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AMBIGUITY AND THE VALUE OF HEDGING

This paper examines the optimal production and hedging decisions of the competitive

firm under price uncertainty when the firm’s preferences exhibit smooth ambiguity aver-

sion and an unbiased forward hedging opportunity is available. Ambiguity is modeled

by a second-order probability distribution that captures the firm’s uncertainty about

which of the subjective beliefs govern the price risk. Ambiguity preferences are modeled

by the (second-order) expectation of a concave transformation of the (first-order) ex-

pected utility of profit conditional on each plausible subjective distribution of the price

risk. Within this framework, the separation and full-hedging theorems remain intact.

Banning the firm from trading its output forward at the unbiased forward price has

adverse effect on the firm’s production decision. The firm finds the unbiased forward

hedging opportunity more valuable in the presence than in the absence of ambiguity.

Furthermore, the value of hedging increases when the firm’s beliefs are more ambiguous,

or when the firm becomes more ambiguity averse.

INTRODUCTION

Since the seminal work of Holthausen (1979), there has been a large body of research on

the production and hedging decisions of the competitive firm under price uncertainty à

la Sandmo (1971). Two notable results emanate from this literature (Broll, 1992; Broll

and Wong, 1999; Broll and Zilcha, 1992; Danthine, 1978; Feder et al., 1980; Wong, 2004,

2012, 2013). First, the separation theorem states that the firm’s optimal output level

depends neither on the risk attitude of the firm, nor on the incidence of the underlying

price uncertainty should the firm be able to trade its output forward. Second, the full-

hedging theorem states that the firm should fully hedge against its exposure to the price

risk provided that the forward price is unbiased.1

Most of the extant models in the literature assume that the firm’s preferences admit

the standard von Neumann-Morgenstern expected utility representation. Such a modeling

1The full-hedging theorem is analogous to a well-known result in the insurance literature that a risk-averse
individual fully insures at an actuarially fair price (Mossin, 1968).
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approach rules out the possibility that the firm is unable to unambiguously assign a prob-

ability distribution that uniquely describes the price risk, which gives rise to ambiguity, or

uncertainty in the sense of Knight (1921). Beginning with Ellsberg (1961), it has been well

documented that ambiguity could lead to the violation of the independence axiom, which is

responsible for the decision criterion being linear in the outcome probabilities. Individuals

seem to prefer gambles with known rather than unknown probabilities, suggesting that they

might be ambiguity averse. Indeed, ambiguity aversion has been confirmed in a variety of

experimental settings (Chow and Sarin, 2001; Einhorn and Hogarth, 1986; Sarin and We-

ber, 1993), and in surveys of business owners and managers (Chesson and Viscusi, 2003;

Viscusi and Chesson, 1999).

The purpose of this paper is to incorporate ambiguity into the model of the competitive

firm under price uncertainty. Klibanoff et al. (2005) have recently developed a powerful

decision criterion known as “smooth ambiguity aversion” that is compatible with ambiguity

averse preferences under uncertainty (hereafter referred to as the KMM model). The KMM

model features the recursive structure that is far more tractable in comparison to other

models of ambiguity such as the pioneering maxmin expected utility (or multiple-prior)

model of Gilboa and Schmeidler (1989).2 Specifically, the KMM model represents ambiguity

by a second-order probability distribution that captures the firm’s uncertainty about which

of the subjective beliefs govern the price risk. The KMM model then measures the firm’s

expected utility under ambiguity by taking the (second-order) expectation of a concave

transformation of the (first-order) expected utility of profit conditional on each plausible

subjective distribution of the price risk.3 This recursive structure creates a crisp separation

between ambiguity and ambiguity aversion, i.e., between beliefs and tastes, thereby making

the conventional techniques used in the decision theory under uncertainty applicable in the

context of ambiguity (Alary et al., 2013; Gollier, 2011; Snow, 2010, 2011; Taboga, 2005;

2See Lien (2000) and Lien and Wang (2003) who adopt the maxmin expected utility model of Gilboa and
Schmeidler (1989) to examine the competitive firm’s production and hedging decisions.

3Skiadas (2013) shows that smooth ambiguity preferences can be approximated by preferences admitting
an expected utility representation in continuous-time or high-frequency models under Brownian or Poisson
uncertainty.
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Treich, 2010).

Within the context of the KMM model, the separation and full-hedging theorems are

shown to be robust to the incorporation of ambiguity and ambiguity preferences. Banning

the ambiguity-averse firm from trading its output forward at the unbiased forward price has

the usual adverse effect on the firm’s production decision. The unbiased forward hedging

opportunity is shown to have higher value in the presence than in the absence of ambiguity,

with more ambiguous beliefs, and with greater ambiguity aversion. The value of hedging

as such increases when ambiguity and ambiguity preferences prevail.

The rest of this paper is organized as follows. The next section develops the KMM

model of the competitive firm under price uncertainty when the firm can trade its output

forward at the unbiased forward price. The subsequent section characterizes the production

and hedging decisions of the ambiguity-averse firm. The penultimate section examines how

the value of hedging is affected by the presence of ambiguity, by more ambiguous beliefs,

and by greater ambiguity aversion. The final section concludes.

THE MODEL

Consider the competitive firm of Sandmo (1971) within the context of the KMM model.

There is one period with two dates, 0 and 1. To begin, the firm produces a single commodity

according to a deterministic cost function, C(Q), where Q ≥ 0 is the output level, and C(Q)

is compounded to date 1. The firm’s production technology exhibits decreasing returns to

scale so that C(0) = C′(0) = 0, and C′(Q) > 0 and C′′(Q) > 0 for all Q > 0.

At date 1, the firm sells its entire output, Q, at the then prevailing per-unit price, P̃ ,

which is not known ex ante.4 The price risk, P̃ , is distributed according to an objective

cumulative distribution function, H(P ), over support [P, P ], where 0 < P < P . The

firm, however, is uncertain about H(P ) and thus faces ambiguity. Let F (P |θ) be the

4Throughout the paper, random variables have a tilde (∼) while their realizations do not.
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firm’s subjective cumulative distribution function of P̃ over support [P, P ], where θ is the

realization of an unknown parameter, θ̃. The KMM model represents ambiguity by a second-

order subjective cumulative distribution function of θ̃, G(θ), over support [θ, θ] with θ < θ,

which captures the firm’s uncertainty about which of the subjective cumulative distribution

function, F (P |θ), governs the price risk, P̃ . As in Snow (2010, 2011), the firm’s ambiguous

beliefs are assumed to be unbiased in the sense that the expected price risk is equal to the

objective price risk:

∫ θ

θ
F (P |θ)dG(θ) = H(P ), (1)

for all P ∈ [P, P ].5

To hedge against the price risk, P̃ , the firm can trade the commodity forward at the

unbiased per-unit forward price, P f , determined at date 0:

P f =

∫ P

P
PdH(P ) =

∫ θ

θ

∫ P

P
PdF (P |θ)dG(θ), (2)

where the second equality follows from Equation (1). Let X be the number of units of the

commodity sold (purchased if negative) forward by the firm at date 0. The firm’s profit

at date 1 is, therefore, given by Π̃ = P̃Q + (P f − P̃ )X − C(Q). The firm possesses a

von Neumann-Morgenstern utility function, U(Π), defined over its profit at date 1, Π, with

U ′(Π) > 0 and U ′′(Π) < 0, indicating the presence of risk aversion.

The recursive structure of the KMM model implies that the firm’s expected utility

under ambiguity can be computed in three steps. First, the firm’s expected utility for

each subjective cumulative distribution function of P̃ is calculated. Second, each (first-

order) expected utility obtained in the first step is transformed by an increasing function,

ϕ(u), where u is the firm’s utility level. Finally, the (second-order) expectation of the

transformed expected utility obtained in the second step is taken with respect to the second-

5The assumption that the expected price risk is equal to the objective price risk is motivated by the
premise that the behavior of an ambiguity-neutral decision maker should be unaffected by the introduction
of, or changes in, ambiguity.
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order subjective cumulative distribution function of θ̃. The firm’s ex-ante decision problem

as such can be stated as

max
Q≥0,X

∫ θ

θ
ϕ

{
∫ P

P
U [PQ + (P f − P )X − C(Q)]dF (P |θ)

}

dG(θ). (3)

Inspection of the objective function of program (3) reveals that the effect of ambiguity,

represented by the cumulative distribution functions, F (P |θ) and G(θ), and the effect of

ambiguity preferences, represented by the shape of the ambiguity function, ϕ(u), can be

separated and thus studied independently.

The firm is said to be ambiguity averse if, for any given pair of output level and forward

position, (Q, X), the objective function of program (3) decreases when the firm’s ambiguous

beliefs, specified by G(θ), change in a way that induces a mean-preserving spread in the

distribution of the firm’s first-order expected utility. According to this definition, Klibanoff

et al. (2005) show that ambiguity aversion implies concavity for ϕ(u), and that a concave

transformation of ϕ(u) results in greater ambiguity aversion.6 Throughout the paper, ϕ(u)

is assumed to satisfy that ϕ′(u) > 0 and ϕ′′(u) < 0 so that the firm is ambiguity averse.

The first-order conditions for program (3) are given by

∫ θ

θ

∫ P

P
ϕ′

{
∫ P

P
U [PQ∗ + (P f − P )X∗ − C(Q∗)]dF (P |θ)

}

×U ′[PQ∗ + (P f − P )X∗ − C(Q∗)][P − C′(Q∗)]dF (P |θ)dG(θ) = 0, (4)

and

∫ θ

θ

∫ P

P
ϕ′

{
∫ P

P
U [PQ∗ + (P f − P )X∗ − C(Q∗)]dF (P |θ)

}

×U ′[PQ∗ + (P f − P )X∗ − C(Q∗)](P f − P )dF (P |θ)dG(θ) = 0, (5)

6When ϕ(u) = [1− exp(−αu)]/α, Klibanoff et al. (2005) show that the maxmin expected utility model of
Gilboa and Schmeidler (1989) is the limiting case as the constant absolute ambiguity aversion, α, approaches
infinity under some conditions.
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where Q∗ and X∗ are the firm’s optimal output level and forward position, respectively. The

second-order conditions for program (3) are satisfied given that U ′′(Π) < 0, C′′(Q) > 0, and

ϕ′′(u) < 0.

THE EFFECT OF HEDGING

To solve Equations (4) and (5) simultaneously, suppose that the firm adopts a full-hedge,

i.e., X∗ = Q∗. Then, Equation (5) becomes

ϕ′{U [P fQ∗ − C(Q∗)]}U ′[P fQ∗ − C(Q∗)]

∫ θ

θ

∫ P

P
(P f − P )dF (P |θ)dG(θ) = 0, (6)

which holds given Equation (2). Hence, Equation (6) implies that X∗ = Q∗ is indeed a

solution to program (3). Substituting X∗ = Q∗ into Equation (4) yields

ϕ′{U [P fQ∗ − C(Q∗)]}U ′[P fQ∗ − C(Q∗)][P f − C′(Q∗)] = 0, (7)

which follows from Equation (2). Hence, Equation (7) implies that Q∗ solves C′(Q∗) = P f .

The following proposition summarizes these results.

Proposition 1. If the ambiguity-averse competitive firm can trade the commodity forward

at the unbiased per-unit forward price, P f , the firm’s optimal output level, Q∗ solves

C′(Q∗) = P f , and its optimal forward position is a full-hedge, i.e., X∗ = Q∗.

The intuition for Proposition 1 is as follows. Since the firm can always sell the last unit

of its output forward at the forward price, P f , the usual optimality condition applies in that

the marginal cost of production, C′(Q∗), must be equated to the known marginal revenue,

P f , which determines the optimal output level, Q∗. Since P f is unbiased, the firm, being

risk averse, indeed finds it optimal to adopt a full-hedge, i.e., X∗ = Q∗, that completely

eliminates the price risk, P̃ . Proposition 1 as such extends the celebrated separation and

full-hedging theorems to the case of smooth ambiguity preferences.
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Since the separation theorem holds, the firm’s output level is fixed at Q∗. In this

case, the firm’s hedging problem is akin to a standard portfolio choice problem wherein

the investment in the risky asset is equal to the unhedged position, Q∗ − X , while the

investment in the riskless asset is equal to the forward position, X . Gollier (2011) examines

the comparative statics of ambiguity aversion on portfolio choices and asset prices. He shows

that the demand for the risky asset under ambiguity aversion is positive, zero, or negative,

depending on whether the equity premium is positive, zero, or negative, respectively. In

the hedging context, the equity premium is simply equal to the expected output price net

of the forward price. It follows immediately from the results of Gollier (2011) that the

firm optimally opts for an under-hedge (Q∗ − X∗ > 0), a full-hedge (Q∗ − X∗ = 0), or an

over-hedger (Q∗ − X∗ < 0), if the expected output price is greater than, equal to, or less

than the forward price, respectively, which are consistent with the results of Proposition 1.

Indeed, the comparative static results of Gollier (2011) are directly applicable to the firm’s

optimal forward position when the forward price is biased, as is shown in Iwaki and Osaki

(2012).

To examine the effect of hedging on production, suppose that the firm is banned from

trading the commodity forward so that X ≡ 0. In this case, the firm’s optimal output level,

Q◦, solves the following first-order condition:

∫ θ

θ

∫ P

P
ϕ′

{
∫ P

P
U [PQ◦ − C(Q◦)]dF (P |θ)

}

×U ′[PQ◦ − C(Q◦)][P − C′(Q◦)]dF (P |θ)dG(θ) = 0. (8)

The following proposition shows that Q◦ < Q∗.

Proposition 2. Banning the ambiguity-averse competitive firm from trading the commodity

forward at the unbiased per-unit forward price, P f , results in a reduction in the optimal

output level, i.e., Q◦ < Q∗.
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Proof. Partially differentiating the objective function of program (3) with respect to Q,

and evaluating the resulting derivative to zero, yields the optimal output level, Q(X), for a

given forward position, X :

∫ θ

θ

∫ P

P
ϕ′

{
∫ P

P
U{PQ(X) + (P f − P )X − C[Q(X)]}dF (P |θ)

}

×U ′{PQ(X) + (P f − P )X − C[Q(X)]}{P − C′[Q(X)]}dF (P |θ)dG(θ) = 0. (9)

Equations (4) and (9) imply that Q∗ = Q(X∗), and Equations (8) and (9) imply that

Q◦ = Q(0). Using Equation (9) to totally differentiate the objective function of program

(3) with respect to X , and evaluating the resulting derivative at X = 0 so that Q(0) = Q◦,

yields

∫ θ

θ

∫ P

P
ϕ′

{
∫ P

P
U [PQ◦ − C(Q◦)]dF (P |θ)

}

×U ′[PQ◦ − C(Q◦)](P f − P )dF (P |θ)dG(θ) > 0, (10)

where the inequality follows from the fact that X∗ = Q∗ > 0, Equation (5), and the second-

order conditions for program (3). Substituting Equation (8) into Equation (10) yields

C′(Q◦) < P f . It then follows from C′′(Q) > 0 that Q◦ < Q∗. 2

To see the intuition for Proposition 2, recast Equation (8) as7

C′(Q◦) = P f +
Cov

{

ϕ′

{

∫ P
P U [PQ◦ − C(Q◦)]dF (P |θ̃)

}

U ′[P̃Q◦ − C(Q◦)], P̃

}

E

{

ϕ′

{

∫ P
P U [PQ◦ − C(Q◦)]dF (P |θ̃)

}

U ′[P̃Q◦ − C(Q◦)]

} , (11)

where P f is given by Equation (2), and E(·) and Cov(·, ·) are the expectation and covariance

operators with respect to the joint cumulative distribution function of θ̃ and P̃ . Equation

(11) states that the firm’s optimal output level, Q◦, is the one that equates the marginal

cost of production, C′(Q◦), to the certainty equivalent output price that takes the firm’s

7For any two random variables, X̃ and Ỹ , it is true that Cov(X̃, Ỹ ) = E(X̃Ỹ ) − E(X̃)E(Ỹ ).
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smooth ambiguity preferences into account. Indeed, the second term on the right-hand side

of Equation (11) captures the price risk premium, which must be negative since the firm

optimally sells its output forward, i.e., X∗ > 0, at the unbiased forward price, P f , thereby

rendering C′(Q◦) < P f . It then follows from the strict convexity of the cost function that

Q◦ < Q∗.

THE VALUE OF HEDGING

If the firm can trade the commodity forward at the unbiased per-unit forward price, P f ,

Proposition 1 shows that the firm optimally opts for a full-hedge and thus its profit at date

1 is certain at P f Q∗ − C(Q∗). Since X∗ > 0, the firm must attain a higher value of its

objective function of program (3) than in the case that trading the commodity forward at

the unbiased forward price, P f , is prohibited:

ϕ{U [P fQ∗ − C(Q∗)]} >

∫ θ

θ
ϕ

{
∫ P

P
U [PQ◦ − C(Q◦)]dF (P |θ)

}

dG(θ). (12)

Let W ◦ be the solution to

ϕ{U [P fQ∗ − C(Q∗) − W ◦]} =

∫ θ

θ
ϕ

{
∫ P

P
U [PQ◦ − C(Q◦)]dF (P |θ)

}

dG(θ). (13)

Equations (12) and (13) imply that W ◦ > 0, which captures the firm’s willingness to pay

to possess the unbiased forward hedging opportunity.

When the firm faces no ambiguity, i.e., F (P |θ) = H(P ) for all θ ∈ [θ, θ] and P ∈

[P, P ], Proposition 1 remains intact so that the firm’s profit at date 1 is certain at P fQ∗ −

C(Q∗). Let Q† be the firm’s optimal output level in the absence of ambiguity and forward

hedging opportunity. The firm’s willingness to pay to possess the unbiased forward hedging

opportunity in this case, W † > 0, is the solution to

ϕ{U [P fQ∗ − C(Q∗) − W †]} = ϕ

{
∫ P

P
U [PQ† − C(Q†)]dH(P )

}

. (14)
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Comparing W ◦ and W † yields the following proposition.

Proposition 3. The presence of ambiguity raises the ambiguity-averse competitive firm’s

willingness to pay to possess the unbiased forward hedging opportunity, i.e., W ◦ > W †.

Proof. Since ϕ′′(u) < 0, Jensen’s inequality implies that

∫ θ

θ
ϕ

{
∫ P

P
U [PQ◦ − C(Q◦)]dF (P |θ)

}

dG(θ)

< ϕ

{
∫ θ

θ

∫ P

P
U [PQ◦ − C(Q◦)]dF (P |θ)dG(θ)

}

= ϕ

{
∫ P

P
U [PQ◦ − C(Q◦)]dH(P )

}

, (15)

where the equality follows from Equation (1). Since Q† is the optimal output level in the

absence of ambiguity and unbiased forward hedging opportunity, it must be true that

ϕ

{
∫ P

P
U [PQ† − C(Q†)]dH(P )

}

> ϕ

{
∫ P

P
U [PQ◦ − C(Q◦)]dH(P )

}

. (16)

Hence, Equations (15) and (16) imply that

∫ θ

θ
ϕ

{
∫ P

P
U [PQ◦ − C(Q◦)]dF (P |θ)

}

dG(θ) < ϕ

{
∫ P

P
U [PQ† − C(Q†)]dH(P )

}

. (17)

It then follows from Equations (13), (14), and (17) that W ◦ > W †. 2

The intuition for Proposition 3 is as follows. The presence of the unbiased forward

hedging opportunity allows the firm to lock in the price risk, P̃ , at the forward price, P f ,

thereby completely eliminating the price risk. Ambiguity as such is also eliminated, which

creates additional benefit to the ambiguity-averse firm that faces ambiguity. Hence, the firm

finds it more valuable to possess the unbiased forward hedging opportunity in the presence

than in the absence of ambiguity, rendering that W ◦ > W †.
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According to Jewitt and Mukerji (2014), the firm’s beliefs are said to be more ambiguous

if the firm is made worse off (indifferent) as a result of the change in beliefs when the firm is

ambiguity averse (neutral). This definition of greater ambiguity is akin to the Rothschild-

Stiglitz (1970) notion of mean-preserving-spread increases in risk. Let F̂ (P |θ) and Ĝ(θ)

be the cumulative distribution functions when the firm’s beliefs are more ambiguous in the

sense of Jewitt and Mukerji (2014). Let Q̂◦ be the firm’s optimal output level with more

ambiguous beliefs and with no hedging. In this case, the firm’s willingness to pay to possess

the unbiased forward hedging opportunity, Ŵ ◦ > 0, is the solution to

ϕ{U [P fQ∗ − C(Q∗) − Ŵ ◦]} =

∫ θ

θ
ϕ

{
∫ P

P
U [PQ̂◦ − C(Q̂◦)]dF̂ (P |θ)

}

dĜ(θ), (18)

since Proposition 1 remains intact. Comparing W ◦ and Ŵ ◦ yields the following proposition.

Proposition 4. Greater ambiguity raises the ambiguity-averse competitive firm’s willingness

to pay to possess the unbiased forward hedging opportunity, i.e., Ŵ ◦ > W ◦.

Proof. Note that

∫ θ

θ
ϕ

{
∫ P

P
U [PQ◦ − C(Q◦)]dF (P |θ)

}

dG(θ)

>

∫ θ

θ
ϕ

{
∫ P

P
U [PQ̂◦ − C(Q̂◦)]dF (P |θ)

}

dG(θ)

>

∫ θ

θ
ϕ

{
∫ P

P
U [PQ̂◦ − C(Q̂◦)]dF̂ (P |θ)

}

dĜ(θ), (19)

where the first inequality follows from the fact that Q◦ is the firm’s optimal output level with

the initial ambiguous beliefs and with no hedging, and the second inequality follows from

the fact that F̂ (P |θ) and Ĝ(θ) are the cumulative distribution functions when the firm’s

beliefs are more ambiguous in the sense of Jewitt and Mukerji (2014). Hence, Equations

(13), (18), and (19) imply that Ŵ ◦ > W ◦. 2
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Propositions 3 and 4 show that the global effect and the marginal effect of ambiguity

on the firm’s willingness to pay to possess the unbiased forward hedging opportunity are

consistent with each other.

Klibanoff et al. (2005) show that the firm becomes more ambiguity averse when ϕ(u)

is replaced by K[ϕ(u)] in the objective function of program (3), where K(·) satisfies that

K ′(·) > 0 and K ′′(·) < 0. Let Q� be the optimal output level when the firm’s smooth

ambiguity preferences are represented by K[ϕ(u)] and the firm is banned from trading the

commodity forward at the unbiased forward price, P f . In this case, the willingness to pay

by this more ambiguity-averse firm to possess the unbiased forward hedging opportunity,

W � > 0, is the solution to

K

{

ϕ{U [P fQ∗ − C(Q∗) − W �]}

}

=

∫ θ

θ
K

{

ϕ

{
∫ P

P
U [PQ� − C(Q�)]dF (P |θ)

}}

dG(θ), (20)

since Proposition 1 remains intact. Comparing W ◦ and W � yields the following proposition.

Proposition 5. Greater ambiguity aversion raises the ambiguity-averse competitive firm’s

willingness to pay to possess the unbiased forward hedging opportunity, i.e., W � > W ◦.

Proof. Since K ′′(·) < 0, Jensen’s inequality implies that

∫ θ

θ
K

{

ϕ

{
∫ P

P
U [PQ� − C(Q�)]dF (P |θ)

}}

dG(θ)

< K

{
∫ θ

θ
ϕ

{
∫ P

P
U [PQ� − C(Q�)]dF (P |θ)

}

dG(θ)

}

. (21)

Since Q◦ is the optimal output level of the less ambiguity-averse firm in the absence of

forward hedging opportunity, it must be true that

∫ θ

θ
ϕ

{
∫ P

P
U [PQ◦ − C(Q◦)]dF (P |θ)

}

dG(θ)
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>

∫ θ

θ
ϕ

{
∫ P

P
U [PQ� − C(Q�)]dF (P |θ)

}

dG(θ). (22)

Hence, Equations (21) and (22) imply that

∫ θ

θ
K

{

ϕ

{
∫ P

P
U [PQ� − C(Q�)]dF (P |θ)

}}

dG(θ)

< K

{
∫ θ

θ
ϕ

{
∫ P

P
U [PQ◦ − C(Q◦)]dF (P |θ)

}

dG(θ)

}

. (23)

It then follows from Equations (13), (20), and (23) that W � > W ◦. 2

The intuition for Proposition 5 is as follows. When the firm is more ambiguity averse, the

incentive to remove ambiguity becomes stronger. The firm’s willingness to pay to possess

the unbiased forward hedging opportunity as such increases in a systematic manner with

greater ambiguity aversion.

CONCLUSION

This paper examines the production and hedging decisions of the competitive firm under

price uncertainty à la Sandmo (1971) when the firm’s preferences exhibit smooth ambiguity

aversion developed by Klibanoff et al. (2005), and an unbiased forward hedging opportunity

is available. According to Klibanoff et al. (2005), ambiguity is modeled by a second-order

probability distribution that captures the firm’s uncertainty about which of the subjective

beliefs govern the price risk. On the other hand, ambiguity preferences are modeled by the

(second-order) expectation of a concave transformation of the (first-order) expected utility

of profit conditional on each plausible subjective distribution of the price risk. Within

this framework, the separation and full-hedging theorems are shown to be robust to the

incorporation of ambiguity and ambiguity preferences. Furthermore, the ambiguity-averse

firm is shown to produce more with than without the unbiased forward hedging opportunity.
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The firm also values the unbiased forward hedging opportunity more in the presence than in

the absence of ambiguity, with more ambiguous beliefs, and with greater ambiguity aversion.

The value of hedging as such increases when ambiguity and ambiguity preferences prevail.
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