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Jacobi Method 

Update x
In Parallel

 Contribution  
   1. Enable parallel SimRank computation 
   2. Test on the largest graph, clue-web(|V|=1B, |E|=43B)  
      

 Problem 
   SimRank Decomposition 
   P: the transition matrix on graph 
   D: the diagonal correction matrix to be estimated 
 
 
   1. how to compute D for big graph ? 
   2. how to query efficiently given D ? 
 

 Offline indexing 
   1. Key observation: self-similarity is 1.0 
       Indexing linear system  
 
       here  
       
   2. Generate         by Monte Carlo 
        simulation, in parallel 
 
   3. Solve the linear system via Jacobi  
       method, in parallel 
 

 
 

 Graph data grows rapidly 
    1. Internet of Things 
    2. World Wide Web 

 
 Similarity is fundamental 
    1. Information retrieval 
    2. Recommender system 
    3. Churn prediction 
 

 SimRank - two objects are similar if referenced by similar objects 
 
 
 
 
 
 
 
 
 
 

 Three fundamental queries 
   1. Single-pair query – return similarity of two nodes 
   2. Single-source query – return similarity of every node to a node 
   3. All-pair query – return similarity between every two nodes 
  

 Challenges in SimRank computation 
   1. High complexity: O(n3) time, O(n2) space 
   2. Heavy computational dependency (hard to be parallelized) 
   3. Not allow querying similarities individually 

SimRank [1] 

Experiments 

1Huawei Noah’s Ark Lab, 2HKU, 3CUHK 

Zhenguo Li1, Yixiang Fang2, Qin Liu3, Jiefeng Cheng1, Reynold Cheng2, John C.S. Lui3 

Walking in the Cloud: Parallel SimRank at Scale 
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CloudWalker – Big SimRank, instant response 

      [1] G. Jeh and J. Widom. Simrank: a measure of structural-ctontext similarity. KDD’02. 
      [2] D. Fogaras and B. Racz. Scaling link-based similarity search. WWW’05. 
      [3] T. Maehara, et al. Efficient simrank computation via linearization. CORR’14.  
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Effectiveness: CloudWalker converges quickly 

Setup: cluster, datasets, and default parameters 
- 10 nodes (each with 16 cores, 377GB RAM, 20TB disk) 

Implementation on Spark 

Broadcasting is more efficient, but RDD is more scalable  

CloudWalker outperforms state of the art 

MCSP: Monte Carlo simulation for single-pair query 

MCSS: Monte Carlo simulation for single-source query 

- constant time complexity: O(TR) 

MCAP: Monte Carlo simulation for all-pair query 
- use MCSS repeatedly; time complexity: O(nT2R logd) 

 Online queries 

To compute ai, we obtain Ptei using Monte Carlo Simulation 
  1. Place R random walkers on node i 
  2. Each walker walks t steps along in-links 
  3. Count the distribution of walkers 

Dataset Nodes Edges Size 

wiki-vote 7.1K 103K 476.8KB 

wiki-talk 2.4M 5M 45.6MB 

twitter-2010 42M 1.5B 11.4GB 

uk-unioni 131M 5.5B 48.3GB 

clue-web 1B 42.6B 401.1GB 

Parameter Value Meaning 

c 0.6 decay factor of SimRank 

T 10 # of walk steps 

L 3 # of iterations in Jacobi method 

R 100 # of walkers in simulating ai 

R’ 10,000 # of walkers in MCSP and MCSS 

Dataset D MCSP MCSS 

wiki-vote 7s 0.004s  0.042s 

wiki-talk 59s 0.046s 0.179s 

twitter-2010 975s 0.049s 0.281s 

uk-union 3323s 0.025s 0.292s 

10x larger than the largest graph reported on SimRank  

Dataset 
FMT [2] LIN [3] CloudWalker 

Prep.         SP.           SS. Prep.          SP.          SS. Prep.        SP.           SS. 

wiki-vote 43.4s    30.4ms    42.5s 187ms    0.61ms    5.3ms 7s           4ms     42ms 

wiki-talk N/A          N/A        N/A N/A          N/A         N/A 59s       46ms    180ms 

twitter-2010 -            -             - 14376s      3.17s      11.9s 975s      49ms    281ms 

uk-union -            -             - 8291s       9.42s      21.7s 3323s     25ms   291ms 

clue-web -            -             - -            -             - 110.2h    64.0s     188s 

s(i,j): similarity of nodes i and j   
In(i): in-neighbors of i 
c: decay factor, 0<c<1 

Similarity Propagation  

• It captures human perception of similarity 
• It outperforms other similarity measures, such as co-citation  
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- constant time complexity: O(T2R logd) 

Why Spark? 
• General-purpose in-memory cluster computing 
• Easy-to-use operations for distributed applications 

Broadcasting  RDD  

Preprocessing, single-pair and single-source queries 

wiki-vote 
dataset 

Dataset D MCSP MCSS 

wiki-vote 50s 2.7s 2.9s 

wiki-talk 620s 8.5s 13.9s 

twitter-2010 8424s 11.8s 22.3s 

uk-union 6.4h 13.1s 27.2s 

clue-web 110.2h 64.0s 188.1s 

Two implementation models 
• Broadcasting: Graph stored in each machine 
• RDD (Resilient Distributed Dataset): Graph stored in an RDD 
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To appear in PVLDB’16 


