We vary the group size m in
experiments on both Geolife and Oldenburg (see Fig. 13). The
update frequency of Tile is less than half of Circle. Tile-D
reduces the update frequency further, since it applies the
directed ordering and covers more tiles for future possible
locations. Due to the lossless safe-region compression tech-
nique in [12], our methods require only a few packets per
sending a tile-based safe region. Thus, our methods still
incur lower communication cost than Circle, as shown in
Figs. 13c and 13d. As expected, the running time grows
with m in Figs. 13e and 13f. Circle is efficient to compute but
has a larger update frequency than tile-based safe regions;
our tile-based safe regions are much more effective in opti-
mizing the update frequency. Among these methods, Tile-D
is the best in terms of update frequency.

Effect of data size n.We vary the data size (i.e., the number
of POIs) in Fig. 14. As depicted in both data sets, the update
frequencies of the methods increases because more POIs
become as the candidates for the optimal points. Besides,
Circle has a larger increase than those of methods based on
the tile-based safe regions. Note that the communication
costs of the methods are proportional to their corresponding
update frequencies.

Effect of user speed.We proceed to vary the speed of users
in this experiment. Recall that previous experiments use
trajectories with 10,000 timestamps traveling at the speed
limit V . To ensure consistent trajectories, when we generate
trajectories for the speed x � V , we pick the trajectory seg-
ments under the first x fraction of timestamps and then

sample 10,000 locations uniformly on those segments.
Fig. 15 shows the update frequency and the communication
cost of the methods with respect to the speed (x � V ). Intui-
tively, as users move faster, they escape their safe regions
quickly. Thus, all the methods have a large update fre-
quency and communication cost at a high speed.

Effect of buffering parameter b. We proceed to study the
effectiveness of the buffering optimization technique (see
Section 5.4). Since Tile-D outperforms Tile, we do not
include Tile in this experiment. Tile-D-b denotes the version

TABLE 2
Parameter Values in Experiments

Parameter Default Range

Data size n N 0:25N; 0:5N; 0:75N; 1:0N
User group sizem 3 2; 3; 4; 5; 6

User speed V (speed limit) 0:25V; 0:5V; 0:75V; 1:0V

Tile limit a 30 /
Split level L 2 /

Fig. 13. Vary group sizem.

Fig. 14. Vary POI number n, as a fraction of data sizeN.
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of Tile-D using the buffering optimization, which requires
the parameter b. Fig. 16 plots the performance of the meth-
ods as a function of b. The CPU time of Tile-D-b is lower
than that of Tile-D by an order of magnitude. This is because
Tile-D-b avoids multiple accesses on the object R-tree. Recall
that b determines a distance threshold (in Definition 6) that
limits the extent of safe regions. When b increases, Tile-D-b
obtains larger safe regions and thus its update frequency
drops. Furthermore, its update frequency converges fast to
that of Tile-D. We conclude that it is not hard to tune the

parameter b. In general, it is safe to set b to any value
between 10 and 100.

7.3 Scalability Experiments (for Sum-MPN)

This section studies the scalability of our methods for the
Sum-MPN problem.

Effect of user group size m. We vary the group size m in
experiments on both data sets in Fig. 17. The trend is sim-
ilar to that in corresponding experiments in the previous
subsection. Again, tile-based safe region methods are

Fig. 16. Vary buffering parameter b.

Fig. 15. Vary speed, as a fraction of speed limit V .

Fig. 17. Vary group sizem ( for Sum-MPN).

Fig. 18. Vary POI number n ( for Sum-MPN ), as a fraction of data
sizeN.
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effective in optimizing the update frequency and the com-
munication cost.

Effect of data size n. Next, we vary the data size (i.e., the
number of POIs) in Fig. 18. When n is large, the data density
in the space is high so all the methods have high update fre-
quency. Nevertheless, the update frequency and the com-
munication cost of tile-based methods increase at a slower
rate than the circle-based method.

Effect of buffering parameter b. Fig. 19 shows the perfor-
mance of Tile-D and Tile-D-b. Again, the trend is similar to
that in corresponding experiments in the previous subsec-
tion. Tile-D-b achieves a much smaller CPU time, while its
update frequency stays close to Tile-D for a wide range of b
values. Thus, it is safe to tune the parameter b to any value
between 10 and 100.

7.4 Summary of Experimental Results

Circle has the lowest running time, but it incurs higher
update frequency and communication cost (packet count)
than our tile-based methods.

Tile-D achieves the best update frequency and communi-
cation cost. Furthermore, our buffering optimization offers
a substantial saving in the running time while only slightly
increases the update frequency.

8 CONCLUSION

In this paper, we focus on minimizing the communication
cost for monitoring the optimal meeting point for a group of
users. We propose the concept of independent safe region
group, in order to reduce the communication frequency
of users. We design efficient algorithms and various

optimizations to compute these safe regions. Also, we have
studied a problem variant of the optimal meeting point
based on the sum of distances.

In future, we plan to extend our techniques to the road
network space. For Circle, we may replace a circular region
by a range search region over road segments. For Tile, we
may replace recursive tiles by recursive partitions of the
road network. Also, we will develop a cost model for esti-
mating the update frequency, the communication cost, and
the running time of our methods.
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