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Abstract—A novel optimization method is proposed to solve
the probabilistic mean square error (MSE) constrained mul-
tiuser multiple-input single-output (MU-MISO) transceiver de-
sign problem. Since the probabilistic MSE constraints cannot be
expressed in closed-form under Gaussian channel uncertainty,
existing probabilistic transceiver design methods rely on proba-
bility inequality approximations, resulting in conservative MSE
outage realizations. In this paper, based on local structure of
the feasible set in the probabilistic MSE constrained transceiver
design problem, a set squeezing procedure is proposed to realize
tight MSE outage control. Simulation results show that the MSE
outage can be realized tightly, which results in significantly
reduced transmit power compared to the existing inequality
based probabilistic transceiver design.

Index Terms—Probabilistic MSE constrained transceiver de-
sign, Tight probabilistic control, Channel uncertainty.

I. INTRODUCTION

Due to diverse nature of data (e.g., video call, VoIP, online

game, etc) simultaneously transmitting through modern hetero-

geneous wireless networks [1], [2], different quality of services

(QoS) are needed from different users. Since the mean square

error (MSE) of data can be mapped to the bit error rate [3],

using MSE as a QoS criterion is popular in transceiver design

[5]–[8], and is also the focus of this paper.

However, the ideal case of exact MSE control is hindered

by channel uncertainty [4], [6]. By modeling the channel

uncertainties lie in a bounded region, MSE constrained ro-

bust transceiver design are proposed to tackle the worse-case

error in [6], [7]. On the other hand, under Gaussian channel

uncertainty, bounded robust optimization is not suitable, and

probabilistic MSE constrained transceiver design provides a

soft MSE control. Previous probabilistic transceiver design

schemes only provide approximation solutions by using differ-

ent probability inequalities, e.g., Markov inequality and duality

based method for probabilistic MSE constrained transceiver

design [8], Vysochanskii-Petunin inequality for probabilistic

MSE constrained power allocation [9]. However, owing to the

restricted feasible set in those safe approximations, the MSE

requirement of these designs are over-satisfied, which leads to

unnecessarily high transmit powers.

In this paper, a tight probabilistic MSE control is achieved

in MU-MISO transceiver design under Gaussian channel

uncertainty. Facing the challenge of intractable probabilistic

constraints, a successive method is proposed to reconstruct the

feasible set. In particular, we first locate a feasible subset based

on the moment information of the channel uncertainty. Then,

a joint feasible subsets refinement and sequential optimization

is proposed to analyze the unexplored feasible subsets. The

proposed set squeezing procedure ensures the transmit power

decrease monotonically and the realized outage probability

approach the outage target. Simulation results show that the

probabilistic MSE requirement are fulfilled tightly, and the

tight MSE outage control in turns provides excellent perfor-

mance on transmit power compared to existing approximation

based probabilistic transceiver design.

The rest of this paper is organized as follows. In Section II,

the probabilistic transceiver design problem is formulated and

a feasible subset is located. Joint feasible subsets refinement

and optimization is described in Section III. The computation

details of the set squeezing procedure is presented in Section

IV. Simulation results are presented in Section V, and conclu-

sions are drawn in Section VI.

Notation: In this paper, E (·), (·)T , and (·)H denote sta-

tistical expectation, transposition and Hermitian, respectively.

In addition, ‖ · ‖2 and ‖ · ‖F refer to the norm of a vector

and Frobenius norm of a matrix, respectively, while vec (·)
stands for the vectorization from a matrix into a column vector.

Symbol Diag (x) denotes a diagonal matrix with vector x on

its diagonal, and IK is a K ×K identity matrix.

II. PROBLEM FORMULATION AND FINDING A FEASIBLE

SUBSET

The downlink MU-MISO system consists of one base

station (BS) equipped with N transmit antennas and K single-

antenna active users. Let G be the N×K precoding matrix at

BS, hk and 1/ak (with ak>0 and the phase rotation factor are

embedded in the precoder [6]) are the N×1 channel vector and

the equalizer of the kth user, respectively. The Gaussian noise

nk at the kth user is distributed as CN (0, δ2k). With transmitted

K × 1 data vector s, the recovered data at the kth user is

ŝk =
1

ak
(hT

k Gs+ nk). (1)
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Since E(sks
H
k ) = IK and the transmitted data are independent

of the noise, the MSE of the kth user’s data is

MSEk([vec(G)T, 1/a1,· · ·, 1/aK]T
︸ ︷︷ ︸

w

,hk)

= Esk,nk

(
(eTk s− ŝk)(e

T
k s− ŝk)

H
)

(2)

= ‖1/akh
T
kG− eTk ‖

2
2 + (δk/ak)

2, (3)

where the K × 1 vector ek = [0, · · ·, 1, 0, · · ·, 0]T with the 1

appears at the kth position [6], [8].

Since the channel cannot be perfectly known in practice,

the channel is modelled as hk = ĥk + xk, where ĥk is the

estimated channel and xk is the Gaussian channel uncertainty

distributed as CN (0,Σk). Due to the channel uncertainty, the

MSEk is also a random variable. Therefore, the transceiver

design aims at minimizing transmit power at the BS under

probabilistic MSE constraints for different users is formulated

as

G,{ak}K
k=1

min ‖G‖F

s.t. Pr{MSEk(w,hk)≤εk} ≥ 1− pk, ∀k∈K,
(4)

where K={1, · · · ,K}, εk and pk are the MSE target and the

outage probability at the kth user, respectively.

Owing to the unknown G and ak, and the nonlinear

relationship between MSEk and hk as shown in (3), the

probabilistic MSE constraints in (4) cannot be expressed in

closed-form, and subsequently the feasible set of problem

(4) W0 is not directly available. A usual way to tackle

the problem is to find a tractable upper bound function of

Pr{MSEk(w,hk) ≥ εk}. In this paper, we take the supremum

of Pr{MSEk(w,hk) ≥ εk} under moment constraints as the

upper bound. Then a feasible subset of problem (4) can be

obtained from the feasible set of the following problem

G,{ak}K
k=1

min ‖G‖F

s.t.
E(xk)=0

E(xkx
H
k )=Σk

sup Pr{MSEk(w, ĥk + xk) ≥ εk} ≤ pk, ∀k∈K.

(5)

According to [8], the problem (5) is equivalent to the following

convex problem

G,{ak,ck,β̌k,Žk}K
k=1

min ‖G‖F

s.t. Tr(ŽkΣ̃k)≤pkβ̌k, β̌k>0, Žk�0,
[
ak 1
1 ck

]
�0, ∀k∈K

[
Žk+Diag([0, akεk−ckδ

2
k−β̌k]) Q̄H

k

Q̄k akIK

]

�0, ∀k∈K,

(6)

where Σ̃k :=
[
Σk 0

0
T 1

]

, Q̄k := [GT , GT ĥk−akek]. Therefore,

any feasible solution (G, {1/ak}Kk=1) in (6) is a feasible

solution of (4). Note that the semidefinite programming (SDP)

problem (6) can be solved by standard numerical optimization

tool [14].

III. JOINT FEASIBLE SUBSETS REFINEMENT AND

OPTIMIZATION

Since the upper bound function in (5) is only a conservative

bound, the obtained feasible set is a conservative feasible

subset of (4). In this section, the local structure of a given

feasible solution is utilized systematically to explore other

feasible subset of (4). Since the support of the Gaussian

random channel hk is CN , with any given feasible transceiver

solution w̄ of (4), i.e., Pr{MSEk(w̄,hk) ≤ εk} ≥ 1 − pk, a

support subset of the random channel hk is

Hk(w̄) := {hk|MSEk(w̄,hk) ≤ εk}. (7)

Then, a feasible subset of problem (4) can be generated as

follows,

W(w̄) :=
{
w|{MSEk(w,hk)≤ εk, ∀hk ∈ Hk(w̄)}Kk=1

}
. (8)

The reason for W(w̄) being a feasible subset of W0 is shown

below.

Property 1. w̄ ∈ W(w̄) ⊆ W0

Proof. According to the definition Hk(w̄) :=
{hk|MSEk(w̄,hk) ≤ εk}, the constraint MSEk(w̄,hk) ≤ εk
is automatically satisfied for all hk ∈ Hk(w̄). Combining

with the definition in (8) W(w̄) :=
{
w|{MSEk(w,hk) ≤

εk, ∀hk ∈ Hk(w̄)}Kk=1

}
, then we directly have w̄ ∈ W(w̄).

Furthermore, any w in W(w̄) satisfies the following condition

Pr{MSEk(w,hk) ≤ εk}

=

hk∈Hk(w̄)

∫

1Fk
(hk) · f(hk)dhk +

hk∈{CN\Hk(w̄)}

∫

1Fk
(hk) · f(hk)dhk (9)

=

hk∈Hk(w̄)

∫

1 · f(hk)dhk

︸ ︷︷ ︸

=Pr{MSEk(w̄,hk)≤εk}≥1−pk

+

hk∈{CN\Hk(w̄)}

∫

1Fk
(hk) · f(hk)dhk

︸ ︷︷ ︸

≥0

(10)

≥ 1− pk, ∀k ∈ K, (11)

where 1Fk
(hk) is an indicator function of the set Fk :=

{hk|MSEk(w,hk) ≤ εk}. Therefore, any w in W(w̄) is a

feasible solution of (4), i.e., W(w̄) ⊆ W0.

Therefore, each feasible solution w̄ of (4) can generate

a feasible subset W(w̄) which contains w̄ itself. Although

optimization over W(w̄) may find better solution than w̄, a

larger feasible subset than W(w̄) can be obtained as follows.

From the coupling effect between the support subset Hk(w̄)
and feasible subset W(w̄) in (8), it can be seen that reducing

the number of elements in the support subset Hk(w̄) may

enlarge the feasible subset W(w̄). Therefore, we consider a

squeezed support subset Hk(w̄) as

Hk(w̄, qk) :={hk|MSEk(w̄,hk)≤qk}, (12)

where qk ≤ εk, and we have

Hk(w̄, qk) ⊆ Hk(w̄). (13)

Then a set generated from Hk(w̄, qk) is constructed as

W(w̄,q) :=
{
w|{MSEk(w,hk)≤εk, ∀hk∈Hk(w̄, qk)}

K
k=1

}
,

(14)

where q = [q1, q2, · · · , qK ]T . In order to make W(w̄,q) a

feasible subset of W0, the parameters {qk}Kk=1 should be
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chosen such that for any w ∈ W(w̄,q), it must satisfy the

constraints in (4). With similar derivations to (10), it can

be established that Pr{MSEk(w,hk) ≤ εk} = Pr{hk ∈
Hk(w̄, qk)}+c, where c is always nonnegative. Since increasing

qk would decrease Pr{hk∈Hk(w̄, qk)}, in order to guarantee

Pr{MSEk(w,hk)≤εk}≥1− pk, the maximum qk is chosen

to satisfy Pr{hk∈Hk(w̄, qk)}=1− pk.

To reveal the inter-relationship between W(w̄) and

W(w̄,q), we consider

W(w̄,q) ∩W(w̄)

=
{

w|{MSEk(w,hk) ≤ εk, ∀hk ∈ Hk(w̄, qk)}
K
k=1,

{MSEk(w,hk) ≤ εk, ∀hk ∈ Hk(w̄)}Kk=1

}

(15)

=
{
w|{MSEk(w,hk) ≤ εk, ∀hk ∈ Hk(w̄)}Kk=1

}
(16)

=W(w̄), (17)

where the second equality comes from the inclusive relation-

ship in (13) and the final equality comes from the definition

in (8). Therefore, an important property of those constructed

feasible subsets is

w̄ ∈ W(w̄) ⊆ W(w̄,q) ⊆ W0. (18)

That is, the squeezed support sets {Hk(w̄, qk)}Kk=1 in (12)

enlarge the corresponding feasible subset W(w̄,q) in (14).

Therefore, the complementary phenomenon between support

subsets and feasible subset reveals the duality property locally.

Owing to w̄∈W(w̄,q), better feasible solution than w̄ can

be found via min
{
‖G‖F |w∈W(w̄,q)

}
. With the obtained

new solution, we can construct another feasible subset of W0

and perform another optimization, and so on. That makes iter-

ative improvement of the objective function becomes possible.

The proposed set squeezing procedure begins with finding a

feasible solution w[0]=[vec(G)T, 1/a1,· · ·, 1/aK ]T from (6) or

any other safe approximation, followed by iterations between

the following two steps until convergence.

• P-step: Finding q
[i]
k ≤εk such that Pr{MSEk(w

[i],hk)≤

q
[i]
k }=1− pk.

• O-step: Solving the ith subproblem min
{
‖G‖F |

{MSEk(w,hk)≤εk, ∀hk∈Hk(w
[i], q

[i]
k )}Kk=1

}
, denoting

the solution as w[i+1]. Increment i by one.

Lemma 1. If w[i] generated from the (i−1)th O-step does not

activate the kth inequality constraint in the original problem

(4), then w[i] does not activate the kth inequality constraint

of the ith O-step subproblem.

Proof. If the (i − 1)th O-step solution w[i] does not acti-

vate the kth constraint in (4), i.e., Pr{MSEk(w
[i],hk) ≤

εk} > 1 − pk, the parameter q
[i]
k < εk is needed to make

Pr{MSEk(w
[i],hk)≤ q

[i]
k }=1 − pk at P-step. Together with

the definition Hk(w
[i], q

[i]
k ) = {hk|MSEk(w

[i],hk) ≤ q
[i]
k },

we have MSEk(w
[i],hk) ≤ q

[i]
k < εk is satisfied for all

hk ∈Hk(w
[i], q

[i]
k ). Therefore, w[i] does not activate the kth

constraint MSEk(w
[i],hk) ≤ εk in the ith O-step subprob-

lem.

By using Lemma 1, the convergence property of the set

squeezing procedure is presented as follows.

Proposition 1. If the optimal solution of O-step subproblem is

obtained, the set squeezing procedure converges and the limit

solution activates all constraints in problem (4).

Proof. First, since w[i] ∈ W(w[i],q) is established in

(18), the optimal solution of O-step subproblem guarantees

‖G[i+1]‖F ≤ ‖G[i]‖F . With the monotonic decreasing prop-

erty of ‖G‖F , and the transmit power is bounded below by

zero, the convergence of set squeezing procedure is guaran-

teed.

Second, if w[i] does not activate the kth constraint in the

original problem (4), according to Lemma 1, w[i] does not

activate the kth constraint ‖hT
kG

[i]/a
[i]
k − eTk ‖

2
2 + (δk/a

[i]
k )2≤

εk in ith O-step subproblem. This implies directly scaling

down the kth column of G[i] , which becomes G[i+1], until

‖hT
kG

[i+1]/a
[i]
k −eTk ‖

2
2+(δk/a

[i]
k )2=εk would reduce transmit

power strictly, hence ‖G[i+1]‖F < ‖G[i]‖F becomes possible.

Furthermore, scaling down the kth column of G[i] reduces

other users’ MSEs, and other MSE constraints would remain

valid. Therefore, the set squeezing procedure with optimal

solution in successive O-steps would not stop, as long as any

of the user’s constraint in (4) is not active. That is, the limit

solution activates all constraints in (4).

The proposed set squeezing procedure can be generalized to

any quadratically perturbed chance-constrained programming

with continuous uncertainty distributions [10].

IV. COMPUTATION DETAILS OF THE SET SQUEEZING

PROCEDURE FOR MU-MISO TRANSCEIVER DESIGN

The details of P-step and O-step are derived in this section.

A. P-step

For a given feasible solution (G[i], {1/a
[i]
k }Kk=1), the P-step

is to find the quantile q
[i]
k such that

Pr
(

‖hT
kG

[i]/a
[i]
k −eTk ‖

2
2+(δk/a

[i]
k )2≤q

[i]
k

)

=1−pk, (19)

which can be solved by probability evaluation with bisection

candidate q
[i]
k ∈ [(δk/a

[i]
k )2, εk]. Since hk∼CN (ĥk,Σk), the

normalization and singular value decomposition

(G[i])T /a
[i]
k (Σk/2)

1
2=Uk[Diag([σ1, ..., σK ]),0K×(N−K)]V

H
k ,

(20)

where the singular values {σj}Kj=1 are arranged in descending

order. Therefore, the statistical representation of the random

variable in (19) is

‖(G[i])T /a
[i]
k hk−ek‖

2
2 ∼

K∑

j=1

σ2
jχ

2
(|ηj|2,2)

, (21)

which is a weighted sum of independent noncentral

chi-squared variables χ2
(|ηj |2,2)

with two degrees of

freedom, and ηj is the j th element of the vector

[IK,0K×(N−K)]V
H
k (Σk/2)

−1
2ĥk−Diag([1/σ1, ..., 1/σK ])UH

k ek.
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Therefore, the cumulant-generating function (CGF) of

‖hT
kG

[i]/a
[i]
k −eTk ‖

2
2 is

κ(t) =

K∑

j=1

(
|ηj |

2σ2
j t

1− 2σ2
j t

− ln(1− 2σ2
j t)), (22)

with its domain (−∞, 1/(2σ2
1)).

With the CGF in (22), the left side of (19) can be evaluated

using the second-order saddlepoint approximation [11, p. 53]

Pr
(

‖hT
kG

[i]/a
[i]
k −eTk ‖

2
2≤q

[i]
k −(δk/a

[i]
k )2

)

≃Φ(u)+φ(u)·{
1

u

−
1

v
− v−1(

O4

8
−

5

24
(O3)

2) + v−3 +
O3

2v2
− u−3},

(23)

where Φ(·) and φ(·) are the cumulate distribution function

and probability density function of standard normal distri-

bution, u = sign(t0)

√

2
(
t0 · (q

[i]
k −(δk/a

[i]
k )2)− κ(t0)

)
, v =

t0
√

κ′′(t0), On = κ(n)(t0)/{κ
′′

(t0)}n/2 with n = {3, 4}, and

the saddlepoint t0 is calculated through

κ′(t0)=q
[i]
k −(δk/a

[i]
k )2 (24)

by bisection in the domain t0∈(−∞, 1/(2σ2
1)). Note that the

uniqueness of the saddlepoint is guaranteed by the fact that

κ′′(t) > 0 in its domain, i.e., κ′(t) is monotonically increasing.

Since the relative error by using (23) can be calculated

according to the analysis in [12], pre-distorting the relative

error in the outage target ensures tight outage probability

control even under saddlepoint approximation error.

B. O-step

With the quantile q
[i]
k obtained in the P-step, the correspond-

ing subproblem in O-step is

G,{ak}K
k=1

min ‖G‖F

s.t. MSEk(w,hk)≤εk, ∀hk: MSEk(w
[i],hk)≤q

[i]
i , ∀k∈K.

(25)

After applying the S-lemma [13, p.23], (25) is equivalent to

the problem

G,{ak,λk}K
k=1

min ‖G‖F

s.t. λkA
[i] +Diag([0, akεk − δ2k/ak])−

1
ak
QH

k Qk� 0, ∀k∈K

λk ≥ 0, ak > 0, ∀k∈K,
(26)

where Qk :=[GT ,−akek], A
[i]
k =(Q

[i]
k )HQ

[i]
k −Diag([0, q

[i]
k −

(δk/a
[i]
k )2) with Q

[i]
k=[(G[i])T /a

[i]
k ,−ek]. Furthermore, with

Schur complement, (26) is transformed into

G,{ak,λk}K
k=1

min ‖G‖F

s.t.

[
λkA

[i] +Diag([0, akεk − δ2k/ak]) QH
k

Qk akIK

]

� 0, ∀k∈K

λk ≥ 0, ak > 0, ∀k∈K.
(27)

Finally, by introducing slack variable ck with ck ≥ 1/ak, (27)

is equivalent to [8]

G,{ak,ck,λk}K
k=1

min ‖G‖F

s.t.

[
λkA

[i] +Diag([0, akεk − ckδ
2
k]) QH

k

Qk akIK

]

� 0, ∀k∈K

λk ≥ 0,
[
ak 1
1 ck

]
�0, ∀k∈K,

(28)

which is a convex SDP problem.

C. Summary

The proposed set squeezing procedure for the probabilistic

beamforming problem starts with a feasible solution from (6),

and follows iterations between (23) for P-step and (28) for O-

step until the difference between successive transmit power is

smaller than a pre-defined threshold. Since the optimal solution

of O-step subproblem is obtained in (28), the limit solution

activates all constraints of (4) according to the Proposition 1.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, the performance of the set squeezing pro-

cedure is illustrated under different MSE requirements. The

downlink channel for each user is modeled as hk =R
1
2
t hw,

where the elements of hw are standard complex Gaussian vari-

ables, and the channel correlation matrix is [Rt]ij=ρ
|i−j|
t with

correlation coefficient ρt=0.2. The BS is equipped with four

antennas and there are two active users (i.e., N = 4,K = 2),

and the variance of the complex Gaussian noise at every

antenna is δ2k=0.01. The MSE requirement for the second user

is fixed as ε2=0.2 and p2=10%, while that for the first user

is specified in the figures presented below, where each point

is an average of 103 independent simulation runs. The relative

power difference |‖G[i]‖2F − ‖G[i+1]‖2F |/‖G
[i]‖2F ≤ 10−3

is used to terminate the set squeezing procedure. For the

set squeezing procedure, the bisection accuracy in finding

the quantile q
[i]
k is 0.01%, and the bisection accuracy for

the saddlepoint t0 is 10−8. To backoff the relative error of

the saddlepoint method, all outage targets are predistorted

pk/1.015 [12]. With the linear minimum mean square error

channel estimator, the channel estimation error covariance

matrix is Σk =
(
R−T

t + P 2
t /δ

2
nIN

)−1
[8]. In the following,

the pilot-to-noise ratio is set as P 2
t /δ

2
n=102 (i.e., 20dB).

The convergence performance of the set squeezing proce-

dure is illustrated at Fig. 1 with p1 = 10%. Fig. 1(a) shows that

the outage probabilities gradually approach the outage target,

irrespective to the MSE requirement value ε1. Furthermore, it

is noticed that the outage probabilities is very close to the 10%

outage target at the second iteration, the remaining space to

reduce the transmit power is small, and therefore the transmit

powers in Fig. 1(b) decrease slowly after the second iteration.

In Fig. 2, we compare the performance of the set squeezing

procedure to that of the Vysochanskii-Petunin (V-P) inequality

based method [9] with ε1 = 0.1 under different outage re-

quirement p1. For fair comparison, the channel realizations are

feasible for both methods. It is observed from Fig. 2(a) that the

outage probability target is realized tightly by the set squeezing
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Fig. 1. The convergence performance of the set squeezing procedure under
p1 = 10%.

procedure over a wide range of outage target p1, while the V-P

method reaches a much conservative outage probability. As a

result of the tightly controlled outage performance from the

set squeezing procedure, 0.5 to 1.5 dB transmit power gain is

achieved compared to the V-P method as shown in Fig. 2(b).

Note that the nonmonotonic transmit power behavior in Fig.

2(b) is due to the following two contrasting reasons. First,

since only the good channel realizations with high channel

gain are feasible at low outage scenario, the transmit power

is small when p1 is small. Second, as the outage requirement

p1 increases, the QoS requirement becomes less stringent and

the transmit power should decrease.

VI. CONCLUSIONS

In this paper, a novel optimization method was proposed

to achieve tight probabilistic MSE outage control in MU-

MISO transceiver design under Gaussian channel uncertainty.
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Fig. 2. Achieved MSE outage probability and transit power versus different
outage targets under ε1 = 0.1.

First, based on the moment information of channel uncertainty,

a feasible solution of the probabilistic transceiver design

problem was obtained. Then, with the proposed set squeezing

procedure, the local structure of the obtained feasible solution

is utilized systematically to explore other feasible subsets of

the original problem, leading to tight outage control. Simu-

lation results showed that, as a result of tight MSE outage

control, significant transmit power was saved compared to the

existing approximation based probabilistic transceiver design.
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