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Abstract 

It is well-known that ultrasonic vibration can soften metals, and this phenomenon has 

been widely exploited in industrial applications concerning metal forming and bonding. Recent 

experiments show that the simultaneous application of oscillatory stresses from audible to 

ultrasonic frequency ranges can lead to not only softening but also significant dislocation 

annihilation and subgrain formation in metal samples from the nano- to macro-size range. These 

findings indicate that the existing understanding of ultrasound softening – that the vibrations 

either impose additional stress waves to augment the quasi-static applied load, or cause heating 

of the metal, whereas the metal’s intrinsic deformation resistance or mechanism remains 

unaltered – is far from complete. To understand the softening and the associated enhanced 

subgrain formation and dislocation annihilation, a new simulator based on the dynamics of 

dislocation-density functions is employed. This new simulator considers the flux, production and 

annihilation, as well as the Taylor and elastic interactions between dislocation densities. 

Softening during vibrations as well as enhanced cell formation are predicted. The simulations 

reveal the main mechanism for subcell formation under oscillatory loadings to be the enhanced 

elimination of statistically stored dislocations (SSDs) by the oscillatory stress, leaving behind 

geometrically necessary dislocations with low Schmid factors which then form the subgrain 

walls. The oscillatory stress helps the depletion of the SSDs, because the chance for them to meet 

up and annihilate is increased with reversals of dislocation motions. This is the first simulation 

effort to successfully predict the cell formation phenomenon under vibratory loadings.  

Keywords: Dislocation dynamics, dislocation structures, ultrasonics, acoustic softening, dislocation 

density, subgrain formation 
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1. Introduction 

The phenomenon that the quasi-static stress required for deformation is reduced when 

ultrasonic vibration is applied [1] has found wide applications in a lot of industrial processes 

such as ultrasonic welding [2], drilling [3], impact peening [4], and so on. Despite the long 

history of discovery and application of such acoustoplastic effects [5], there is no universal 

agreement on the underlying mechanisms. One early explanation proposed is that dislocations 

can preferentially absorb the acoustic energy and are hence more capable of overcoming their 

Peierls barriers [1]. The softening effects of the ultrasound are therefore considered the same as 

those of heating. However, several studies reported the lack of significant temperature rise of the 

specimen from ultrasound vibration, indicating the peripheral nature of such a thermal effect [6-

8]. Furthermore, Siu, et al. [9] showed that while heating is well-known to harden Ni3Al, 

ultrasound irradiation in fact softens this material just as other metals – clearly in Ni3Al at least, 

heating and ultrasound irradiation do not produce equivalent effects on strength.    

 Several other theories proposed in the past have focused on extrinsic effects of 

ultrasound. Nevill and Brotzen [10] suggested the stress superposition mechanism, namely, the 

oscillatory stress reinforces the static stress in a part of the stress cycle, thus lowering the static 

stress required to maintain the same yielding criteria. Tanibayashi [11] and Malygin [12] 

proposed different stress-superposition equivalence relationships, based on the assumption that 

the intrinsic deformation mechanism and microstructure of the material are unaltered by the 

vibrations. Eaves, et al. [13] postulated that there is a temporary reduction in the coefficient of 

friction at the contact surface during ultrasonic excitation. However, overwhelming experimental 

evidences have shown that acoustoplasticity is far from a merely extrinsic effect. First, it is well 

known that residual softening or hardening may occur in metals after application, and then 

removal, of ultrasound irradiation [1, 14-16], suggesting that the vibrations can induce 

permanent changes in the deformation microstructure of the material. This has been recently 

confirmed by Siu, Ngan and Jones [9], who observed extensive dislocation annihilation and 

subgrain formation in Al, Cu and Mo samples accompanying ultrasound irradiation in macro-

indentation experiments. Even in nanoindentation with the vibratory “continuous-stiffness-

measurement” (CSM) mode switched on, the CSM vibrations can also lead to softening as well 

as pronounced subgrain formation and lowering of the dislocation density, in Al, Cu and Mo 
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when the indentation depth-to-vibration amplitude ratio is smaller than ~100 to 150 [17]. Since 

the CSM vibrations are supposed to act as only a probe signal for the measurement of the contact 

stiffness of the sample, these results show that the CSM nanoindentation technique can become 

problematic when the vibrational amplitude is not negligible compared with the indent depth. 

Taking the aforementioned critical ratio of ~100 to 150 as a general guideline, a typical CSM 

amplitude of 2 nm would mean that indents with depths shallower than 200 to 300 nm, or in-

plane diagonals smaller than ~1.4 to 2.1 m, would be problematic.    

The fact that vibratory loadings can lead to extensive dislocation annihilation and 

subgrain formation [9, 17] is suggestive of certain regulations of the group behaviour of 

dislocations under such loadings. In addition, dislocation cell formation is also well known to 

occur during metal fatigue [18], although the eventual fatigue rupture is a consequence of 

complicated interactions between dislocation plasticity and crack initiation and propagation, 

which are affected by factors including surface finish and stress concentration. In an attempt to 

understand dislocation group behavior under oscillatory loading conditions, Siu, Ngan and Jones 

[9] and Siu and Ngan [19] employed two-dimensional discrete dislocation dynamics (2D-DD) 

simulations to study the group interactions of dislocations under oscillating and quasi-static 

stresses. It was found that (i) dislocation annihilation is greatly enhanced under superimposed 

oscillations leading to softening, due to the fact that during the augmented half cycle of the 

oscillatory stress, dislocations are made to travel further so that they can explore more 

environments for annihilation; (ii) in terms of the residual effect of the vibrations, both softening 

and hardening can occur depending on the residual dislocation quantity, which affects the 

competition between having sufficient dislocations as carriers of deformation, and dislocation 

interactions. However, these 2D-DD attempts failed to reproduce subgrain formation, which is 

an important feature of the deformation microstructure during vibratory loadings. Three-

dimensional dislocation dynamics (3D-DD) simulations are more realistic than 2D-DD, but a 

sufficiently large quantity of dislocations has to be involved in order to successfully simulate 

dislocation patterns, which may also mean impractical computational time. In a typical discrete 

3D-DD simulation using parallel computing [20], after a small strain of about 0.02%, a variation 

in the number of dislocation lines at difference regions was seen. However, dislocation cell 

formation was far from evident. 



4 
 

The motivation of this paper is therefore as follows. Instead of using discrete DD to 

simulate dislocation interactions during the application of oscillatory loadings, we use a 

dislocation-density-function dynamics approach. The advantage of such an approach over 

discrete DD is that any quantity of dislocations large or small can be represented by a dislocation 

density function, and consideration of the time-space evolution of the dislocation density will not 

be limited by computational power as for discrete DD, especially when the dislocation density is 

high.   

 

2. Simulation Details 

A number of authors have modeled the evolution of dislocation density during plastic 

deformation [21-38], and many of these models involve the crystal kinematics approach in which 

the evolution of the geometrically necessary dislocations (GNDs) is governed by the change rate 

of the crystal shape [39]. In doing so, the statistically stored dislocations (SSDs) are ignored. 

Another common weakness of these models is that the mutual elastic interactions between 

dislocations are not accounted for, and because the SSDs are not described rigorously, other 

interactions including Taylor hardening cannot be satisfactorily modeled. Hochrainer and co-

workers [40] have proposed a continuum dislocation dynamics (CDD) theory involving a 

generalized Nye tensor for curved dislocation systems, but numerical application of this theory to 

realistic plasticity problems remains to be seen.  

In this work, we employ a dynamics formulation in which the force on each group of 

dislocation density is calculated with the Taylor and mutual elastic interactions taken into 

account. The motion of the dislocation densities is then predicted using a conservative law, with 

annihilation and generation considered. The coarse-graining concept is assumed valid, which 

means that representative volume elements (RVE’s) exist and can be chosen for the structure to 

be simulated [41, 42]. The RVE’s are similar to the simulation pixels, the size of which should 

be coarse enough so that the dislocation density inside is sufficiently uniform, but is finer than 

the microstructure length scale over which the dislocation density typically varies. 
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2.1 The model 

At time t, let   
 ( ⃗  ) be the density (length per unit volume) of dislocation type  of the 

cell at position  ⃗.  is specified by the following factors: (i) the slip system { ̂  ⃗⃗} with  ̂ being 

the slip plane unit normal and  ⃗⃗  the Burgers vector, (ii) the dislocation character, which is 

assumed to be either purely edge (e) or screw (s) following [24, 43, 44], and (iii) the sign of the 

dislocation (either   or  ). For an fcc single crystal, there are 12 slip systems of the type 

{   } 〈
 

 
 
 

 

̅
  〉, and each has 4 dislocation types   ,   ,    and   , and so there will be 48 

types of dislocations to be considered.  

The equation governing the evolution of   
 ( ⃗  ) is: 

 ̇ 
 ( ⃗  )    ⃗⃗⃗   ⃗ ( ⃗  )   ̇ 

   
  ̇ 

       (1) 

where  ̇ 
   

 and  ̇ 
    are the generation and annihilation rates respectively. The dislocation flux 

 ⃗ ( ⃗  ) here is defined as the length of dislocations of type   moving across a perpendicular 

surface of unit area per unit time: 

 ⃗ ( ⃗  )     
 ( ⃗  )   ⃗⃗ ( ⃗  ) .     (2) 

The dislocation velocity  ⃗⃗ ( ⃗  ) here is assumed to be a power law of the effective stress   
   

 

acting on the dislocation, viz. 

 ⃗⃗ ( ⃗  )     (  
   ( ⃗  )) ( ̂   ̂)   |  

   ( ⃗  )   |
 

   (3) 

where   ,    and m are material constants, sgn(x) is the sign function, and  ̂ is the unit vector 

along the dislocation line corresponding to the dislocation type  . The effective glide stress   
   

 

is  

  
   ( ⃗  )    

   ( ⃗  )    
 
   

      
   

   ( ⃗  ).   (4) 

The four terms on the right side of eqn. (4) are, respectively,  

(i) the externally applied stress   
   , which is the component of the applied stress on the 

slip plane (with normal  ̂) along the  ̂   ̂ direction; 
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(ii) the lattice friction   
 
, which is a fixed and small term in the fcc structure; 

(iii) the Taylor hardening resistance   
      

 𝜇 √∑ ( ̂   ̂ ′)
 
  ′ ′  on type  

dislocations from the forest network, with the pre-factor taken to be unity for 

simplicity; and 

(iv) the long-range elastic interaction stress   
    from all other dislocations in the system, 

given as: 

  
   ( ⃗  )  ∑ ∭ ( ⃗⃗  )    ( ⃗   )     

            

 

where  

 ( ⃗⃗  )   
𝜇

  
( ̂   ̂)  [( ⃗⃗   ̂)   ⃗⃗⃗(   )]( ̂   ̂ ) 

 
𝜇

  
( ̂   ̂)  {[ ⃗⃗   ⃗⃗⃗(   )]   ̂}( ̂   ̂ ) 

 
𝜇

  (   )
( ̂   ̂)  [( ⃗⃗   ̂ )   ⃗⃗⃗]( ̂   ̂ ) 

        … (5) 

In eqn. (5),  ̂   ⃗⃗  ,      ⃗   ⃗′ , and  ⃗⃗⃗   ̂ (    ) operates on functions which depend on R 

alone. The interaction of two dislocation densities is only calculated for those within a cutoff 

distance        . Eqn. (5) is a straightforward generalization of the long-range elastic interaction 

force between two infinitesimally short dislocation segments   ⃗ and   ⃗  derived by [Hirth and 

Lothe [45]]. To obtain the Peach-Koehler glide stress   
    on a unit dislocation segment  ̂, due to 

all other dislocation densities    ( ⃗   )  in the system, we simply set   ⃗   ̂  and   ⃗  

 ̂′    ( ⃗′  )      in the Hirth-Lothe equation. The tensor   in eqn. (5) is given as 

  
   

      
 ̂   ̂  

with    and    being the relative coordinates of two interacting dislocation segments. 
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Dislocation generation – In the edge-screw idealization used (Fig. 1), dislocation generation 

arises as a rectangular loop expands (Fig. 1(a)), or as a dislocation line bows out between pinned 

ends (Fig. 1(b)). The amount of dislocations of type   may therefore change whenever 

dislocations of another type    on the same slip plane develop velocity gradients along their own 

line direction, viz. 

 ̇ 
   

  ∑  (  ′
    ′

 )    ′ ′  .    (6) 

As the space is discretized, we take the units for the consideration of dislocation generation to be 

the cell (pixel) size. Potential dislocation generation is then considered at the walls of 

neighboring cells. If (
  

  ⁄ )
 
 (

  
  ⁄ )

   
, then the wall between the     and (   )   cells 

will act as a source of the types shown in Fig. 1, and generation of new dislocation densities will 

occur. The quantity of new dislocation production at the cell wall thus depends on the difference 

in       between the two cells, and so eqn. (6) is recast into:   

 ̇  
       [(

  

  
)
  

   

 (
  

  
)
  

 

]   [(
  

  
)
  

   

 (
  

  
)
  

 

] 

 ̇  
       [(

  

  
)
  

 

 (
  

  
)
  

   

]   [(
  

  
)
  

 

 (
  

  
)
  

   

] 

 etc.,            (7) 

where  ( ) is the ramp function. However, the quantity of dislocations generated in cell i is 

limited by the work done by the net effective stress acting on the cell. Since the power density 

for a given slip system  is        
   

, the generation rates in eqn. (7) are scaled as follows: 

 ̇  
      ( ̂   ̂)

 ̇  
     

  (∑   ̇  
     

 ) 
          

   
 ; 

    ̇  
      ( ̂   ̂)

 ̇  
     

  (∑   ̇  
     

 ) 
          

   
 ;       etc.,    (8) 

 

where (   ) denotes the neighbour cells of i, and Ee is the line energy per unit length of 

dislocation. Here, the scaling factors           
   

   (∑   ̇  
     

 ) , etc., ensure that 
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   (∑   ̇  
     

 ), which means that the power density of the effective glide stress 

on the dislocation population in the cell under consideration is equal to the total line energy, per 

unit time and volume, of dislocations generated at all the interfaces that this cell makes with its 

neighbours. The generated densities at the cell wall are partitioned equally into the two cells. The 

geometrical factor ( ̂   ̂), where  ̂  is the cell wall normal, is needed since the dislocation line 

direction  ̂ would in general not be aligned but inclined with the cell wall.  

 The generated dislocations should produce a drag effect on the moving dislocation 

density due to their line tension. However, this drag effect is dropped in the present work, 

because its incorporation found to produce an unrealistic oscillation effect on the simulation 

results from time step to time step. The drag effect is a manifestation of the connectivity of the 

dislocation densities and this is always a weak feature in dislocation-density based models. This 

aspect should receive further attention in future work. 

 

Density annihilation – Following Arsenlis, M Parks, Becker and V Bulatov [24], annihilation of 

dislocation densities occurs whenever opposite signed densities come within a critical capture 

radius. In the edge-screw idealization, the annihilation rates are given as 

 ̇  
     ̇  

                       

 ̇  
     ̇  

                      ,    (9) 

where    and    are the critical capture radii for edge and screw characters respectively. 

Finally, the strain rate is related to the flux by 

 ̇( ⃗  )   ∑ ( ⃗⃗   ̂)[ ⃗ ( ⃗  )  ( ̂   ̂)] ,    (10) 

and so the cumulative strain field is obtainable as 

 ( ⃗  )   ∫  ̇( ⃗   )    
 

 
 .     (11) 

Here,   is the engineering strain relative to the original dimensions of the specimen. The Nye 

tensor, which gives the net GND Burgers vector content threading unit plane [46], is: 
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   ∑ (  
    

 )  ⃗⃗   ⃑  .                                           (12) 

 

2.2 Numerical implementation 

In this work, we made use of the Finite Volume Method (FVM) to numerically solve eqn. 

(1). By the first-order “upwind” discretization from basic FVM formulations, the term   ⃗⃗⃗  

 ⃗ ( ⃗  ) in eqn. (1) for the i-th cell will be  

   

  
 

 

   
[(  )    (  ) ]  

 

   
[(  )    (  ) ]  

 

   
[(  )    (  ) ]. (13) 

To handle high gradients, Monotone Upstream-centered Schemes for Conservation Laws 

(MUSCL) are employed [47]. 

The temporal evolution was implemented using a forward Verlet integration scheme. The 

time step    was set in an adaptive manner via  

       (      )
 

      (                      ), 

with also an upper bound of         s applied. This adaptive time step can ensure the stability 

of the time integration scheme, without the overly wasting of computational time when the 

dislocation velocities are small. 

To apply the above model to simulate acoustoplastic effect in a prototypic context, we 

used a set of material parameters typical in their range as shown in Table 1, rather than the 

specific properties of a given material. The geometry for the simulations was a rectangular single 

crystal as shown in Fig. 2, with periodic boundary conditions applied to all three dimensions, 

which means that as dislocations go out from one side, they return at the opposite side. Thus, 

effectively, an infinite block was simulated. The three sides of the simulation block were along 

the 〈   〉 directions of the fcc lattice. The simulation block had 50, 50 and 5 simulation cells 

along x, y and z directions, respectively. This selection was made so as to maximize the amount 

of information available on the x-y plane. Note that the dimension of the block along z direction 

is larger than the interaction cutoff distance (       ) in the simulations, so dislocations do not 

interact with their images.  
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Initially, the density of each of the 48 types of dislocations at each simulation cell was set 

randomly from a Gaussian distribution with mean  
     

  
    and variance =     (    ) . In 

this way, the initial total dislocation density of the simulation block is       m-2
, and the variance 

in density at different regions is quite small.  

For the ease of representation and calculation, the value of external stress used thereafter 

are normalized by the material shear modulus 𝜇. A simple tensile load was applied along the   

direction as shown in Fig. 2, so that all the {   } 〈
 

 
 
 

 

̅
  〉 slip systems could be activated. The 

applied stress consists of two components: (i) a static stress of a certain value, and (ii) an 

oscillatory stress with a given amplitude at a fixed frequency of     . This frequency is lower 

than the typical range of ultrasound. However, it has been experimentally shown that the 

acoustoplastic effect shows little dependence on the vibration frequency over a wide range from 

as low as 0.5 Hz to supersonic [1, 48]. 

Each simulation in the present work typically took 50,000 time steps, which 

corresponded to about 1.5 s of real time. The computational time for each simulation was less 

than one day on a normal personal computer, which represents a major advantage over 3D 

discrete dislocation dynamic simulations.   

  

3. Results 

3.1 Acoustic effect on deformation  

A set of simulations was carried out to see the vibration-induced effects on strength. 

When a static stress of          𝜇 is imposed on the specimen in a simulation, the strain 

gradually accumulates at a decreasing strain rate (black curve in Fig. 3). Simultaneously, the 

material experiences strain hardening as the dislocation density increases, and the strain rate of 

the material under a fixed loading condition exhibits an inverse trend with the strain of the 

material. For other sets of results shown in Fig. 3, a sinusoidal oscillating stress with different 

amplitudes was superimposed on the static stress, in a time interval (             ) during 

the deformation of the specimen. When a small oscillatory loading of          𝜇  is 
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superimposed, the strain rate is barely influenced compared to the static-only case. For vibrations 

with larger amplitudes, however, the acoustic softening becomes evident and more prominent as 

the vibration intensity increases. After the removal of the vibrations, residual hardening is 

observed for larger vibrational amplitudes previously applied, as indicated by a reduction of the 

strain rate (i.e. slope of the strain-time graph) compared with the moment just before the 

vibration is switched off. 

Using a power law for the strain rate  ̇    , and hence ignoring the possibility that the 

dislocation density and microstructure can be affected by vibrations, Tanibayashi [11]  showed 

that the reduction    in the static applied stress    due to the application of an oscillatory stress 

      (  ) to achieve the same strain rate without the oscillatory stress is obtainable from: 

(     )
  〈(               (  )) 〉   (14) 

where 〈 〉 denotes time average and    is an internal friction stress. When stress reversal is 

allowed, the equivalent loading conditions between the oscillatory and static-only cases 

according to eqn. (14) are specified in Table 2. To test the validity of eqn. (14), a set of 

simulations was done according to the loading conditions in Table 2, and the results are shown in 

Fig. 4. It is clear that the strain and strain rate for the simulated cases are different, indicating that 

Tanibayashi’s equivalence principle is incorrect. The breakdown of the Tanibayashi principle 

illustrates that strain rate does not obey a simple law  ̇    , and since  ̇    , the dislocation 

density and microstructure must be modified by the vibrations. 

 

3.2 Vibration effects on microstructure 

To further explore the acoustoplastic effect on the internal structure of the material, we 

examined the evolution history of two selected cases: (i) static loading of         𝜇 only, and 

(ii) oscillatory loading of          𝜇      (      )           𝜇 at a fixed frequency of 

     . The strain response of the two cases is illustrated in Fig. 4. In Fig. 5(a), the evolution of 

the total dislocation density is plotted. While the dislocation density for the oscillatory case is 

much higher at the end of the simulation, it stagnates for the first 0.02s. The change in the total 

dislocation density of the whole specimen depends on generation and annihilation, and in Fig. 
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5(b), the rates of generation and annihilation are plotted separately. Due to the oscillating stress, 

the generation and annihilation rates in the vibratory case fluctuate throughout the simulation, 

and shortly after the simulation starts (             ), both generation and annihilation 

become highly active but they roughly cancel out each other, thus explaining why the overall 

dislocation density stagnates for the first 0.02s. At around      , the annihilation rate undergoes 

a sharp drop, and although the generation rate also declines at the same time, the decay is much 

slower. On the contrary, for the static-only case, both generation and annihilation are slower than 

the oscillatory case on average, and generation in general is faster than annihilation. Therefore, 

the overall dislocation density keeps rising steadily.   

Fig. 6 shows the evolution of the dislocation distribution over an x-y section of the 

specimen for both cases. The initial density distribution shows a small variation. For the static-

only case in Fig. 6(a), the dislocation density in some regions builds up rapidly, while that in 

other regions stagnates or even declines as time proceeds. The accumulation of dislocation 

density and the formation of patterns are a gradual process starting from the onset of the 

simulation. At the end of the 1.5s, regions with either very high or very low dislocation densities 

have developed, with the highest dislocation density reaching     m
-2

, while the lowest values 

remaining below     m
-2

. The areas with high and low densities juxtapose and form alternating 

patterns. The regions with high dislocation density appear in the form of disconnected speckles.  

For the oscillatory case in Fig. 6(b), the dislocation density remains low in the initial stage, but 

pattern formation appears rather quickly around t = 0.04s. The final dislocation density 

distribution at the end of the simulation also has high and low density regions. However, in 

contrast with the disconnected speckle pattern for the static loading case, the distribution plot of 

the oscillatory case consists of low-density regions surrounded by long stripes of high density, 

which closely resemble a subcell structure. The size of the subcells is on the order of a micron. 

The presence of cell formation can be further revealed by probability density distributions 

of dislocation densities. A dislocation-cell structure is represented by two peaks in the 

probability distribution function of the dislocation density, with one peak at a higher density 

corresponding to the cell walls, and the second peak at a much lower density corresponding to 

the cell interiors. The temporal evolution of the probability density distribution of the dislocation 

density is shown in Fig. 7. Since the total dislocation density for the static and oscillatory cases 



13 
 

are quite different at the same time instant, the probability distributions in Fig. 7(a-c) are 

compared at various total densities for the static-only and oscillatory cases. The total density 

increased to           for the static-only case at t = 0.008s, and at t = 0.017s for the 

oscillatory case (Fig. 7(a)). For the static loading case, the dislocation density distribution 

exhibits a dual-peak feature, with the peak at higher density corresponding to the high density 

dots in Fig. 6. The dislocation density distribution for the oscillatory case has a single sharp peak, 

which corresponds to the nearly uniform distribution in Fig. 6. The uniform dislocation density is 

presumably the result of the balance between the dislocation generation and quick annihilation at 

the time. The total density reached           for the static-only case at t = 0.080s, and at t = 

0.072s for the oscillatory case (Fig. 7(b)). Between 0.008s and 0.08s, the dual-peak feature for 

the static loading case quickly turned into a single peak. For the oscillatory case, a dual-peak 

feature emerged with the two modal dislocation densities differ by about five times, in 

accordance with the shutting down of the high annihilation mode in Fig. 5(b). The total density 

reached           for the static-only case at t = 0.716s, and at t = 0.086s for the oscillatory 

case (Fig. 7(c)). The dual-peak feature in the dislocation density probability distribution for the 

oscillatory case is even more pronounced at the total density of          , with the two 

modal dislocation densities differ by about ten times. After that, the low-density region for the 

oscillatory loading case underwent a moderate increase in density, so that the separation between 

the two peaks gradually became smaller towards the end of the simulation at t = 1.5s (Fig. 7(d)), 

but the bimodal distribution of the dislocation density is still very clear. 

To further provide information on cell formation, Nye tensors are calculated according to 

eqn. (12) and are plotted in Fig. 8 for the structures at the end of the simulation at t = 1.5 s. Here, 

the nine     components of the Nye tensor are specified by the label (i,j), where i is along the 

GND Burgers vector component, and j indicates normal direction of the unit plane the GNDs are 

threading. For the static-only case in Fig. 8(a), the plots for the Nye tensor components at the end 

of the simulation exhibit small and discrete patches dispersing rather evenly throughout the 

specimen. This indicates that GNDs are rather randomly dispersed in space without organizing 

into a subcell structure, and this is consistent with the dislocation density map in Fig. 6(a) at t = 

1.5 s. On the contrary, for the oscillatory case in Fig. 8(b), a number of Nye tensor components, 

in particular the (2,3), (3,1) and (3,2) components, show distinctive long stripes which tend to 
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align along the x and y directions of the simulation domain, indicating that GNDs form wall-like 

structures along these directions. The GND walls are also separated by about a micron, and their 

locations roughly coincide with the long stripes of high dislocation densities in Fig. 6(b) at t = 

1.5 s. The Burgers vector components for these Nye tensor components of (2,3), (3,1) and (3,2) 

are along the y or z direction which are perpendicular to the tensile axis (the x direction). The 

associated GNDs would therefore have low Schmid factors and this explains why they remain 

rather static in the structure despite the oscillatory loading. The Nye tensor plots in Fig. 8(b) 

therefore confirm that the long stripes with high dislocation densities seen in Fig. 6(b) at the end 

of the simulation (at 1.5 s) are mainly composed of GNDs with low Schmid factors. The cell-like 

structures in Fig. 6(b) at 1.5 s should therefore be subgrains which are misoriented with respect 

to each other.    

 

3.3 Cell size and initial dislocation density 

It has been suggested, from a principle of similitude, that the subgrain size should be 

inversely proportional to the square root of the initial dislocation density [49, 50].  For specimens 

under oscillatory loadings, cell formation is prominent even when the overall strain has reached 

just a few percent [9]. To investigate how the subgrain size varies with the initial dislocation 

density, a set of simulations was performed for three specimens with different initial dislocation 

densities (       ,                        ) under vibrational loadings. The loading 

applied was scaled according to the initial strength corresponding to the different initial 

dislocation density, but the ratio between the amplitude of the vibrational stress and the static 

stress was always maintained at          𝜇 /         𝜇. The final equilibrium strains for 

the three cases are about a few percent. When the strain reached 3%, snapshots of the dislocation 

distributions are shown in Fig. 9. For cases (a) and (b) with initial dislocation density of 

        and            respectively, the formation of dislocation cellular structure is quite 

obvious and regular. In Fig. 9 (a,b) the cell walls are indicated by red dash lines and the cells 

themselves are numbered. The cell size can be determined by an averaging method, namely, the 

average cross-sectional area of the cells is the simulation region divided by the number of cells it 

contains, and then the subcell size is estimated as the square root of cellular cross-sectional area. 

From Fig. 9, the ratio between subcell size in case (a) and (b) is about 1.3. This ratio is lower 
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than the value predicted from the inverse-square-root relationship between cell size and initial 

dislocation density [49], which should be 2. However, an inverse relationship between the cell 

size and the dislocation density is evident. With the initial density as high as            , the 

high density regions do not appear similar to regular cell walls, but are clearly different from the 

disconnected speckle pattern in Fig.6(a).   

 

4. Discussion 

From the simulation results, acoustic softening was found to become more prominent at 

higher vibration amplitudes, once the oscillation exceeds a threshold. This is consistent with 

experimental findings – Langenecker [1], Kozlov and Selitser [48], Ohgaku and Takeuchi [51] 

and many others all found more prominent softening as the ultrasonic intensity increases. 

Furthermore, Fig. 3 shows that after the vibrations are switched off, a small residual hardening 

effect, indicated by a smaller strain rate, arises when the previous vibrational amplitude is large. 

Residual hardening has also been found experimentally especially after the application of 

sufficiently large vibration intensities [16]. Tanibayashi’s equivalence principle (eqn. 14) was 

found to be invalid, since the dislocation density and microstructure changes during the 

deformation are significant, which contradicts the assumption in the equivalence consideration. 

We have also examined the final dislocation distribution of the specimen, and found much 

enhanced dislocation cell formation under oscillatory loading. The Nye tensor plots in Fig. 9(b) 

reveal distinctive GND walls with spacing of about a micron, which imply the emergence of 

lattice rotations characteristic of a subgrain microstructure. Siu, Ngan and Jones [9] and [Siu and 

Ngan [52]][Siu and Ngan [52]][Siu and Ngan [52]][Siu and Ngan [52]][Siu and Ngan [52]]Siu 

and Ngan [52]  have experimentally confirmed enhanced subgrain formation under ultrasound 

irradiation and under CSM nanoindentation in different metals. In both simulations and 

experiments, the subgrains formed are on the order of a micron large, consistent with the present 

simulation results. To the best of our knowledge, this is the first successful attempt to be able to 

predict dislocation patterning resembling subgrain formation under vibrational loadings.  

We further investigated the underlying mechanism for the dislocation cell formation. The 

dislocation-density evolution in Fig. 5 and 6 illustrates that under vibrational loading, there exists 
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a plateau region at the initial stage of the simulation, where the overall dislocation density 

remains low and pattern formation is hindered. Together with the dislocation generation and 

annihilation rates plotted in Fig. 5(b), it is clear that the plateau region is associated with a 

particularly high annihilation rate at the beginning. When the rapid annihilation mode is shut 

down, the regional and overall densities begin to rise steadily. A question to ask is therefore: 

what inactivates the high annihilation rate? From eqn. (9), the annihilation rate is mainly 

governed by two factors: the dislocation velocity and the number of dislocation dipoles near a 

simulation cell. On a slip system near a simulation pixel, if there is an abundance of one type (e.g.  

  ), but a depletion of the opposite type (e.g.   ), the annihilation rate will be quite low. In 

other words, the polarization of dislocations hinders the annihilation process. To quantitatively 

represent the dislocation polarization ( ), we make use of the Nye tensor (eqn. 12): 

  √∑   
 
      (15) 

In Fig. 10 the evolution of dislocation polarization with respect to time is shown for the static-

only and vibratory case. The polarity under static loading rises continuously from the beginning 

of the simulation, while under oscillatory loading, it stalls for the first 0.02s, and the starting 

point of polarity rise coincides the shutting down of the high annihilation mode in Fig. 5(b). It is 

therefore evident that the vibrational loading promotes the exhaustion of dipole dislocations, or 

SSDs, in the initial dislocation structure. The depletion of dipoles and the intensified dislocating 

polarization in turn impede the annihilation of dislocations. The high annihilation mode under 

vibrational loading soon shuts down, resulting in the rapid increase of total and local dislocation 

density in the specimen. The final Nye tensor plots in Fig. 8 further support the fact that under 

oscillatory loading, the high annihilation event quickly exhausts a large part of the SSDs in the 

simulation cells, leaving behind patches of GNDs with low Schmid factors which correspond to 

a large dislocation polarity. The presence of GNDs in a certain volume is closely related to 

lattice misorientation, which is the basic feature of subgrain formation.  

The quicker depletion of the SSDs under oscillatory loadings is due to the reversal of 

dislocation motion, which increases the chance for SSDs to meet up and annihilate. This 

phenomenon was also seen in discrete DD simulations, although the dislocation quantity that can 

be handled by discrete DD did not allow subgrain formation to be predicted [19].  The ease of 
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cross slip is likely a factor affecting the annihilation of SSDs as suggested by DD simulations 

[19], but even in the present simulations in which cross slip is suppressed, subcell structures are 

seen with vibrations on. This indicates that even in materials with low stacking fault energy 

(SFE), subcell structures can follow oscillatory loadings. In fact, experiments have indicated that 

subgrain formation is prominent both in Al and Cu following deformation augmented by 

ultrasonic vibrations [9, 52] – the fact that Al and Cu have very different SFE indicates that cross 

slip is not an overriding factor for subgrain formation, although fine details of the subgrains and 

the speed at which they are formed may be influenced by the ease of cross slip. Further work 

focusing on the role of cross slip within the present model framework is worthwhile. 

A further point to address is how the dislocation cell formation corresponds to the 

softening under vibrational loading. Fig. 11 shows the overall components of the material’s 

strength under static-only and oscillatory loadings. It can be seen that the average elastic 

interaction stress between dislocations (       ) stress under oscillatory loading is larger than that 

under static loading, but the normalized Taylor hardening resistance |  
      

| √       in two 

cases is similar. Since the magnitude of the interaction stress   
    is only about 5 % of the Taylor 

interaction stress   
      

,  the different strength components given in Fig. 11 do not reveal a clear 

relation between subcell formation and softening with vibration on. This is likely due to the fact 

that, although the overall Taylor resistance is not lowered under the vibration, the local resistance 

may be significantly lowered in subgrain interiors with much lower dislocation densities. To 

verify this, two sets of simulation were done under the following conditions: (a) oscillatory 

loading of          𝜇      (      )           𝜇  were applied for 0.086s until the 

dislocation density reached          , followed by applying static loading of         𝜇, 

and (b) static loading of          𝜇 all along. When the total dislocation density for case (a) 

has reached          , the dislocation cell formation is prominient. In contrary, the cell 

structure for case (b) is absent throughout. After the density has reached          , the 

subsequent strain responses for the two cases under static loading at          are shown in Fig. 

12. Despite the same initial dislocation density, the strain rate of the specimen pre-treated with 

vibration is about 10 times higher than its counterpart which is always under static loading. 

These results therefore show that with cellular structure formation, the material is softer 

compared to the case of no cellular structure formation at the same total dislocation density.  
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Finally, it is useful to comment on the issue of numerical convergence in the present 

simulations. To check for convergence, we altered the dimensions of the simulation block as well 

as those of the simulation pixels. As mentioned above, the original size of the simulation block 

was 50 pixels along x, 50 pixels along y, and 5 pixels along z, with each pixel being a cube with 

length 200b. Further simulations were performed using a simulation block size with a doubled 

length along z, i.e. 10 pixels, and similar dislocation-density structures as the original block size 

with and without oscillatory loading as in Fig. 6 were observed.  This shows that the results 

presented so far are convergent with respect to the size of the simulation block. When the size of 

the simulation pixel was doubled or halved, similar results as the original pixel size were also 

obtained for the case of static loading. Under oscillatory loadings, subcell dislocation structures 

were also obtained with the pixel size doubled or halved, but the subcell size was found to 

increase with the pixel size. As an example, under an oscillatory stress of          𝜇  

    (      )           𝜇 for 0.3s, the resultant subcell size was found to be close to ~25 

pixels irrespective of their actual size, i.e. when the pixel size is 100b, the subcell size is close to 

~2500b, and when the pixel size is 200b, the subcell size is close to ~5000b, and so on, and such 

a trend is independent of the size of the entire simulation block. As discussed above, the 

formation of the subcells is due to the enhanced elimination of the SSDs by the oscillatory stress, 

while GNDs with low Schmid factors are left behind to form the subcell walls. Thus, the length 

of around 25 pixels here represents the wavelength over which clearance of the SSDs is most 

effective. It should be noted that, by virtue of the edge-screw idealization shown in Fig. 1 and 

equations such as eqn. (7), the pixel size is an explicit parameter in the present model, and so an 

observed scaling of the microstructural pattern size with the pixel size should not be surprising. 

Such a scaling should also not be seen as a disturbing feature of the model because, in the 

coarse-graining concept, the pixel or RVE size is a meso-scale property which cannot be 

indefinitely shrunk [41,42]. As said before, the pixel size has to be small enough compared to the 

length scale of the microstructure to be modeled, but large enough so that the dislocation 

structure inside is sufficiently featureless. Therefore, a change in the pixel or RVE size 

corresponds to a change in the interaction details of the dislocations, and may give rise to 

different predictions. Alternatively, the size of the RVE represents as a mesoscopic material 

parameter which may be obtained by fitting the simulated results to experimental observations.   
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5. Conclusions 

Simulations based on dislocation-density dynamics show that acoustic softening becomes 

more prominent at higher vibrational intensities. The reason is far from a simple added-stress 

effect, in which the oscillatory loading adds to the static loading to make the dislocations travel 

faster. Instead, the oscillatory loading promotes dipole annihilation, resulting in enhanced 

polarity and therefore strong GND patterns, resembling cell structure formation. The well-known 

softening effect of oscillatory loading is therefore mainly due to the enhanced cell formation. 

The simulation results tally well with experimental observations of strong dislocation pattern 

formation under vibrational loadings. 
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Table 1 – Simulation parameters  

Parameters Values 

Burgers vector               m 

Material shear modulus 𝜇        Pa 

Poisson’s ratio     

Stress exponent m for dislocation velocity, eqn. (3)   

   for dislocation velocity, eqn. (3) 1 ms
-1

 

   for dislocation velocity, eqn. (3)         Pa 

Lattice friction   
 
, eqn. (4)          𝜇 

Crystal dimensions (with periodic boundary 

conditions), Fig. 2 

  ( )    ( )   ( ) cells 

Cell size   ,   ,    section 2.2     ,     ,      

Cutoff distance for interaction        , eqn. (5)      

Capture radius for annihilation of edge   , eqn. (9)      

Capture radius for annihilation of screw   , eqn. (9)      

 

 

Table 2 – The equivalent static stress and oscillation amplitude for     according to eqn. (14) 

Static stress (     ) Amplitude of oscillation (  ) 

        𝜇 0 

         𝜇          𝜇 

         𝜇          𝜇 

         𝜇          𝜇 
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Figure Captions 

Figure 1 – Production of new dislocations in the edge-screw idealization by (a) expansion of a 

rectangular loop, (b) bow-out. 

Figure 2 – Specimen for simulation.   

Figure 3 – Strain response of materials under oscillation of different amplitudes from 0.06-0.29s. 

Figure 4 – Strain response of materials under different loading conditions. 

Figure 5 – (a) Overall dislocation density evolution during the simulations. (b) The dislocation 

generation and annihilation rate during the first 0.15s.  

Figure 6 – Dislocation density (m
-2

) evolution at different time points for (a) static loading of 

        𝜇, (b) oscillatory loading of           𝜇 +     (      )           𝜇. Time is 

specified under each snapshot. 

Figure 7 – Probability density functions for dislocation densities when the total dislocation 

densities under the two different loading conditions are both at (a)          , (b)   

       , and (c)          . (d) shows the distribution at the end of the simulations. The 

abscissa is the       value of the total dislocation density, and the vertical scale denotes the 

occurrence frequency of a particular density in the simulation block. 

Figure 8 – Nye’s tensor plot at the end of the simulations, in units of m
-1

. The label (i,j) denotes 

the     component of the tensor. (a) Static loading of         𝜇 only, (b) oscillatory loading 

of           𝜇 +     (      )           𝜇. 

Figure 9 – Dislocation density distribution for specimens with different initial densities at strain 

= 3%. The current total dislocation density is specified under each snapshot. (a) Specimen with 

initial density         under oscillatory loading of           𝜇  +     (      )       

    𝜇. (b) Specimen with initial density           under oscillatory loading of           𝜇 

+     (      )           𝜇. (c) Specimen with initial density           under oscillatory 

loading of           𝜇 +     (      )           𝜇. Red dash lines indicate the position of 

cell walls, and different cells are numbered. 

Figure 10– Dislocation polarity evolution for the two cases in simulations. 
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Figure 11 – The evolution of elastic interaction stress between dislocations        , and  

normalized Taylor hardening resistance |  
      

| √       for specimens under two different 

loading  conditions.  

Figure 12 – The strain response of two specimens under the static loading of         𝜇. Black 

curve: the specimen was pretreated with oscillatory loading of           𝜇 +     (      )  

         𝜇  for 0.086s until the dislocation density reached          . Red curve: the 

specimen was pretreated with static loading of         𝜇 only, until the dislocation density 

reached          . 
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(b) 

Figure 1 – Production of new dislocations in the edge-screw idealization by (a) expansion of a 

rectangular loop, (b) bow-out of a dislocation segment. 
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Figure 2 – Specimen for simulation.   
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Figure 3 – Strain response of materials under oscillation of different amplitudes from 0.06-0.29s. 
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Figure 4 – Strain response of materials under different loading conditions. 
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(a) 
 

(b) 

Figure 5 – (a) Overall dislocation density evolution during the simulations. (b) The dislocation 

generation and annihilation rate during the first 0.15s.  
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t = 0 

 

t = 0.005s 

 

t = 0 

 

t = 0.032s 

 

t = 0.009s 

 

t = 0.014s 

 

t = 0.045s 

 

t = 0.054s 

 

t = 0.032s 

 

t = 0.072s 

 

t = 0.072s 

 

t = 0.132s 

 

t = 1.5s 

(a) 

 

t = 1.5s 

(b) 

Figure 6 – Dislocation density (m
-2

) evolution at different time points for (a) static loading of 

        𝜇, (b) oscillatory loading of           𝜇 +     (      )           𝜇. Time is 

specified under each snapshot. 

1 m 1 m 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 7 – Probability density functions for dislocation densities when the total dislocation 

densities under the two different loading conditions are both at (a)          , (b)   

       , and (c)          . (d) shows the distribution at the end of the simulations. The 

abscissa is the       value of the total dislocation density, and the vertical scale denotes the 

occurrence frequency of a particular density in the simulation block. 
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(a) 

 

(b) 

Figure 8 – Nye’s tensor plot at the end of the simulations, in units of m
-1

. The label (i,j) denotes 

the     component of the tensor. (a) Static loading of         𝜇 only, (b) oscillatory loading 

of           𝜇 +     (      )           𝜇.  
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(a)              

 
(b)             

 
(c)              

 

Figure 9 – Dislocation density distribution for specimens with different initial densities at strain 

= 3%. The current total dislocation density is specified under each snapshot. (a) Specimen with 

initial density          under oscillatory loading of           𝜇  +     (      )       

    𝜇 . (b) Specimen with initial density            under oscillatory loading of       

    𝜇 +     (      )           𝜇 . (c) Specimen with initial density            under 

oscillatory loading of           𝜇 +     (      )           𝜇. Red dash lines indicate the 

position of cell walls, and different cells are numbered. 
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Figure 10 – Dislocation polarity evolution for the two cases in simulations. 

 

  



35 
 

 

 

 

Figure 11 – The evolution of elastic interaction stress between dislocations        , and  

normalized Taylor hardening resistance |  
      

| √       for specimens under two different 

loading  conditions.  

  



36 
 

 

Figure 12 – The strain response of two specimens under the static loading of         𝜇. Black 

curve: the specimen was pretreated with oscillatory loading of           𝜇 +     (      )  

         𝜇  for 0.086s until the dislocation density reached          . Red curve: the 

specimen was pretreated with static loading of         𝜇 only, until the dislocation density 

reached          . 

 

 


