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Abstract—This paper presents a distributed hybrid power
state estimator, with measurements from both the traditional
supervisory control and data acquisition (SCADA) system and
the newly invented phasor measurement units (PMUs). The
proposed distributed algorithm, which jointly estimates the power
states and PMU phase errors, only involves local computations
and limited information exchange between neighboring areas,
thus alleviating the heavy communication burden compared
to the centralized approach. Simulation results show that the
performance of the proposed algorithm is very close to that
of centralized optimal hybrid state estimates without sampling
phase error.

I. INTRODUCTION

Due to the time-varying nature of power generation and
consumption, state estimation in the power grid has always
been a fundamental function for real-time monitoring of
electric power networks [1]. The knowledge of the state vector
at each bus, i.e., voltage magnitude and phase angle, enables
the energy management system (EMS) to perform various
crucial tasks, such as bad data detection, optimizing power
flows, maintaining system stability and reliability, etc.

In the past several decades, the supervisory control and data
acquisition (SCADA) system has been universally established
in the electric power industry, and installed virtually in all
EMSs around the world to manage large and complex power
systems. In SCADA systems, the voltage magnitude, power
injection at each bus and current flow between neighbouring
buses are measured and then sent to a master terminal unit to
perform state estimation. As these measurements are nonlinear
functions of the power states, the state estimation programs are
formulated as iterative reweighted least-squares solution [2].

The invention of phasor measurement units (PMUs) [3] has
made it possible to measure power states directly, which is
infeasible with SCADA systems. Despite the advantage of
PMUs over SCADA, the traditional SCADA system cannot
be replaced by a PMU-based system overnight. The reason
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is two fold. Firstly, in practice there are only sporadic PMUs
deployed in the power grid due to expensive installation costs.
Besides, the SCADA system involves long-term significant
investment, and is currently working smoothly in existing
power systems. Consequently, hybrid state estimation with
both SCADA and PMU measurements is appealing. One
straightforward methodology is to simultaneously process both
SCADA and PMU raw measurements [4]. However, this
simultaneous data processing, which leads to a totally different
set of estimation equations, requires significant changes to
existing EMS/SCADA systems [5], and is not preferable
in practice. In fact, incorporating PMU measurements with
minimal change to the SCADA system is an important research
problem [5].

In addition to the challenge of integrating PMU with S-
CADA data, there are also other practical concerns that need
to be considered. Firstly, it is usually assumed that PMUs
provide synchronized sampling of voltage and current signals
[6] due to the Global Positioning System (GPS) receiver
included in the PMU. However, tests [7] provided by a joint
effort between the U.S. Department of Energy and the North
American Electric Reliability Corporation show that PMUs
from multiple vendors can yield up to ±277.8µs sampling
phase errors (or ±6◦ phase error in a 60Hz power system)
due to different delays in the instrument transformers used
by different vendors. Sampling phase mismatch in PMUs will
make the state estimation problem nonlinear, which offsets the
original motivation for introducing PMUs. It is important to
develop state estimation algorithms that are robust to sampling
phase errors.

Secondly, with fast sampling rates of PMU devices, a
centralized approach, which requires gathering of measure-
ments through propagating a significant computational large
amounts of data from peripheral nodes to a central processing
unit, imposes heavy communication burden across the whole
network and imposes a significant computation burden at
the control center. Decentralizing the computations across
different control areas and fusing information in a hierarchical
structure have thus been investigated in [8], [9]. However,
these approaches need to meet the requirement of local observ-
ability of all the control areas. Consequently, fully distributed
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state estimation scalable with network size is preferred [4],
[10]–[12].

In view of above problems, this paper proposes a distributed
power state estimation algorithm, which only involves lo-
cal computations and information exchanges with immediate
neighborhoods, and is suitable for implementation in large-
scale power grids. In contrast to [4], [10] and [12], the pro-
posed distributed algorithm integrates the data from both the
SCADA system and PMUs while keeping the existing SCADA
system intact, and the observability problem is bypassed. The
challenging problem of sampling phase errors in PMUs is also
considered. Simulation results show that after convergence the
proposed algorithm performs very close to that of the ideal
case which assumes perfect synchronization among PMUs,
and centralized information processing.

The following notations are used throughout this paper.
Boldface uppercase and lowercase letters will be used for ma-
trices and vectors, respectively. E{·} denotes the expectation
of its argument and  ,

√
−1. Superscript T denotes trans-

pose. The symbol IN represents the N × N identity matrix.
N (x|µ,R) stands for the probability density function (pdf)
of a Gaussian random vector x with mean µ and covariance
matrix R. The symbol ∝ represents a linear scalar relationship
between two real-valued functions. The cardinality of a set V
is denoted by |V| and the difference between two sets V and
A is denoted by V \ A.

II. HYBRID ESTIMATION SYSTEM MODEL

A. PMU Measurements with Sampling Errors

For a power grid, the continuous voltage on bus i is
denoted as Ai cos(2πfct + φi), with Ai being the amplitude
and φi being the phase angle in radians. Ideally, a PMU
provides measurements in rectangular coordinates: Ai cos(φi)
and Ai sin(φi). However, for reasons of sampling phase error
[6], [7] and measurement error, the measured voltage at bus i
would be [7]

xri = Ai cos(θi + φi) + wri,E , (1)

xi = Ai sin(θi + φi) + wi,E , (2)

where θi is the phase error induced by an unknown and
random sampling delay, and wri,E and wi,E are the Gaussian
measurement noises. On the other hand, a PMU also measures
the current between neighboring buses. Let the admittance at
the branch {i, j} be gij +  · bij , the shunt admittance at bus
i be Bi, and the transformer turn ratio from bus i to j be
ρij = |ρij | exp{ϕij}. Under sampling phase error, the real
and imaginary parts of the measured current at bus i are given
by [13]

yrij =κ1
ijAi cos(θi + φi)− κ2

ijAi sin(θi + φi)

−κ3
ijAj cos(θi+φj)+κ4

ijAj cos(θi+φj)+wri,I ,
(3)

yij =κ2
ijAi cos(θi + φi) + κ1

ijAi sin(θi + φi)

−κ4
ijAj cos(θi + φj)−κ3

ijAj sin(θi + φj) + wi,I ,
(4)

where κ1
ij , |ρij |2gij , κ2

ij , |ρij |2(bij + Bi), κ3
ij ,

|ρijρji|(cosϕjigij − sinϕji bij), κ4
ij , |ρijρji|(cosϕji bij +

sinϕjigij), and wri,I and wi,I are the corresponding Gaussian
measurement errors.

In general, since the phase error θi is small (e.g., the max-
imum sampling phase error measured by the North American
SynchroPhasor Initiative is 6◦ [7]), the standard approxima-
tions sin θi ≈ θi and cos θi ≈ 1 can be applied to (1) and (2),
leading to [14]

xri ≈ Eri − E

iθi + wri,E , xi ≈ E


i + Eri θi + wi,E , (5)

where Eri , Ai cos(φi) and Ei , Ai sin(φi) denote the true
power state. Applying the same approximations to (3) and (4)
yields

yrij ≈κ1
ijE

r
i − κ2

ijE

i −κ

3
ijE

r
j +κ4

ijE

j

+θi
{
− κ2

ijE
r
i − κ1

ijE

i +κ4

ijE
r
j +κ3

ijE

j

}
+ wri,I ,

(6)

yij ≈κ
2
ijE

r
i + κ1

ijE

i − κ

4
ijE

r
j − κ3

ijE

j

+ θi
{
κ1
ijE

r
i − κ2

ijE

i − κ

3
ijE

r
j + κ4

ijE

j

}
+ wi,I .

(7)

We gather all the PMU measurements related to bus i as
zi = [xri , x


i, y

r
ij1
, yij1 , . . . , y

r
ijn
, yijn ]T where jk is the index

of bus connected to bus i, and arranged in ascending order.
Using (5), (6) and (7), zi can be expressed as [14]

zi =
∑

j∈M(i)

Hijsj + θi
∑

j∈M(i)

Gijsj +wi, (8)

where si , [Eri , E

i ]
T ; M(i) is the set of all immediate

neighboring buses of bus i and also includes bus i; Hij and
Gij are known matrices containing elements 0, 1 κ1

ij , κ
2
ij ,

κ3
ij and κ4

ij ; and the measurement error vector wi is assumed
to be Gaussian wi ∼ N (wi|0, σ2

i I), with σ2
i being the ith

PMU’s measurement error variance.

B. Mixed Measurement from SCADA and PMUs

For the existing SCADA system, the RTUs measure active
and reactive power flows in network branches, bus injec-
tions and voltage magnitudes at buses. The measurements
of the whole network by the SCADA system can be de-
scribed as [5] ζ = g(ξ) + n, where ζ is the vector
of the measurements from RTUs in the SCADA system,
ξ , [A1, φ1, A2, φ2, . . . , A|B|, φ|B|]

T with B denoting the
set of buses, and n ∼ N (n|0,W ) is the measurement
noise from RTUs. Due to the nonlinear function g(·), ξ
can be determined by the iterative reweighted least-squares
algorithm [15], and it was shown in [15] that with proper
initialization, such a SCADA-based state estimate ξ̂ converges
to the maximum likelihood (ML) solution with covariance
matrix Υ = [∇g(ξ)TW−1∇g(ξ)]−1|ξ=ξ̂, where ∇g(ξ) is
the partial derivative of g with respect to ξ.

While there are many possible ways of integrating mea-
surements from SCADA and PMUs, in this paper, we adopt
the approach that keeps the SCADA system intact, as the
SCADA system involves long-term investment and is running
smoothing in current power networks. In order to incorpo-
rate the polar coordinate state estimate ξ̂ with the PMU
measurements, the work [5] advocates transforming ξ̂ into
rectangular coordinates, denoted as ŝSCADA , T (ξ̂). Due to
the invariant property of the ML estimator [16], ŝSCADA is
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also the ML estimator in rectangular coordinates. Furthermore,
the mean and covariance of ŝSCADA can be approximately
computed using the linearization method [17]. It can be shown
that the mean and covariance matrix of ŝSCADA are s and
ΓSCADA = ∇T (ξ)Υ∇[T (ξ)]T |ξ=ξ̂, respectively. Since the
goal is to derive a distributed algorithm, it is also assumed
that each bus has access only to the mean and variance of its
own state from SCADA estimates, i.e., p(s) ≈

∏
i∈B p(si) =∏

i∈BN (si|γi,Γi), with γi = [ŝSCADA]2i−1:2i and Γi =
[PSCADA]2i−1:2i,2i−1:2i. Thus, we have

p(si) = N (si|γi,Γi). (9)

For p(θ), we adopt the truncated Gaussian model:

p(θi) = T N (θi|θi, θ̄i, ṽi, C̃i)

,
[U(θi − θi)−U(θi−θ̄i)]N (θi|ṽi, C̃i)

erf( θ̄i−ṽi
C̃

1/2
i

)−erf( θi−̃vi
C̃

1/2
i

)
,

(10)

where θi and θ̄i are lower and upper bounds of the truncated
Gaussian distribution, respectively; U(x) is the unit step
function, whose value is zero for negative x and one for non-
negative x; ṽi and C̃i are the mean and covariance of the
original, non-truncated Gaussian distribution; and erf(x) ,

1√
2π

∫ x
0

exp{−y
2

2 }dy. Moreover, the first order moment of
(10) is

$̃i = E{θi} =ṽi − C̃1/2
i

N (θ̄i|ṽi, C̃i)−N (θi|ṽi, C̃i)
erf( θ̄i−ṽi

C̃
1/2
i

)− erf( θi−ṽi
C̃

1/2
i

)

,Ξ1[θi, θ̄i, ṽi, C̃i]

(11)

and the second order moment is

τ̃i = E{θ2
i }

= ṽ2
i − 2ṽiC̃

1/2
i

N (θ̄i|ṽi, C̃i)−N (θi|ṽi, C̃i)
erf( θ̄i−ṽi

C̃
1/2
i

)− erf( θi−ṽi
C̃

1/2
i

)
+ C̃i

×

{
1−

(θ̄i − ṽi)N (θ̄i|ṽi, C̃i)− (θi − ṽi)N (θi|ṽi, C̃i)
C̃

1/2
i

[
erf( θ̄i−ṽi

C̃
1/2
i

)− erf( θi−ṽi
C̃

1/2
i

)
] }

, Ξ2[θi, θ̄i, ṽi, C̃i]. (12)

In general, the parameters of p(θi) can be obtained through
pre-deployment measurements. For example, the truncated
range [θi, θ̄i] is founded to be [−6π/180, 6π/180] according
to the test results [7]. ṽi and C̃i can also be obtained from
a histogram generated during PMU testing [18]. On the other
extreme, (10) also incorporates the case when we have no
statistical information about the unknown phase error: setting
[θi, θ̄i] = [−π, π], ṽi = 0, and C̃i = ∞, giving an uniform
distributed θi in one sampling period of the PMU.

III. DISTRIBUTED STATE ESTIMATION UNDER SAMPLING
PHASE ERROR

Given all the prior distributions (9), (10) and the likelihood
function (8), the MMSE estimator can be written as

ŝi =
1

c

∫
. . .

∫
si
∏
i∈B

p(si)
∏
i∈P

p(θi)

×
∏
i∈P

p(zi|θi, {sj}j∈M(i))d{θi}i∈Pd{s}i∈B,
(13)

where c =
∫
. . .
∫ ∏

i∈B p(si)
∏
i∈P p(θi)p(zi|θi, {sj}j∈M(i))

d{θi}i∈Pd{s}i∈B. The integration is complicated as θi is
coupled with {sj}j∈M(i), and its expression is not analytically
tractable. Furthermore, the dimensionality of the state space
of the integrand (of the order of number of buses in a power
grid, which is typically more than a thousand) prohibits direct
numerical integration. In this case, approximate schemes need
to be resorted to. One example is the Markov Chain Monte
Carlo (MCMC) method, which approximates the distributions
and integration operations using a large number of random
samples. However, sampling methods can be computationally
demanding, often limiting their use to small-scale problems.
Even if it can be successfully applied, the solution is
centralized, meaning that the network still suffers from heavy
communication overhead.

To facilitate the estimation, variational inference is used to
approximate the complicated posterior distribution. The goal
of variational inference (VI) is to find a tractable variational
distribution q(θ, s) that closely approximates the true posterior
distribution p(θ, s|z) ∝ p(θ)p(s)p(z|θ, s). The criterion for
finding the approximating q(θ, s) is to minimize the Kullback-
Leibler (KL) divergence between q(θ, s) and p(θ, s|z) [19]:

KL [q(θ, s)||p(θ, s|z)] , −Eq(θ,s)
{

ln
p(θ, s|z)

q(θ, s)

}
. (14)

If there is no constraint on q(θ, s), then the KL divergence
vanishes when q(θ, s) = p(θ, s|z). However, in this case,
we still face the intractable integration in (13). In the VI
framework, a common practice is to apply the mean-field
approximation to q(θ, s). For a large-scale power grid, to
achieve distributed computation for the power state si, a mean-
field approximation is applied to q(θ, s), and the variational
distribution is in the form q(θ, s) =

∏
i∈P b(θi)

∏
i∈B b(si).

Under this mean-field approximation, the optimal b(θi) and
b(si) that minimize (14) are given by (15) and (16) at the top
of the next page. Next, we will evaluate the expressions for
b(θi) and b(si) in (15) and (16), respectively.
• Computation of b(θi):

Assume b(si) is known for all i ∈ B with mean and
covariance denoted by µi and Pi,i, respectively. By substi-
tuting the prior distributions p(si) from (9), p(θi) from (10)
and the likelihood function from (8) into (15), the variational
distribution b(θi) can be shown to be

b(θi) ∝ T N (θi|θi, θ̄i, vi, Ci) (17)

with

Ci =
C̃i

σ−2
i Tr{Bi,2}C̃i + 1

(18)
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b(θi) ∝ exp
{
E∏

j∈P\i b(θj)
∏

i∈B p(si)

{
ln
∏
i∈P

p(zi|θi, {sj}j∈M(i))p(θi)
∏
i∈B

p(si)
}}

i ∈ P, (15)

b(si) ∝ exp
{
E∏

i∈P b(θi)
∏

j∈B\i b(sj)

{∏
i∈P

p(zi|θi, {sj}j∈M(i))p(θi)
∏
i∈B

p(si)
}}

i ∈ B. (16)

vi = Ci
[
ṽi/C̃i + σ−2

i Tr
{
zi

∑
j∈M(i)

(Gijµj)
T −Bi,1

}]
(19)

with Bi,1 =
∑
j∈M(i)Hij

(
Pj,j + µjµ

T
j

)
GT
ij +∑

j,k∈M(i),j 6=kHijµjµ
T
kG

T
ik and Bi,2 =

∑
j∈M(i)Gij

(
Pj,j

+ µjµ
T
j

)
GT
ij +

∑
j,k∈M(i),j 6=kGijµjµ

T
kG

T
ik. With Ci and

vi in (18) and (19), to facilitate the computation of b(si) in
the next step, the first and second order moments of b(θi) are
computed through (11) and (12) as

$i = Ξ1[θi, θ̄i, vi, Ci], τi = Ξ2[θi, θ̄i, vi, Ci]. (20)

• Computation of b(si):
Assume b(θi) for all i ∈ P are known with first and

second order moments denoted by $i and τi, respectively.
Furthermore, it is assumed that b(sj) for j ∈ B \ i are also
known with their covariance matrices given by Pj,j . Now,
rewrite (16) as

b(si) ∝ p(si)

×
∏

j∈M(i)

exp
{
Eb(θj)

∏
k∈M(j)\i b(sk){ln p(zj |θj , {sk̃}k̃∈M(j))}

}︸ ︷︷ ︸
,mj→i(si)

.

(21)

After some matrix multiplications, it can be shown that
mj→i(si) is in Gaussian form

mj→i(si) ∝ N (si|vj→i,Cj→i) (22)

with

Cj→i = σ2
j [HT

jiHji+$j(G
T
jiHji+H

T
jiGji)+τjG

T
jiGji]

−1,
(23)

vj→i = σ−2
j Cj→i

{
(Hji +$jGji)

Tzj

−
∑

k∈M(j)\i

[
HT
jiHjk+$j(G

T
jiHjk+H

T
jiGjk)+τjG

T
jiGjk

]T
µk

}
.

(24)

Then, putting p(si) = N (si|γi,Γi) and (22) into (21), we
obtain

b(si) ∝ N (si|γi,Γi)N (si|vj→i,Cj→i)
∝ N (si|µi,Pi,i), (25)

with
Pi,i = (Γ−1

i +
∑

j∈M(i)

C−1
j→i)

−1 (26)

µi = Pi,i(Γ
−1
i γi +

∑
j∈M(i)

C−1
j→ivj→i). (27)

Inspection of (23) and (24) reveals that these expressions
can be readily computed at bus j and then Cj→i and vj→i can
be sent to its immediate neighbouring bus i for computation
of b(si) according to (25).
• Updating Schedule and Summary:

From the expressions for b(θi) and b(si) in (17) and (25),
it should be noticed that these functions are coupled. Conse-
quently, b(θi) and b(si) should be iteratively updated. Since
updating any b(θi) or b(si) corresponds to minimizing the
KL divergence in (14), the iterative algorithm is guaranteed to
converge monotonically to at least a stationary point [19] and
there is no requirement that b(θi) or b(si) should be updated
in any particular order. Besides, the variational distributions
b(θi) and b(si) in (17) and (25) keep the form of truncated
Gaussian and Gaussian distributions during the iterations, thus
only their parameters are required to be updated.

However, the successive update scheduling might take too
long in large-scale networks. Fortunately, from (23)-(27), it is
found that updating b(si) only involves information within two
hops from bus i. Besides, from (18) and (19), it is observed
that updating b(θi) only involves information from direct
neighbours of bus i. Hence, if buses within two hops from
each other do not update their variational distributions b(·) at
the same time, the KL divergence in (14) is guaranteed to be
decreased in each iteration and the distributed algorithm keeps
the monotonic convergence property. This can be achieved
by grouping the buses using a distance-2 coloring scheme
[20], which colors all the buses under the principle that buses
within a two-hop neighborhood are assigned different colors
and the number of colors used is the least (for the IEEE-
300 system, only 13 different colors are needed). Then, all
buses with the same color update at the same time and buses
with different colors are updated in succession. Notice that the
complexity order of the distance-2 coloring scheme is Q(λ|B|)
[20], where λ is the maximum number of branches linked to
any bus. Since λ is usually small compared to the network size
(e.g., λ = 9 for the IEEE 118-bus system), the complexity of
distance-2 coloring depends only on the network size and it
is independent of the specific topology of the power network.

In summary, all the buses are first colored by the distance-2
coloring scheme, and the iterative procedure is formally given
in Algorithm 1. Notice that although the modelling and formu-
lation of state estimation under phase error is complicated, the
final result and processing are simple. During each iteration,
the first and second order moments of the phase error estimate
are computed via (20); while the covariance and mean of
the state estimate are computed using (26) and (27). Due to
the fact that computing these quantities at one bus depends
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Algorithm 1 Distributed states estimation
1: Initialization: µi = [ŝSCADA]2i−1:2i and Pi,i =

[PSCADA]2i−1:2i;2i−1:2i.
Neighboring buses exchange µi and Pi,i.
Buses with PMUs update $i and τi via (20).
Every bus i computes Ci→j vi→j Pi,i, µi via (23) (24)
(26) (27), and sends these four entities to bus j, where
j ∈M(i).

2: for the lth iteration do
3: Select a group of buses with the same color.
4: Buses with PMUs in the group compute $i and τi via

(20).
5: Every bus in the group updates its Ci→j vi→j Pi,i,

µi via (23) (24) (26) (27), and sends them out to its
neighbor j.

6: Bus j computes vj→k via (24) and send to its neighbor
k ∈M(j).

7: end for

on information from neighboring buses, these equations are
computed iteratively. After convergence, the state estimate is
given by µi at each bus.

Although the proposed distributed algorithm advocates each
bus to perform computations and message exchanges, but it is
also applicable if computations of several buses are executed
by a local control center. Then any two control centers only
need to exchange the messages for their shared power states.

IV. SIMULATION RESULTS AND DISCUSSIONS

This section provides results on the numerical tests of
the developed centralized and distributed state estimators in
Section III. The network parameters gij , bij , Bi, ρij are
loaded from the test cases in MATPOWER4.0 [21]. In each
simulation, the value at each load bus is varied by adding
a uniformly distributed random value within ±10% of the
value in the test case. Then the power flow program is run
to determine the true states. The RTUs measurements are
composed of active/reactive power injection, active/reactive
power flow, and bus voltage magnitude at each bus, which
are also generated from MATPOWER4.0 and perturbed by
independent zero-mean Gaussian measurement errors with
standard deviation 1 × 10−2. For the SCADA system, the
estimates ξ̂ and Υ are obtained through the classical iterative
reweighted least-squares with initialization [Ai, φi]

T = [1, 0]T

[13]. In general, the proposed algorithms are applicable re-
gardless of the number of PMUs and their placements. But
for the simulation study, the placement of PMUs is obtained
through the method proposed in [22]. As experiments in
[7] show the maximum phase error is 6◦ in a 60Hz power
system, θi is generated uniformly from [−6π/180, 6π/180]
for each Monte-Carlo simulation run. The PMU measurement
errors follow a zero-mean Gaussian distribution with standard
deviation σi = 1 × 10−2. 1000 Monte-Carlo simulation runs
are averaged for each point in the figures. Furthermore, it is
assumed that bad data from RTUs and PMU measurements
has been successfully handled [5], [23, Chap 7].

For comparison, we consider the following three existing
methods: 1) Centralized WLS [5] assuming no sampling phase
errors in the PMUs. This represents the best performance one
can achieve in the state estimation and is a benchmark for
the proposed algorithms. 2) Centralized WLS under sampling
phase errors in the PMUs. This will show how much degra-
dation one would have if phase errors are ignored. 3) The
centralized alternating minimization (AM) scheme [14] with
p(s) and p(θi) incorporated as prior information.

Fig. 1 shows the convergence behavior of the proposed
algorithms with average mean square error (MSE) defined
as 1

2|B|
∑
i∈B ||ŝi − si||2. It can be seen that the proposed

distributed algorithm performs close to the optimal perfor-
mance after convergence. The seemingly slow convergence is
a result of sequential updating of buses with different colors
to guarantee convergence. If one iteration is defined as one
round of updating of all buses, the distributed algorithm would
converge only in a few iterations. On the other hand, part of
the degradation from the centralized AM solution is due to the
fact that in the distributed algorithm, the covariance of states
si and sj in prior distributions and variational distributions
cannot be taken into account. Finally, if the sampling phase
error is ignored, we can see that the performance of centralized
WLS shows significant degradation, illustrating the importance
of simultaneous power state and phase error estimation. Fig.
2 shows the MSE of the sampling phase error estimation

1
|P|
∑
i∈P ||$∗i −θi||2, where $∗i is the converged $i in (20).

It can be seen from the figure that same conclusions as in Fig.
1 can be drawn.

V. CONCLUSIONS

In this paper, a distributed state estimation scheme inte-
grating measurements from a traditional SCADA system and
newly deployed PMUs has been proposed, with the aim that
the existing SCADA system is kept intact, and unknown sam-
pling phase errors among PMUs incorporated in the estimation
procedure. The proposed distributed power state estimation
algorithm only involves limited message exchanges between
neighboring buses and is guaranteed to converge. Numerical
results have shown that the converged state estimates of the
distributed algorithm are very close to those of the optimal
centralized estimates assuming no sampling phase error.
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