

Title	PASCO: Parallel SimRank Computation at Scale
Author(s)	Li, Z; Fang, Y; Liu, Q; Cheng, J; Cheng, RCK; Lui, JCS
Citation	The 2015 ACM Symposium on Cloud Computing (SoCC 2015), Kohala Coast, HI., 27-29 August 2015.
Issued Date	2015
URL	http://hdl.handle.net/10722/214756
Rights	Creative Commons: Attribution 3.0 Hong Kong License

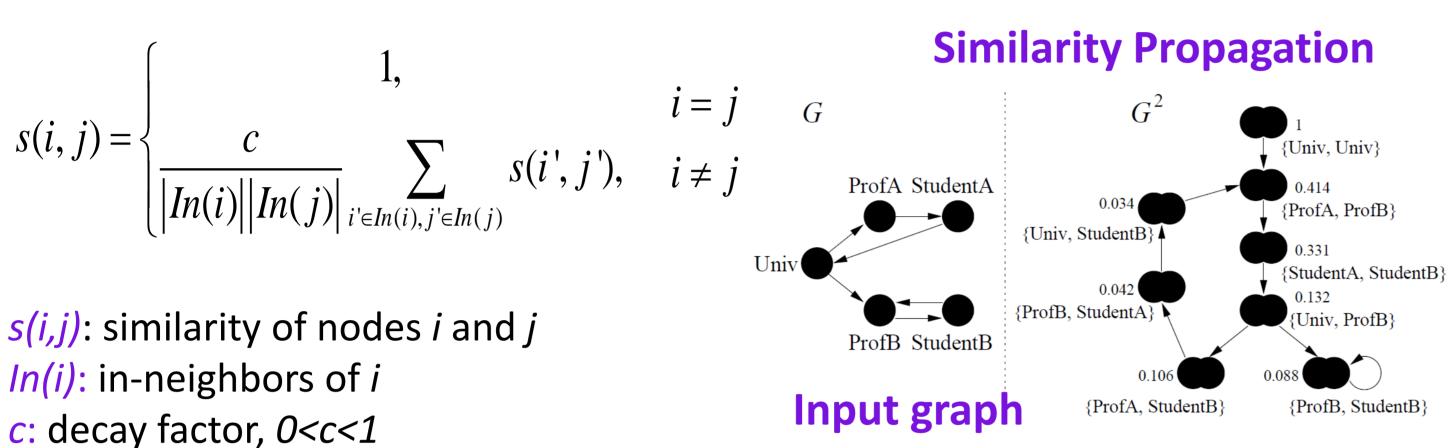
Walking in the Cloud: Parallel SimRank at Scale

To appear in PVLDB'16

Zhenguo Li¹, Yixiang Fang², Qin Liu³, Jiefeng Cheng¹, Reynold Cheng², John C.S. Lui³

¹Huawei Noah's Ark Lab, ²HKU, ³CUHK

SimRank [1]


☐ Graph data grows rapidly

- 1. Internet of Things
- 2. World Wide Web

☐ Similarity is fundamental

- 1. Information retrieval
- 2. Recommender system
- 3. Churn prediction

☐ SimRank - two objects are similar if referenced by similar objects

Node-pair graph

- It captures human perception of similarity
- It outperforms other similarity measures, such as co-citation

☐ Three fundamental queries

- 1. Single-pair query return similarity of two nodes
- 2. Single-source query return similarity of every node to a node
- 3. All-pair query return similarity between every two nodes

☐ Challenges in SimRank computation

- 1. High complexity: $O(n^3)$ time, $O(n^2)$ space
- 2. Heavy computational dependency (hard to be parallelized)
- 3. Not allow querying similarities individually

CloudWalker – Big SimRank, instant response

☐ Contribution

- 1. Enable parallel SimRank computation
- 2. Test on the largest graph, clue-web(|V|=1B, |E|=43B)

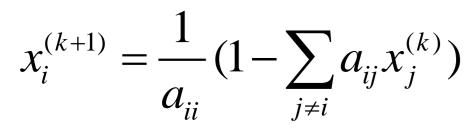
☐ Problem

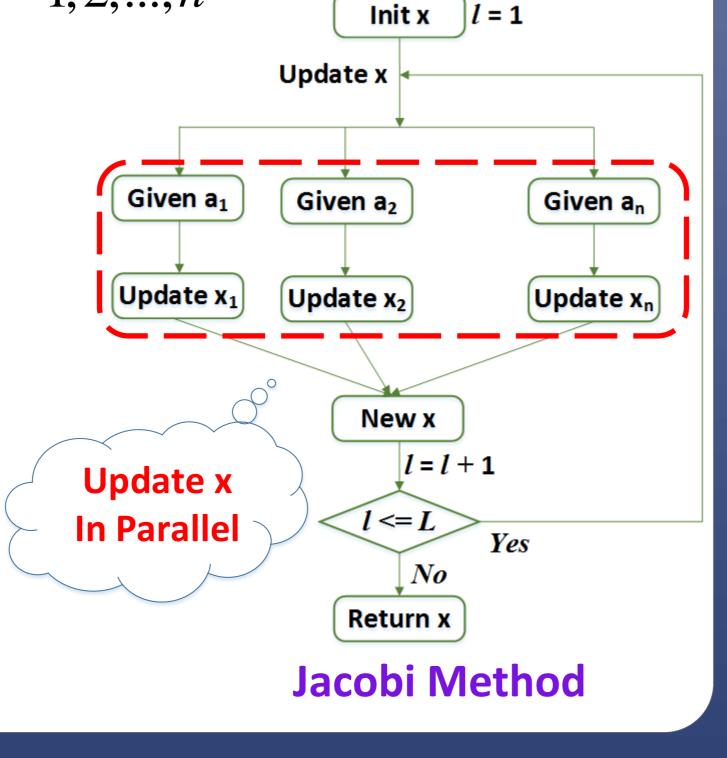
SimRank Decomposition $S = cP^{T}DP + D$

P: the transition matrix on graph

D: the diagonal correction matrix to be estimated

$$S = D + cP^{\top}DP + c^2P^{2\top}DP^2 + \cdots$$


- 1. how to compute *D* for big graph?
- 2. how to query efficiently given *D*?


\square Offline indexing $x = [D_{11}, D_{22}, \cdots, D_{nn}]^{\top}$

1. Key observation: self-similarity is 1.0 Indexing linear system $a_i^{\top}x = 1, i = 1, 2, ..., n$

here
$$a_i = \sum_{t=0}^{T} c^{t-1} (P^\top)^{t-1} e_i \circ P^{t-1} e_i$$

- 2. Generate a_i 's by Monte Carlo simulation, in parallel
- 3. Solve the linear system via Jacobi method, in parallel

To compute a_i , we obtain P^te_i using Monte Carlo Simulation

- 1. Place R random walkers on node i
- 2. Each walker walks t steps along in-links
- 3. Count the distribution of walkers

☐ Online queries

- MCSP: Monte Carlo simulation for single-pair query
 - constant time complexity: O(TR)
- MCSS: Monte Carlo simulation for single-source query
 - constant time complexity: O(T²R logd)
- MCAP: Monte Carlo simulation for all-pair query
 - use MCSS repeatedly; time complexity: $O(nT^2R \log d)$

Implementation on Spark

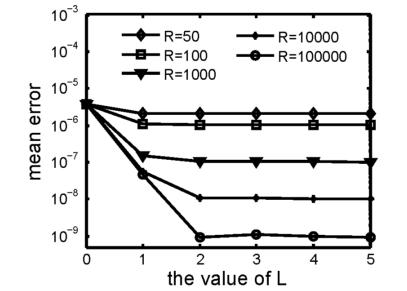
Why Spark?

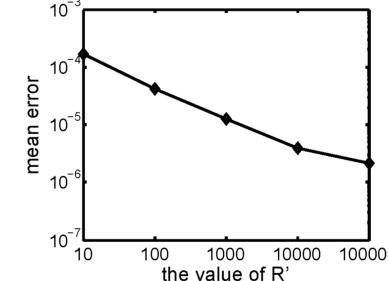
- General-purpose in-memory cluster computing
- Easy-to-use operations for distributed applications

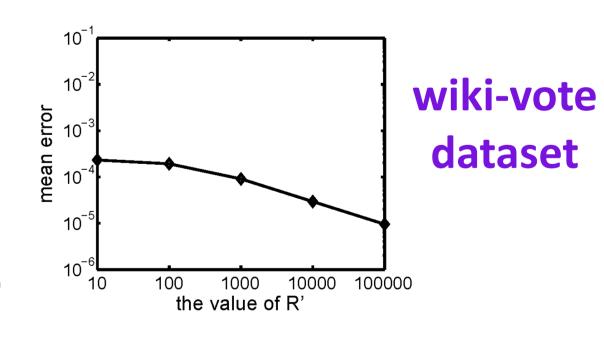
Two implementation models

- Broadcasting: Graph stored in each machine
- RDD (Resilient Distributed Dataset): Graph stored in an RDD

Experiments


Setup: cluster, datasets, and default parameters


- 10 nodes (each with 16 cores, 377GB RAM, 20TB disk)


Dataset	Nodes	Edges	Size	Parameter	Value	Meaning
wiki-vote	7.1K	103K	476.8KB	С	0.6	decay factor of SimRank
wiki-talk	2.4M	5M	45.6MB	T	10	# of walk steps
twitter-2010	42M	1.5B	11.4GB	L	3	# of iterations in Jacobi method
uk-unioni	131M	5.5B	48.3GB	R	100	# of walkers in simulating a _i
clue-web	1B	42.6B	401.1GB	R'	10,000	# of walkers in MCSP and MCSS

10x larger than the largest graph reported on SimRank

Effectiveness: CloudWalker converges quickly

Broadcasting is more efficient, but RDD is more scalable

Broadcasting

Dataset	D	MCSP	MCSS
wiki-vote	7s	0.004s	0.042s
wiki-talk	59s	0.046s	0.179s
twitter-2010	975s	0.049s	0.281s
uk-union	3323s	0.025s	0.292s

RDD						
Dataset	D	MCSP	MCSS			
wiki-vote	50s	2.7s	2.9s			
wiki-talk	620s	8.5s	13.9s			
twitter-2010	8424s	11.8s	22.3s			
uk-union	6.4h	13.1s	27.2s			
clue-web	110.2h	64.0 s	188.1s			

CloudWalker outperforms state of the art

Preprocessing, single-pair and single-source queries

Dataset	FMT [2]			LIN [3]			CloudWalker		
	Prep.	SP.	SS.	Prep.	SP.	SS.	Prep.	SP.	SS.
wiki-vote	43.4s	30.4ms	42.5s	187ms	0.61ms	5.3ms	7 s	4ms	42ms
wiki-talk	N/A	N/A	N/A	N/A	N/A	N/A	59 s	46ms	180ms
twitter-2010	-	-	-	14376s	3.17s	11.9s	975s	49ms	281ms
uk-union	-	-	-	8291s	9.42s	21.7s	3323 s	25 ms	291ms
clue-web	-	-	-	-	-	-	110.2 h	64.0s	188 s

- [1] G. Jeh and J. Widom. Simrank: a measure of structural-ctontext similarity. KDD'02.
- [2] D. Fogaras and B. Racz. Scaling link-based similarity search. WWW'05.
- [3] T. Maehara, et al. Efficient simrank computation via linearization. CORR'14.