
Title PASCO: Parallel SimRank Computation at Scale

Author(s) Li, Z; Fang, Y; Liu, Q; Cheng, J; Cheng, RCK; Lui, JCS

Citation The 2015 ACM Symposium on Cloud Computing (SoCC 2015),
Kohala Coast, HI., 27-29 August 2015.

Issued Date 2015

URL http://hdl.handle.net/10722/214756

Rights Creative Commons: Attribution 3.0 Hong Kong License

CORE Metadata, citation and similar papers at core.ac.uk

Provided by HKU Scholars Hub

https://core.ac.uk/display/38077336?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Jacobi Method

Update x
In Parallel

 Contribution
 1. Enable parallel SimRank computation
 2. Test on the largest graph, clue-web(|V|=1B, |E|=43B)

 Problem
 SimRank Decomposition
 P: the transition matrix on graph
 D: the diagonal correction matrix to be estimated

 1. how to compute D for big graph ?
 2. how to query efficiently given D ?

 Offline indexing
 1. Key observation: self-similarity is 1.0
 Indexing linear system

 here

 2. Generate by Monte Carlo
 simulation, in parallel

 3. Solve the linear system via Jacobi
 method, in parallel

 Graph data grows rapidly
 1. Internet of Things
 2. World Wide Web

 Similarity is fundamental
 1. Information retrieval
 2. Recommender system
 3. Churn prediction

 SimRank - two objects are similar if referenced by similar objects

 Three fundamental queries
 1. Single-pair query – return similarity of two nodes
 2. Single-source query – return similarity of every node to a node
 3. All-pair query – return similarity between every two nodes

 Challenges in SimRank computation
 1. High complexity: O(n3) time, O(n2) space
 2. Heavy computational dependency (hard to be parallelized)
 3. Not allow querying similarities individually

SimRank [1]

Experiments

1Huawei Noah’s Ark Lab, 2HKU, 3CUHK

Zhenguo Li1, Yixiang Fang2, Qin Liu3, Jiefeng Cheng1, Reynold Cheng2, John C.S. Lui3

Walking in the Cloud: Parallel SimRank at Scale

' (), ' ()

1,

(,)
(', '),

() () i In i j In j

i j
s i j c

s i j i j
In i In j  




 





CloudWalker – Big SimRank, instant response

 [1] G. Jeh and J. Widom. Simrank: a measure of structural-ctontext similarity. KDD’02.
 [2] D. Fogaras and B. Racz. Scaling link-based similarity search. WWW’05.
 [3] T. Maehara, et al. Efficient simrank computation via linearization. CORR’14.

(1) ()1
(1)k k

i ij j

j iii

x a x
a





 

Effectiveness: CloudWalker converges quickly

Setup: cluster, datasets, and default parameters
- 10 nodes (each with 16 cores, 377GB RAM, 20TB disk)

Implementation on Spark

Broadcasting is more efficient, but RDD is more scalable

CloudWalker outperforms state of the art

MCSP: Monte Carlo simulation for single-pair query

MCSS: Monte Carlo simulation for single-source query

- constant time complexity: O(TR)

MCAP: Monte Carlo simulation for all-pair query
- use MCSS repeatedly; time complexity: O(nT2R logd)

 Online queries

To compute ai, we obtain Ptei using Monte Carlo Simulation
 1. Place R random walkers on node i
 2. Each walker walks t steps along in-links
 3. Count the distribution of walkers

Dataset Nodes Edges Size

wiki-vote 7.1K 103K 476.8KB

wiki-talk 2.4M 5M 45.6MB

twitter-2010 42M 1.5B 11.4GB

uk-unioni 131M 5.5B 48.3GB

clue-web 1B 42.6B 401.1GB

Parameter Value Meaning

c 0.6 decay factor of SimRank

T 10 # of walk steps

L 3 # of iterations in Jacobi method

R 100 # of walkers in simulating ai

R’ 10,000 # of walkers in MCSP and MCSS

Dataset D MCSP MCSS

wiki-vote 7s 0.004s 0.042s

wiki-talk 59s 0.046s 0.179s

twitter-2010 975s 0.049s 0.281s

uk-union 3323s 0.025s 0.292s

10x larger than the largest graph reported on SimRank

Dataset
FMT [2] LIN [3] CloudWalker

Prep. SP. SS. Prep. SP. SS. Prep. SP. SS.

wiki-vote 43.4s 30.4ms 42.5s 187ms 0.61ms 5.3ms 7s 4ms 42ms

wiki-talk N/A N/A N/A N/A N/A N/A 59s 46ms 180ms

twitter-2010 - - - 14376s 3.17s 11.9s 975s 49ms 281ms

uk-union - - - 8291s 9.42s 21.7s 3323s 25ms 291ms

clue-web - - - - - - 110.2h 64.0s 188s

s(i,j): similarity of nodes i and j
In(i): in-neighbors of i
c: decay factor, 0<c<1

Similarity Propagation

• It captures human perception of similarity
• It outperforms other similarity measures, such as co-citation

11 22[, , ,]nnx D D D

Input graph
Node-pair graph

1, 1,2,...,ia x i n 

1 1 1

0

()
T

t t t

i i i

t

a c P e P e  





ia s

- constant time complexity: O(T2R logd)

Why Spark?
• General-purpose in-memory cluster computing
• Easy-to-use operations for distributed applications

Broadcasting RDD

Preprocessing, single-pair and single-source queries

wiki-vote
dataset

Dataset D MCSP MCSS

wiki-vote 50s 2.7s 2.9s

wiki-talk 620s 8.5s 13.9s

twitter-2010 8424s 11.8s 22.3s

uk-union 6.4h 13.1s 27.2s

clue-web 110.2h 64.0s 188.1s

Two implementation models
• Broadcasting: Graph stored in each machine
• RDD (Resilient Distributed Dataset): Graph stored in an RDD

2 22S D cP cDP DPP   

P DS cP D 

To appear in PVLDB’16

