
Title A Modified Differential Evolution with Heuristics Algorithm for
Non-convex Optimization on Sensor Network Localization

Author(s) Qiao, D.P.; Pang, GKH

Citation IEEE Transactions on Vehicular Technology, 2015

Issued Date 2015

URL http://hdl.handle.net/10722/214171

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38076317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0018-9545 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVT.2015.2409319, IEEE Transactions on Vehicular Technology

 1



Abstract—The sensor network localization based on

connectivity can be modeled as a non-convex optimization problem.

However, current models only consider the convex constraints i.e.

connections among the nodes. The proposed method considers not

only the connection constraints, but also the disconnection

constraints, which are non-convex in nature. It is argued that the

connectivity-based localization problem should be represented as

an optimization problem with both convex and non-convex

constraints. In this paper, an algorithm combining a modified

differential evolution (DE) algorithm and heuristics is presented

for the situation that the communication range value is unknown.

The developed algorithm has a new crossover procedure, with

refined procedures to produce a new generation of

individuals/candidates. A “single node treatment” procedure is

also designed for the search procedure to formulate a new set of

coordinate locations to jump out from the local minimum. The

final solution can reach the most suitable configuration of the

unknown nodes (nodes without knowing their location) because all

the information on the constraints has been used. Simulation

results have shown that better solutions can be obtained when

compared with other convex-constraint methods. The proposed

method also gives better result than other general non-convex

optimization methods.

Index Terms—wireless sensor network, localization,

connectivity, optimization, differential evolution, non-convex

constraints.

I. INTRODUCTION

osition estimation is necessary in many applications such as

remote patient monitoring, package and person tracking,

environment monitoring and wildlife habitat monitoring. In

these systems, there could be hundreds of low-cost sensor nodes,

which can take some simple measurements. Based on either the

distances or the connectivity among the nodes, we would like to

estimate the location of these nodes in the sensor network. It is

necessary to accurately localize the sensors in order to measure

data which is geographically meaningful.

For applications like automatic guidance, and wildlife habitat

Copyright (c) 2015 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be

obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Dapeng Qiao is with the School of Automation, Beijing Institute of

Technology. Beijing, China. (e-mail: dpqiao@eee.hku.hk).

Grantham K.H. Pang is with the Industrial Automation Research Laboratory

of Department of Electrical and Electronic Engineering, The University of

Hong Kong, Pokfulam Road, Hong Kong (e-mail: gpang@eee.hku.hk).

This work was supported by State Key Laboratory of Intelligent Control and

Decision of Complex Systems in China. It was also sponsored by the National

Natural Science Foundation of China under Grant NO. 61433003 and School

Foundation of Beijing Institute of Technology under Grant NO. 20130642011.

tracking, GPS-like devices are widely used. However, GPS

devices are expensive and inefficient on power consumption [1].

Thus, in sensor networks with a large number of sensor nodes,

attaching a GPS device to each node is not practical. In most

cases, there are only a few nodes with known positions in the

whole sensor network, while others are unknown. The only

information between the known nodes (nodes knowing their

location) and the unknown nodes (nodes without knowing their

location) is the communication among them, which can imply

the distance or connectivity between the nodes. Localization in

a sensor network is to use any useful information for the best

position estimation of the unknown nodes. As connectivity

requires less hardware and is much cheaper to establish than

distance measurement, connectivity-based localization is more

attractive. When having obtained the connectivity information

between any pair of nodes, a good algorithm to abstract useful

information for localization and to serve accurate position

estimation is the challenge. This paper concentrates on the

localization algorithms based on connectivity.

The current solutions of the connectivity-based localization

problem can fall into two categories. The first class of methods

tries to find the number of direct connections between two

nodes. In other words, the number of hops from one node to

another needs to be calculated. Hence, they use the hop count to

roughly represent the distance between two nodes. The centroid

method [2], the Approximate Point In Triangulation (APIT) [3],

the multidimensional scaling–MAP (MDS–MAP) (also known

as MDS) [4], and Distance Vector–Hop (DV-Hop) [5] all

belong to this category. The other class of methods models the

connectivity-based localization problem as a constrained

optimization problem. The connectivity information becomes

the constraints that the optimization result must satisfy. For

example, convex position estimation (CPE), also called

semi-definite programming (SDP) [6], selects the convex

constraints and formulates the problem as a convex

optimization problem. This method has been used as a starting

point for further searching [7] in distance-based localization.

However, due to the lack of non-convex constraints, the solution

obtained tends to have the estimated nodes crowd together, and

so the nodes cannot “keep distance” from each other, which

could give an overall erroneous result in practice. Besides, SDP

cannot work in the case that communication range is not

available. When the communication range is assumed unknown,

the available algorithms included centriod localization, MDS

and DV-hop, which are introduced next.

Centroid localization is probably the earliest and simplest

approach. A proximity-based and coarse approach is proposed

by Bulusu and Heidemann [2]. Every unknown node receives

several nearby anchors’ information. The location information

A Modified Differential Evolution with Heuristics Algorithm

for Non-convex Optimization on Sensor Network

Localization

Dapeng Qiao, Grantham K.H. Pang, Senior Member, IEEE

P

mailto:pubs-permissions@ieee.org
mailto:dpqiao@eee.hku.hk
mailto:gpang@eee.hku.hk

0018-9545 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVT.2015.2409319, IEEE Transactions on Vehicular Technology

 2

of the anchors is used, and the estimated location of the

unknown node is assumed to be the average of the location of all

the nearby anchors.

The basic MDS method [4, 8] can estimate the positions of all

the unknown nodes by using the distance information between

any two nodes. An extension of MDS [4, 9, 10] for the

connectivity-based localization problem has also been

developed. First, a rough estimate of the relative node distance

is obtained based on hop count information. One hop is one

direct connection between two nodes. The hop count between

any two nodes roughly represents the distance. Then, the

relative positions are calculated by Singular Value

Decomposition (SVD) [11] on the estimated distance

information matrix. Finally, absolute positions of the unknown

nodes are estimated based on the relative positions and the

positions of the anchors. The computational complexity of this

method is about O(n³) time for a sensor network of n nodes.

MDS has also been modified for the connectivity-based

localization problems based on the hop count information to

replace the estimated distance between a pair of nodes [10].

Another well-known localization algorithm is DV–Hop [5,

12-14]. The idea of DV–Hop is to transform the distance to all

anchors from hops to units of length measurement using the

average size of a hop. DV–Hop was first proposed by Niculescu

[14], and improved by many researchers. Anchors broadcast

their location information to other anchors, and such

information will be flooded with the hop count increment. Every

anchor knows the hop count from any other anchor, and uses

this information to estimate the average hop size. The distance

between an anchor and an unknown node is computed by the

hop size and the hop count between them. Finally, trilateration

is used when the distances between an unknown node and at

least three anchors are obtained by the above computation.

These connectivity based algorithms only consider the

connections between nodes, and ignore the disconnections.

Disconnection is actually important information on connectivity,

which can provide a better solution with nodes “keeping

distance” from each other. However, if disconnections

information is used, the computational complexity of the

localization algorithm will be greatly increased, which most

researchers try to avoid. As far as we know, there is no other

research which takes disconnections into consideration to

calculate the sensor locations. The aim of this paper is to utilize

the disconnection information and a new algorithm based on

modified differential evolution algorithm has been developed to

deal with all connectivity information of the network. This

paper first gives a formal definition of the connectivity-based

localization problem. The connectivity-based localization is

formulated as a non-convex optimization problem with

connections being modeled as convex constraints, and the

disconnections being modeled as non-convex constraints. An

algorithm based on the differential evolution and heuristics of

the localization problem is proposed and compared with the

available localization algorithms in the same situation such as

centroid, MDS and DV-Hop. In addition, the proposed

algorithm is compared with other non-convex optimization

methods. In our previous work [15], an ‘active-set algorithm’

has been used to solve this non-convex optimization problem,

and will be compared with the new algorithm in this paper.

Furthermore, a widely used two-objective evolutionary

algorithm called Pareto Archived Evolution Strategy (PAES)

[16] was used as a benchmark solution to the problem and it is

also compared with the new algorithm.

II. PROBLEM DEFINITION

The situation considered in this paper is that every node

(including anchors) has identical communication range, which

is unknown and needs to be estimated. The communication area

of every node is modeled as a perfect disk, which means its

antenna is omni-directional. The connection is established if

and only if another node is within this disk. The known

information includes some anchors’ locations and the

connectivity information between any two nodes. The following

description and simulations of the algorithms are all based on

this formulation.

A formal definition of the connectivity-based localization

problem is given in this section. Let (,)networkG V E be a given

network, where V denotes the nodes of the network and E

denotes the edge of the network. Let V be partitioned into two

sets:  1,...,aV m of anchors;  1,...,bV m m n   of

sensors (unknown nodes). E is also partitioned into two

sets:   , : ,ab a bE i j E i V j V    which are the edges

between a sensor and an anchor;   , : ,bb bE i j E i j V  

which are the edges between two sensors.

For each anchor i
aV , the position 2

ia  is assumed to be

known. For each sensor
bi V , the position 2

ib  is assumed

to be unknown. Let   , , : , , {0,1}ab a bC i j k i V j V k    be

the connectivity information between a sensor and an anchor.

Also let   , , : , , {0,1}bb bC i j k i j V k   be that between two

sensors. The value k in
abC or

bbC is binary (either 0 or

1): k =0 if there is no connection between node i and j; k =1 if

there is connection between node i and j. Let a be a vector

containing the positions of the anchors   2

a

m

i i Va a   .

The goal of the network localization problem is to determine

the coordinates of all the sensors:   2

b

n

i i Vb b   , such that b

satisfies the following constraints. Let R be the maximum

distance (called the range) within which connectivity can be

established.
2

2i ja b is the distance between one anchor and

one unknown node;
2

2i jb b is the distance between two

unknown nodes.

If k =1

2
2

2

2
2

2

(,)

(,)

i j ab

i j bb

a b R for i j E

b b R for i j E

   

   


else k =0

2
2

2

2
2

2

(,)

(,)

i j ab

i j bb

a b R for i j E

b b R for i j E

   

   


.

From the inequalities based on whether any two sensors

0018-9545 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVT.2015.2409319, IEEE Transactions on Vehicular Technology

 3

(including one sensor and one anchor) are in connection or not,

the constraints behind those inequalities can be classified into

convex constraints and non-convex constraints as shown in

Figure 1 and Figure 2.

i j

dij

R

ij i jd z z R  

convex constraint

Figure 1 A convex constraint is established when

ijk =1,
ijd is the distance

between node i and node j;
iz ,

jz are the coordinates of node i and node j

i j

dij

R

ij i jd z z R  

non-convex constraint

Figure 2 A non-convex constraint is established when ijk =0, ijd is the

distance between node i and node j;
iz , jz are the coordinates of node i and

node j

III. THE MODIFIED DE WITH HEURISTICS ALGORITHM FOR

SENSOR NETWORK LOCALIZATION

There are many methods for non-convex optimization, such

as Particle Swarm Optimization (PSO), Simulated Annealing

(SA), Genetic Algorithm (GA), and other evolutionary

algorithms. Researchers have applied them in sensor network

localization, but just limited to range-based scenario.

Terwilliger et al. [17] and Zhang et al. [18] both use

evolutionary algorithm to tackle the localization problem in

which the distances among the nodes are known. The target of

the evolutionary algorithm is to minimize the difference

between the known distances and the distances based on

estimated nodes position. Tam et al. [19] use a genetic

algorithm (GA) /evolutionary algorithm to estimate the position

of one single node based on its hop counts to its three nearest

anchors. In their method, there is a GA for estimating the

position of each unknown node. The computational complexity

is small also because the scale of the GA is small

(population<30). In each GA, only part of the population with

better performance is used in computation, which also decreases

the computation cost. Hence, the evolutionary algorithm by

Tam should be used for many times to estimate all the unknown

nodes. The accuracy is similar to the DV-Hop due to the same

principle in utilizing the hop count to anchors. Diana et al. [20]

also utilize soft computing approach to the range-based

localization, which is summarized as two objective functions:

Cost Function and Soft Constraint Violation. Other popular

non-convex optimization algorithms, such as interior-point

algorithm [21], are also tried in range-based scenario. In total,

current non-convex optimization methods achieved good

accuracy in range-based scenario. However, for the range-free

scenario, there is still no accurate algorithm because the

distance information is replaced by connectivity information,

which makes the problem more difficult. In this paper, we

analyze the characteristics of connectivity-based nodes, and

utilize them to modify evolutionary algorithm. As an

evolutionary algorithm, differential evolution algorithm is used

in this paper not only because it is easy to handle, but also

because its idea of using difference between two individuals is

similar with movement of a node from one position toward

another position. Therefore, differential evolution is suitable for

the node position estimation in nature.

A. Introduction of Differential Evolution (DE) Algorithm

Differential Evolution (DE) is a population-based method

that optimizes a problem by iteratively trying to improve a

candidate solution with regard to the value of its objective

function(s). The problem that it can solve can be nonlinear and

non-differentiable. During every iteration of its computation,

there is a group of candidate solutions called population, and

each candidate is called an individual in this population.

Population is improved generation (same to iteration) by

generation untill one individual in it is found to be satisfactory.

The improvement is the core part of this algorithm, which

contains three procedures: mutation, crossover and selection in

Figure 3. DE, which is firstly introduced by Storn and Price [22],

shows more efficiency than other non-convex algorithms such

as simulated annealing, genetic algorithms [22] and

evolutionary programming [23]. Differential evolution is called

“differential” because its mutation procedure introduces the

difference between two individuals into the next population. To

help illustrate our proposed algorithm, the normal DE algorithm

is first introduced below.

An optimization target has been formulated to minimize f(x),

where x is the vector containing the variables. Each individual in

any population is an estimate of x. In the first stage, the first

population is generated by randomness or given information.

Then each individual in the population will be operated by the

following procedures: mutation, crossover and selection. The

“better” individuals (individuals whose objective function f(x) is

smaller) are selected into the next population, i.e. the population

in the next generation. The loop will stop when a satisfactory

individual has been found.

Mutation Crossover SelectionInitialization

Figure 3 The main procedures of differential evolution (mutation, crossover,

and selection are included in the loop)

Mutation: Assume that the number of individuals in a

population is NP (number of population members, also called

population size). For the first population, each individual can be

initialized randomly. The individuals in the next population will

be generated from the current population. For each individual in

a population indexed by G, a trial vector v is generated

according to

, , , , ,() ()i G best G i G a G b Gv x x x F x x     (1)

where ,i Gx is the ith individual in population G, ,a Gx and ,b Gx

are two other individuals in population G, which are different

from ,i Gx ; ,best Gx is the “best” individual in this population (i.e.

the objective function of ,best Gx : f(,best Gx) is the smallest among

all the individuals in population G);  and F are two

parameters less than 1, which make v contains the information

of the best individual, and the difference between two random

individuals.  makes v close to the best individual. That is: v is

0018-9545 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVT.2015.2409319, IEEE Transactions on Vehicular Technology

 4

closer to
,best Gx when  becomes larger. However,  cannot

be 1, otherwise v will become
,best Gx and lost its own diversity.

On the other hand, F brings some randomness from two

random individuals, which should be smaller than 1 to avoid

vibration. Besides, these two parameters cannot be too small to

influence v. In a typical implementation, to obtain enough

information from
,best Gx ,

,a Gx and
,b Gx ,  is set to be 0.8 and

F is 0.9 [24, 25]. When x consists of only two variables, this

mutation procedure can be illustrated by Figure 4. The small

circles are the individuals in population G. The newly generated

vector v is denoted as the black dot. By using
,a Gx ,

,b Gx , and

,best Gx , v has a chance to become “better” than
,i Gx

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

x1

x2
,i Gx

,best Gx ,a Gx

,b Gx

v

, ,()a G b GF x x

, ,()best G i Gx x 

individuals in generation G

v

Figure 4 Geometrical illustration of mutation to generate v for a

two–dimensional case

Crossover: After deriving the trial vector v in mutation, the next

step is crossover. In order to increase diversity of the individuals,

the crossover procedure uses some elements in the current

individual
,i Gx and other elements in v, and combines them into

a new vector u. An example to illustrate how the new vector u is

generated can be found in Figure 5. The elements of u are

copied from the corresponding elements v or
,i Gx with the same

index. In the example, elements 3, 4, and 6 are chosen from v,

while other elements, i.e. 1, 2, 5, and 7 are copied from ,i Gx . It

must be noted that in a typical DE, for any element in u, whether

it is chosen from v or from ,i Gx is totally random. This can

introduce randomness to the population, and help generate

individuals which may be more suitable for the optimization

target. This procedure can also be explained by the equation

 (2), where the function rand(j) returns a random number from

0 to1; CR is a constant that defines which vector will make more

contribution to u. It is always bigger than 0.5 because v has

higher chance to be “better” than ,i Gx . In most cases, it is

usually set to be around 0.8 by experience to make the crossover

more efficient [24].

,

()

() ()

j

j

i G j

v if rand j CR
u

x if rand j CR


 



 (2)

where ,, , ()j j i G jv u x are the jth elements in vector ,, , i Gv u x ,

respectively; ()rand j is a random number from 0 to 1.

,i Gx uv

7

2

3

4

5

6

j=1

3

4

5

7

2

3

4

5

6

j=1

Figure 5 Random choice of elements in crossover of a typical DE

Selection: In the end, the individual
, 1i Gx 

 in the next

population is generated. The “better” vector between u and
,i Gx

is selected as
, 1i Gx 

.

,

, 1

,

() ()i G

i G

i G

u if f u f x
x

x otherwise



 


 (3)

Since DE was developed, there have been many applications

of DE to solve the optimization problems in various domains of

engineering including electromagnetics [26], power saving [27],

control systems [28] and image processing [29, 30]. The DE

algorithm becomes popular because it has demonstrated good

convergence properties and is easy to understand in principal

[31]. Nowadays, there are still some researchers focusing on

improving DE’s performance. They mostly concentrate on

finding proper setting of the control parameters, i.e. F, CR, and

NP, to expedite the convergence velocity. The determination of

values for those three parameters has been studied. It has been

suggested that a good choice would be: F=0.4 to 0.95, CR=0.9,

and NP is 3 to 8 times of the dimension of the variable vector

[32]. A fuzzy adaptive DE is introduced by Liu et al. [33],

which uses fuzzy logic controllers to adapt the parameters F and

CR. The simulation on some standard test functions shows that

the fuzzy adaptive DE can converge faster than DE with fixed F

and CR when the dimensionality of the problem is high or the

problem concerned is complicated [34]. Other self-adaptive DE

algorithms [31] use self-adaptive method to determine the value

of F and CR, which considers F and CR as the last two additive

elements in each variable vector.

Moreover, there are some variants of DE to speed up

convergence such as more complicated mutations [35], and

“current to pBest” mutation [36] which is similar to the

crossover procedure in this section, with the current individual

is replaced by the top 10% individuals in the past populations.

In [37], computational complexity of DE has been discussed

and various stopping criteria is investigated from the viewpoint

of computational complexity, which is max(* *)O NP D G ,

where D is the dimension of variable vector,
maxG is generation

number that the algorithm will stop at. DE is also used in

multi-objective optimization. A mathematical modeling and

convergence analysis of a continuous multi-objective

differential evolution is studied in [38]. It must be noted that like

many other evolutionary algorithms, there is no proof of

convergence for DE.

Our wireless sensor network localization problem is a

non-convex and non-differential problem. The original DE

algorithm was attempted in our problem, but no convergence

has ever been achieved when the number of nodes exceeds ten

(i.e. with twenty variables). In the following sections, a

0018-9545 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVT.2015.2409319, IEEE Transactions on Vehicular Technology

 5

modified DE algorithm will be presented.

B. The Objectives and the Variable Vector

The connectivity based localization problem is modeled as

minimizing two objectives: “wrong_connection_count” and

“wrong_distance”, which describe the number of wrong

connections and the error distance caused by these wrong

connections, respectively. DE evaluates the two objectives of

the candidate solutions in each generation, and uses them to find

out the ‘better’ candidates. Wrong connection contains two

cases: connection between a pair of nodes is mistaken/violated

as disconnection, and disconnection is violated as connection.

“Wrong_connection_cout” is used to count wrong connections

of all node pairs in a candidate solution. If the connectivity

(including connection and disconnection) between a pair of

nodes is violated, the distance between them indicates how

serious the violation is. Therefore, “wrong_distance”, which

describe the error between this distance and the range value, is

set to be the second objective.

The modified DE algorithm aims to minimize the above two

objectives, with a combination of the original evolutionary

algorithm and some heuristics. Besides, the value of the

communication range of a sensor can be assumed to be

unknown, which makes the search for a solution more difficult.

The variable vector (i.e. candidate solution) for this localization

problem includes the unknown coordinates and the estimated

range R̂ . Let n be the number of unknown nodes in the

localization problem. The dimension of an individual, which is

an estimation of the variable vector (T) is therefore 2n+1 as

below. (Note that m denotes the number of anchors; unknown

nodes are node m+1, node m+2, …, node m+n).

1
ˆ

mx  1
ˆ

my  2
ˆ

mx  2
ˆ

my  3
ˆ

mx  3
ˆ

my 
ˆ

m nx 
ˆ

m ny  R̂

The pseudo-code for the two objectives:

“wrong_connection_count” and “wrong_distance” are shown

as Figure 6 and Figure 7, where T is the variable vector, and

abE ,
bbE have been introduced in Section II. Note that

ijk =0 or

1 shows that node i and j are disconnected or connected, which

is the given information. On the other hand,

(R̂ -    
2 2

i j i j
x x y y  )>=0) and

(R̂ -    
2 2

i j i j
x x y y  )<0) indicates the node i and node

j in the candidate solution T are disconnected or connected.

function wrong_connection_count(T)

wrong_connection_count ←0;

for all (i,j)  abE  bbE

 if (ijk =1&(R̂ -    
2 2

i j i j
x x y y  )<0) |

(ijk =0&(R̂ -    
2 2

i j i j
x x y y  )>=0)

wrong_connection_count←wrong_connection_count+1;

 end if

end for

return wrong_connection_count

Figure 6 Pseudo-code for the first objective wrong_connection_count(T)

function wrong_distance (T)

wrong_distance ←0;

for all (i,j) 
abE  bbE

if (
ijk =1&(R̂ -    

2 2

i j i j
x x y y  )<0) |

(ijk =0&(R̂ -    
2 2

i j i j
x x y y  )>=0)

 wrong_distance ←wrong_distance +abs(R̂ -    
2 2

i j i j
x x y y  );

end if

end for

return wrong_distance

Figure 7 Pseudocode for the second objective wrong_distance (T)

C. The Characteristics of Sensor Network Localization

Problem

As the range value is unknown, the problem is more complex

because other variables (the coordinates of the unknown nodes)

depend on this range value to count the number of “wrong

connection” and calculate the “wrong_distance”. However,

different from the usual optimization problems, the localization

problem has its own characteristics, which can be used to help

with convergence. Below are the characteristics of the problem:

1. The variable vector (T) is formed by the coordinate pairs

of the unknown nodes. When searching for the positions of the n

unknown nodes, the position of one node may be moved while

the other n-1 nodes and the range value remain static. Therefore,

it is reasonable to partition an individual
,i Gx as in the

formulation of T. Furthermore, there exists a direction to search

for the node locations. That is: between the two nodes in a

wrong connection, the node with less wrong connections to its

neighboring nodes is preferred to stay unchanged.

2. Once a wrong connection is encountered, the searching for

the new position of the related nodes also has a direction. There

are two kinds of wrong connections:

(a) A connection has been mistaken as a disconnection;

(b) A disconnection has been mistaken as a connection.

Situation (a) can be illustrated by the relationship between node

i and k in Figure 8. From the known connectivity information,

they are connected, which means the distance between them

should be less than the range value. However, the estimation

(shown in their positions in Figure 8) violates this relationship.

Therefore, one node should be moved towards the other untill

the distance between them is less than the range value (as shown

by the gray arrows). On the other hand, situation (b) illustrated

by node i and j should be corrected by moving away from each

other (as shown by the white arrows). Therefore, the direction of

node movement should not be completely random, and the

above heuristic should be incorporated into the algorithm.

i

j

k
Figure 8 The illustration of wrong connections

0018-9545 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVT.2015.2409319, IEEE Transactions on Vehicular Technology

 6

D. New Crossover

Based on the first characteristic, each movement of a single

node would correspond to the change of two variables in the

crossover procedure of DE. The new crossover, which is

illustrated in Figure 9, utilizes this characteristic and makes

crossover follow a direction. Compared with the typical

crossover, this new procedure makes the crossover not “blind”

any more. The variables in u is still constructed by part of v and

part of
,i Gx , however the choice is not totally random, which is

different from typical crossover. The rule of the choice is: if a

pair of variables (presenting one node location) in v (the

mutation result) has better performance than the corresponding

pair of variables in
,i Gx , the pair of variables in v will be chosen

as the elements in u. Otherwise, the pair of variables in
,i Gx is

copied to u. In this manner, u has higher chance to

outperform
,i Gx , which makes crossover more efficient.

The evaluation should be reasonable, while it must be with

acceptable computation complexity because it is done as a part

of crossover. In this algorithm, the performance of each pair of

variables is evaluated by the two objectives:

wrong_connection_count and wrong_distance. The searching

direction is based on these objectives with respect to each node.

In the example of Figure 9, the node m+1:
1 1(,)m mx y 

and node

m+3:
3 3(,)m mx y 

 in v are assumed to make

wrong_connection_count smaller than the corresponding nodes

in
,i Gx , or with equal wrong_connection_count but smaller

wrong_distance. In this step, to reduce the computational

complexity, the two objectives are simplified. When counting

wrong connections of a particular node, for example, node m+1,

only the wrong connections related to node m+1 (i.e. wrong

connections between node m+1 and any other nodes) are

counted. The wrong connections not related to node m+1 are

ignored to reduce computation cost. The two objectives with

respect to one node are just used in the new crossover and can be

found in equation (4). It must be noted that the last element of u,

which represents the value of R (range), is set to be the last

element of v.

,i Gx uv

1mx 

1my 

2mx 

2my 

3mx 

3my 

4mx 

4my 

1mx 

1my 

3mx 

3my 

1mx 

1my 

2mx 

2my 

3mx 

3my 

4mx 

4my 

2 2 1()m nu R 2 2 1m nv  
Figure 9 Choice of the elements in the new crossover, which should satisfy

equation (4)

2 1 2

2 1 2

, 2 1 , 2

2 1 2 2 1 2

, 2 1 , 2

[] 1:

_ _ ([])

_ _ ([() ()])

2 :

[] _ _ ([])

_ _ ([() ()])

k k

k k

i G k i G k

k k k k

i G k i G k

v v if case

wrong connection count v v

wrong connection count x x

or case

u u wrong connection count v v

wrong connection count x x

and wr







 





 

2 1 2

, 2 1 , 2

, 2 1 , 2

_ ([])

_ ([() ()])

[() ()]

k k

i G k i G k

i G k i G k

ong distance v v

wrong distance x x

x x otherwise

















 





(4)

where k is the index of the unknown nodes,

1, 2, , k m m m n     ;
2 2 , 2, , ()k k i G kv u x mean the 2kth

element in vector
,, , i Gv u x , respectively.

_ _wrong connection count and _wrong distance are

functions with respect to one node (two variables in a variable

vector) here, because the wrong connections only related to

node k are checked in this step.

In the crossover procedure of the original DE, the value CR is

modified by considering only randomness in the search. In the

new crossover, a search direction has been given. This will

accelerate the search, but may lead to difficulty in jumping out

from local minimum. Therefore, two steps: “Alternative

generation” and “Final selection” have been added in the next

section.

E. Flowchart of the proposed algorithm

Initialization

local_min_indicator

=1 or 2?

Mutation

New Crossover

Selection

Alternative Generation

Final Selection

Single Node

Treatment

Performance Check:

If current population

has the same two

objectives to the last

population,

local_min_indicator++;

else

local_min_indicator=0

YES

NO

Figure 10 Flowchart of modified DE algorithm

An overall flowchart of the modified DE algorithm is shown

in Figure 10. One important item in the algorithm is an indicator

called ‘local_minimum_indicator’. It is used to keep track of the

progress during the iterations. The value of this indicator would

be incremented whenever there is no change to the performance

with respect to the two objectives (“wrong_connection_count”

and “wrong_distance”) obtained by the best individual in the

population. It is initialized to 0 at the beginning. The initial

population contains many individuals, which greatly affect the

convergence of the proposed algorithm. If these initial values

are totally random numbers, the proposed algorithm is hard to

be convergent even after thousands of iterations. Therefore,

reasonable initial values are needed. As we known from the

introduction section of this paper, although not accurate, MDS

which only considers connections can give a roughly estimation

0018-9545 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVT.2015.2409319, IEEE Transactions on Vehicular Technology

 7

of the nodes’ positions. Individuals of the initial population are

generated based on the MDS result. Each individual is a

variation of the MDS result. MDS is utilized as the initial value

because it is quick and easy to obtain. Furthermore, compared

with other methods only considering connections, MDS

estimates nodes to be clustered, and therefore have the nature to

produce less local minimum if being set as initial value [16].

“Single node treatment” is used to treat local minimum, which

will be introduced in the next section. The details on the

procedures of the modified DE algorithm are as follows:

Step 1: Mutation: for each individual
,i Gx in the current

population T, use (1) to generate v, where  and F are set as

0.8 and 0.9.

Step 2: New Crossover: generate u from v and
,i Gx as

equation (4).

Step 3: Selection: generate
, 1i Gx 

 by the function (5)

,

, 1

,

,

,

1:

_ _ ()

_ _ ()

2 :

_ _ ()

_ _ ()

_ ()

_ ()

i G

i G

i G

i G

i G

u if case

wrong connection count u

wrong connection count x

or case

x wrong connection count u

wrong connection count x

and wrong distance u

wrong distance x

x otherwise












 


 






 (5)

where wrong_connection_count and wrong_distance are

functions with respect to one variable vector. The last element

(the th2m+2n+1 element) of
, 1i Gx 

, which represents the

value of range is
2 2 1m nu  

Step 4: Alternative Generation: an alternative individual

, 1_ i Gx new  is then generated based on adding some

randomness to the current , 1i Gx  . The idea is to generate an

alternate coordinate for each node coordinate in
,i Gx as shown

in Figure 11. The angle is random but the radius would depend

on the number of wrong connections. If the number of wrong

connections is large, the newly generated alternate coordinate

would be further away.

Let
, 1 2 1 2 2 2 3 2 4 2 2 1 2 2 2 2 1([],[],...,[],)T

i G m m m m m n m n m nx x x x x x x x         

, 1 2 1 2 2 2 3 2 4

2 2 1 2 2 2 2 1

_ ([_ _],[_ _],...,

[_ _], _)

i G m m m m

T

m n m n m n

x new x new x new x new x new

x new x new x new

    

    



The new node coordinates (as a pair of variables) are

2 1 2 2 1 2[_ _] [] *[cos sin]k k k kx new x new x x radius     (6)

where

2 1 2(0 1)* _ _ ([]) / 5;k kradius rand wrong connection count x x 

5 is used to ensure the distance between the new node and the

original node is less than two twice of the node density.  is a

random value from 0 to 2 ; k is the index of the unknown

nodes, 1, 2, , k m m m n     .

radius



(x2k-1,y2k)

(x2k-1,y2k)+radius*(cos,sin)

Figure 11 An alternative individual is generated

Still, the last element of
, 1_ i Gx new 

 is set to be the same to

that of
, 1i Gx 

, which means the range value keeps unchanged in

this step.

Step 5: Final Selection: the new generation of variables

obtained at the end of the current iteration would depend on

, 1i Gx 
 and

, 1_ i Gx new 
. In a typical situation (i.e. when

local_min_indicator = 0), the new generation is formed by

choosing the best 50% from both
, 1i Gx 

 and
, 1_ i Gx new 

.

However, when in a special situation encountering local

minimum, and with no improvement in convergence (i.e. when

local_min_indicator ≧ 3) even after using a special procedure

called “single node treatment” (to be discussed in the next

subsection), the following selection would be carried out:

 All the individuals in , 1i Gx  and , 1_ i Gx new  would be ranked

according to the wrong_connection_count.

 The first 50% of the new generation is obtained from adding

randomness to the top 50% of
, 1i Gx 

 , in which each node

coordinate would be added with a value of 1 or -1 randomly.

The variation of this value is designed to be less than the

length of the network area divided by the square root of the

number of nodes.

 The next 25% of the new generation is obtained from 25% to

50% of , 1i Gx  . The idea is to discard the top 25% of , 1i Gx 

deliberately so as to jump out from the local minimum.

 The final 25% of the new generation is obtained from the top

25% of , 1_ i Gx new  .

Three parts provide necessary population in the next

generation. The first part is the fundamental population which

should take the majority. The second part is the ‘radical’

population with more randomness. The third part is used to

enhance the weight of the ‘typical’ population. There is no an

optimal proportion setting of the three parts, but the setting

should fulfill that the first part should take at least 50% while the

last two parts should not be too small.

F. Single Node Treatment

Two reasons contribute to the convergence of the search for

coordinates. The first is the new crossover step, which

introduces a direction during crossover. The second is

“alternative generation” and “final selection”, which introduce

randomness in the population. After using these two effective

methods, fast convergence is observed in the search for the

nodes’ positions. However, they are not enough to reach the

final result as there may still be some local minimums near to the

final answer. In other words, most nodes are localized, while

only a few nodes produce wrong connections. In this section, a

newly developed procedure called “single node treatment” will

be described to help jump out from local minimums. The

method is motivated from the second characteristic discussed in

0018-9545 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVT.2015.2409319, IEEE Transactions on Vehicular Technology

 8

section III.C. When a wrong connection is encountered, two

questions need to be answered:

 How far should a node be moved?

 Which node should be moved?

To answer the first question, the proposed algorithm would

move a node for a distance equals to the absolute difference

between the range value R̂ (in T) and

,
ˆ

i jd =    
2 2

i j i j
x x y y   , which is the estimated distance

between node i to node j. An example is shown in Figure 12,

which is based on the wrong connections described in Figure 8.

There are three nodes under consideration. There is a

disconnection between node i and k, but they are supposed to be

connected. There is a connection between node i and j, but they

are supposed to be disconnected. Hence, node i has two wrong

connections and should be moved (see the first figure in Figure

12). The direction and the distance of the two movements are

determined in this step. First, node i is moved towards node k

(the second figure), and then moved away from node j (the third

figure). However, in the second move, the disconnection

between node i and k re-appears. In other words, the wrong

connection between node i and node j is fixed, but the

connection between node i and k is still wrong. It can be fixed in

the next iteration by moving k, which is shown in the last figure.

i

j

k

i

j

k

i

j

k

i

j

k

next iteration

Figure 12 An example of the single node movement

Next, the second question regarding node movement is

addressed. In most cases, the node with more wrong

connections has a higher probability to be the wrong node than

the node with less or zero wrong connections. Therefore, the

node with more wrong connections should be chosen as the

node to be moved. However, there are some situations where the

node with less wrong connections should be moved. Figure 13

illustrates the above situation using an example. The blue lines

and red lines represent the wrong connections. The blue lines

denote the mistaken connections for disconnections, and the red

lines denote the mistaken disconnection for connections.

Triangles are the estimated positions, while circles are the real

positions. We only focus on the nodes that involve wrong

connections. In the first figure, node 50’ has two wrong

connections which are with node 2 and 12. Only node 50’ can be

moved because node 2 and 12 are both anchors. However, after

node 50’ steps forward to node 12, a new red line between it and

node 89’ appears (the middle figure). If the node with more

wrong connections should be moved, then node 50’ should be

moved again rather than node 89’, which would result in a

situation very similar to before (the third figure). The above

would result in endless movement of node 50’, which cannot

resolve the situation. Hence, it is not always correct that a node

with more wrong connections should be moved. In most cases,

we should move the node with more wrong connections, but we

still need to leave some chances for moving the node with less

wrong connections to get rid of the endless movement case in

Figure 13. Therefore, the chance of moving the node with more

wrong connections should be larger than 1/2, but not too close

to 1. In the proposed algorithm, this chance is assigned to be 2/3.

That means there is still a 1/3 chance to move the node with less

wrong connections.
12

2

50

50'

89 89'

12

2

50

50'

89 89'

12

2

50

50'

89 89'

Figure 13 Illustration on node movement

IV. SIMULATION RESULTS AND COMPARISON

A. Comparison with other current convex-constraint methods

The simulations of this paper are conducted in different

topologies (different graphs) to obtain convincing result.

Different topologies introduce different location arrangement of

the nodes. This arrangement in our topologies is random. Thus,

in some topologies most nodes may be clustered, and in other

topologies, nodes are nearly evenly distributed. The clustered

network and sparse network may be found in even one topology,

while most nodes are crowded in one half of this topology and

there are fewer nodes in the other half. More topologies can

produce higher chance to get different networks, and therefore

show more convincing result.

The proposed algorithm is applied in a 100-node network, in

which the first 20 nodes are anchors. All the nodes are placed in

a 10 by 10 square region. The only known information is

whether any two nodes are connected or not. This connection

information is obtained when setting the range value to 2.

Results are obtained based on ten different topologies and the

algorithm is attempted for 10 times for each topology.

Furthermore, because the evolutionary algorithm contains some

randomness in computation, the result of our proposed

algorithm is not unique. Therefore, in each topology, the

algorithm is carried out for 10 times to obtain convincing result

range. TABLE I shows the related parameters.

The accuracy of the estimation is evaluated by the difference

between the estimated positions of unknown nodes and the

positions of the corresponding unknown nodes when the

problem is setup. The average error per unknown node (average

error) is calculated by the formula next.

1

ˆ ˆ() ()
m n

i i i i

i m

x x y y

error per node
n



 

  




where (ˆ
ix , ˆ

iy) is the estimated position of node i, (ix , iy) is the

0018-9545 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVT.2015.2409319, IEEE Transactions on Vehicular Technology

 9

real position of the node i.

The average errors of the proposed algorithm for the 10

topologies are shown in the box plot of Figure 15. The mean

values are around 0.3. It must be mentioned that there are two

outliners in No.8 which are above 4.5. They are caused by two

un-convergent results. In No.8, eight trials are convergent, the

result of the other two trials are obtained when the maximum

number of iteration is reached. They may be convergent when

more generations are obtained, but for this algorithm, the

convergence cannot be guaranteed. Out of the 100 different

simulations using the DE with heuristics algorithm, these are the

only two un-convergent cases. The estimated range values are

very close to the real value of 2, except the two un-convergence

cases which are shown as red crosses of No.8 in Figure 14. The

comparison between our algorithm and other algorithms is

shown in Figure 15, which indicates that the proposed algorithm

has error around 25% of centroid localization, 30% of DV-Hop

and 30% of MDS. It must be noted that MDS, DV-Hop and

centroid method give a unique result in different trials. Hence,

they are presented by dots, not boxplot. In summary, the

proposed algorithm can improve the accuracy greatly. This

sacrifices on the computational complexity. In the same

simulation environment (a normal PC with MATLAB installed),

MDS and DV-Hop use about 15s to finish one simulation, while

the centroid localization spends much less. Our proposed

algorithm uses about 10s to finish each iteration, and there are at

least 30 iterations in a single simulation. Therefore, the

proposed algorithm will spend about 5 minutes in a normal PC

(Intel Core Quad CPU 3GHz, RAM 4GB) and be over 20 times

slower than other algorithms such as MDS, centroid and

DV-Hop shown in TABLE II. Generally speaking, a network

with one hundred nodes can be accurately localized within five

minutes by a normal PC using the proposed algorithm. However,

this proposed algorithm can reach the best accuracy in the

theory because it uses all known information. The computation

time will be reduced with the development of computer

hardware. It is useful in network with slower nodes, such as

glacier monitoring, which needs accurate localization and have

slow moving or quiet nodes.
TABLE I

PARAMETERS OF THE SENSOR NETWORK

Parameter Value

m 20

n 80

R (range) 2

Boundary [0,10]*[0,10]

Number of topology 10

Number of trials 10

Max number of iteration 400

TABLE II

COMPARISON OF COMPUTATIONAL TIME OF DIFFERENT ALGORITHMS

Algorithm Computational time

 MDS 15-20s

 centroid less than 1s

DV-Hop 15-20s

DE with heuristics around 300s

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10

1.85

1.9

1.95

2

2.05

e
s
ti
m

a
te

d
 r

a
n
g
e

Figure 14 Estimated range when range=2

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10
0

0.5

1

1.5

a
v
a
ra

g
e
 e

rr
o
r

MDS

DV-Hop

centroid

Figure 15 The average error compared with other algorithms’ average error

when range=2

Above comparison is implemented in the randomly

distributed networks without any obstacles in the square area.

More obvious accuracy improvement by the proposed

algorithm can be found in the networks with big obstacle(s) such

as C-shape networks. The simulation on below C-shape network

is interesting, which significantly demonstrates the advantage of

the proposed algorithm. To more straightforwardly show the

accuracy improvement, we assume there is wall in the right half

of a square area and randomly generate a map with 25 nodes as

Figure 16. The prior known information contains the position of

8 anchors (marked as small green dots) and the connectivity

information. The green lines are the connections among the

nodes. The other 17 nodes’ positions and the range value are

needed to estimate. The estimated position should be near to the

real positions of the 17 nodes (small circles in the figure). Real

value of the range is 3. In the current implementation, the

number of population (NP) is set to be 100. The algorithm

makes use of the MDS result and its vibration as the initial

population.

Figure 16 A sensor network with 25 nodes

0018-9545 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVT.2015.2409319, IEEE Transactions on Vehicular Technology

 10

-4 -2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

16

17

18

1920

21

22

23 24

25

MDS

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

16

17

18

19
20

21

22

23 24

25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1920

21

22

23 24

25

Figure 17 The estimation result of MDS (the left one) and the proposed

algorithm(the right one)

For the estimation results, we use MDS to compare the

proposed algorithm because MDS not only ignores

disconnections, but also is the starting point of the iteration of

our algorithm. The accuracy improvements can be clearly

shown from the comparison. In Figure 17, the left figure shows

MDS’s results while the proposed algorithm’s estimation is the

right one. MDS shows very coarse estimation, most estimated

nodes (small triangles) are far away from their real positions and

almost failed in the C-shape network. Even with this coarse

estimation as the starting point, our algorithm can reach

reasonable solutions, in which the small triangles are the

estimation of the proposed algorithm. The two objectives in

different iteration can be shown in TABLE III. In the first

iteration, the best individual among the first population

generated from MDS result and random range value has

wrong_connecion_count: 10, and wrong_distance: 32.962. The

single node treatment procedure is applied in the 9th iteration,

when detecting the last iteration with local_min_indicator being

1. The values of the two objectives, specially the value of

wrong_distance decrease greatly due to the operation of single

node treatment. Other iterations utilize the modified DE

algorithm while the local_min_indicator is 0. In the last

iteration, the two objectives are both 0, which means the

estimated positions of the unknown nodes satisfy all the convex

and non-convex constraints. The estimated range value is 2.906,

which is very close to the real range value of 3.
TABLE III

TWO OBJECTIVES FOR EACH ITERATION OF THE PROPOSED ALGORITHM IN

25-NODE NETWORK

Iteration WC WD Indicator Range

1 22 32.961773 0 2.533473

2 19 31.422041 0 2.460921

3 16 27.675494 0 2.768528

4 14 24.637071 0 2.612727

5 12 19.094194 0 2.789369

6 10 27.307769 0 2.318219

7 9 20.679309 0 2.605094

8 9 20.679309 1 2.605094

9 7 3.358320 0 2.855567

10 5 2.486910 0 2.925609

11 4 1.258011 0 2.938039

12 2 0.325556 0 2.714406

13 2 0.055372 0 2.841072

14 0 0.000000 0 2.906340

B. Comparison with ‘active-set’ algorithm and PAES

(non-convex methods)

In [15], a non-convex optimization algorithm called

“active-set” has been used to solve the localization problem. It

assumes that the range value is known, and the target is to

minimize the first objective “wrong_connection_count”. In [39],

a two-objective evolutionary algorithm PAES is used to solve

the connectivity-based localization problem. These two

methods provide solutions for general non-convex optimization

problem. In this section, the modified DE with heuristics

algorithm is compared with those two methods.

“Active-set” algorithm does not need gradient in the

objective function, and its constraints can be nonlinear and

non-convex. It is implemented by Matlab and uses the result of

semi-definite programming (SDP) as a starting point. The

implementation of PAES can be found from jMetal[40]. PAES

may represent the simplest possible nontrivial algorithm

capable of generating diverse solutions in the Pareto optimal set.

The simplest form: (1+1) evolution strategy, which is applied in

this paper, employs local search but uses a reference archive of

previously found solutions in order to identify the approximate

dominance ranking of the current and candidate solution vectors

[41]. PAES comprises three parts: the candidate solution

generator, the candidate solution acceptance function, and the

non-dominated-solution (NDS) archive. The candidate solution

generator is similar to simple random mutation hill-climbing,

but prefers the less crowded solutions in order to keep diversity

preservation. It maintains a single current solution and, at each

iteration, produces a single new candidate via random mutation.

The detail information of ‘active-set’ and (1+1)-PAES

algorithm can be found in [15] and [41].

 The simulation is under the No.1 topology of the section A,

with a range of 1.5. Every algorithm (except “active-set”) is

carried out for 30 trials and the results are drawn as boxplots.

The error per node of the algorithms is displayed in Figure 18.

The “active-set” algorithm has uniform result in different trials,

and so it is displayed as a short red line. The performance of

PAES is better than “active-set”. Modified DE with heuristics

can give better accuracy than PAES even if the range value is

assumed unknown. It must be mentioned that no convergence

(i.e. no results) are obtained by the “active-set” and PAES

algorithm if the range value is assumed unknown. In addition,

there is no convergence if the starting points are random.

active-set PAES modified DE with heuristics
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

av
er

ag
e

er
ro

r

Figure 18 Comparison of accuracy of the non-convex algorithms

The computational complexity of our proposed algorithm is

compared with PAES which is also an evolutionary algorithm.

Here, we analyze their time complexity in terms of the number

of computation in meeting the two objectives. The two

objectives with respect to one node (i.e. two variables) can be

found in the description of the “New Crossover” (subsection C

in section III). Its computational complexity is nt, which is O(n),

where n is the number of nodes, t is time used to compute

distance between two nodes and compare it with range value.

The two objectives with respect to one individual (i.e. all

unknown nodes together with the range value) are given in

Figure 6 and Figure 7. Its computational complexity is 2n t .

which is 2()O n . It’s because all possible pairs of nodes needs to

0018-9545 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVT.2015.2409319, IEEE Transactions on Vehicular Technology

 11

be evaluated. For each individual in one generation, during the

step of “New Crossover”, every individual must compute the

two objectives with respect to each node, but this computation

should be on n nodes. So, the complexity in “New Crossover” is

n*nt. The steps of “Selection” and “Final Selection” (Step 3 and

5 in subsection III.C) both compute the two objectives with

respect to one individual, and their computational complexity is

2* 2n t . Therefore, together with the computational complexity

of “New Crossover”, the complexity of each individual in one

generation is 3* 2n t . Assume that
1g generations for

population NP are needed to be convergent, the total

computational complexity is 3
1g NP 2n t . On the other hand, the

(1+1) PAES’s complexity is
2g a 2n t , where

2g is the average

number of generations needed for convergence, and a is the

archive size [41]. In the simulation, a=100, and NP=100. It is

observed that
1g is around 30 and

2g is around 100000.

Therefore, the complexity of the modified DE with heuristics is

nearly 0.1% of that of PAES. Considering that the current PAES

algorithm has the range value assumed to be known while our

algorithm assumes range value to be unknown, the reduction in

computational complexity of the proposed algorithm compared

with PAES is more obvious.

C. Results on the Scalability of the Algorithm

The performance of this algorithm for different sizes of

networks is evaluated in the next simulation. In section A, the

simulation is on a 100-node network in a 10 by 10 square region,

and the communication range is 2. In this section, with the same

settings, four different sizes of networks (the number of node

are changed to 50, 75, 125, and 150) are tested to compare with

the result of the 100-node network. For the comparison to be

meaningful, the communication range has to be changed in

order to keep the same connection degree. The number of nodes

is changed to 50, 75, 125, and 150, while each node is connected

to 10 nodes on average (which is the connection degree). These

four networks are all with anchor ratio of 20%.

To achieve similar “connection degree” in the former network

(100 nodes, range=2), the ranges for different cases of the

networks are shown in TABLE IV. The ranges of those cases

are computed based on that the square of range should be

inversely proportional to the number of nodes [42].
TABLE IV

THE PARAMETERS OF THE SIMULATIONS ON DIFFERENT NETWORK SCALES

Number of nodes (q) Range (r) Degree Anchor ratio

50 2 2 9.56 20%

75 4 3 10.133 20%

100 2 10.04 20%

125 4 5 10.608 20%

150 4 6 10.84 20%

TABLE V

COMPARISON OF THE SETUP RANGE AND THE ESTIMATED RANGE

Number of nodes Range (in TABLE III)
Mean value of estimated

range (in Figure 20)

50 2.8284 3.1038

 75 2.3094 2.3265

100 2 1.9972

125 1.7889 1.7554

150 1.6330 1.6441

The estimated average error for different scales of network is

shown in Figure 19. The error becomes smaller when the scale

of the network is increased. It can be explained by the fact that

within the same region, the network with more nodes would lead

to more constraints and this can improve the location accuracy.

The estimated communication range is shown in Figure 20. The

mean values of the estimated range are compared with the setup

(true) range values in TABLE V. It is noticed that only the error

of the estimated range for the 50-node network is a little bit

larger than the other cases. It may be caused by having less

constraints in the 50-node network.

The next simulation result shows the result of the proposed

algorithm for different anchors ratios. The range is set to 2, and

the total number of nodes is 100. The number of anchors varies

from 10, 20, 30, 40 to 50. Each set of simulation is carried out

for 10 times, and all of them are based on the 1st topology (No.1).

The error per node (average error) is drawn as boxplots in

Figure 22. When these boxplots in Figure 19 are compared with

the average error of MDS, DV-hop, and centroid method, the

improvement of our proposed algorithm (modified DE) is

clearly shown as Figure 21. It can be observed that the error is

decreased when the anchor ratio is increased. The result on the

estimated range is shown in Figure 23. The final results are all

close to the actual range value of 2. In Figure 24, it can be seen

that the iteration time of the simulations for different anchor

ratios is decreased when the anchor ratio is increased. This is

not only because the number of parameters become less, but

also because the number of constraints decreases. They both

make the optimization less complex, which is the reason that

less iterations are used.

The simulations are conducted in networks with 100 to

150 nodes due to the computational complexity. For networks

with more nodes, the application of our proposed algorithm can

be implemented by the distributed method described in [9,

43-45]. The distributed manner calculates the unknown sensors’

position by using their neighbors’ locations, not all the nodes.

The procedure includes: divide, calculate, and stitch. A graph is

first divided into several sub-graphs, and then the position of the

unknown nodes are found for every sub-graph separately, and

then the pieces of sub-graphs are stitched together [46]. The

public nodes of two nearby sub-graphs are used for the

foundation in the stitching process. Networks with several

hundreds of nodes can be tackled by being divided into several

sub-networks, and computation cost on each sub-network is

acceptable using our proposed algorithm.

The convergence cannot be guaranteed. This is the nature

of DE algorithm. However, it is a good algorithm based on two

reasons. The first is the chance to be convergent is 99% from all

simulations in our paper. From the simulations, within 400

iterations, only two un-convergent cases appear in 200 trials.

The probability to encounter un-convergence is just 1% within

400 iterations. This percentage will become lower while more

iterations are conducted. The second is the un-convergent cases

still give acceptable estimations of positions. The results of

un-convergent cases (the two outliers of No.8 in Figure 15) are

much better than other algorithms, and are comparable with the

convergent results.

0018-9545 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVT.2015.2409319, IEEE Transactions on Vehicular Technology

 12

50 75 100 125 150

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

node number

a
v
e
ra

g
e
 e

rr
o
r

Figure 19 The average error in different scales

of network

50 75 100 125 150

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

node number

e
s
ti
m

a
te

d
 r

a
n
g
e

Figure 20 The estimated range in different scale of

network

 10% 20% 30% 40% 50%
0

0.5

1

1.5

a
v
a
ra

g
e
 e

rr
o
r

MDS

DV-Hop

centroid

Modified DEBoxplot

anchor ratio
Figure 21 Comparison of error with different

anchor ratios

 10% 20% 30% 40% 50%

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

anchor ratio

a
v
a
ra

g
e
 e

rr
o
r

Figure 22 The average error of an 100-node

problem with different anchor ratios (only to show

the boxplots in Figure 21)

 10% 20% 30% 40% 50%

1.96

1.98

2

2.02

2.04

2.06

anchor ratio

e
s
ti
m

a
te

d
 r

a
n
g
e

Figure 23 The estimated range for different anchor

ratios

 10% 20% 30% 40% 50%

20

30

40

50

60

70

80

anchor ratio

it
e
ra

ti
o
n
 n

u
m

b
e
r

Figure 24 The iteration number for different

anchor ratios

I. CONCLUSION

In this paper, a revised formulation of the connectivity-based

localization problem is proposed which would require the

search algorithm to find the sensor range as well as the location

of the unknown nodes. The communication range of the sensor

node is not assumed to be known a priori. A modified

differential evolution (DE) algorithm for connectivity-based

sensor network localization has been developed to solve this

problem. The two objectives are on minimizing the violated

constraints and the amount of the violation. The localization

problem has two particular characteristics when compared with

other common optimization problem. The first characteristic is

on constructing a “new crossover” step of the modified DE. It

gives a direction of search, but loses some randomness which is

necessary of DE. Therefore, another step “alternative

generation” is added to produce more randomness. “Final

selection” selects the best individuals from the population

produced by “new crossover” and “alternative generation”. The

second characteristic is used when the modified DE encounters

a local minimum. This is formulated as “single node treatment”

to correct the violated connections and disconnections for each

node-pair with these violations. This treatment can make the

iteration of the modified DE to jump out from the local

minimum quickly. In the simulations, the modified DE with

heuristics obtained much better accuracy. The error of this

algorithm is only 20% of the error of former algorithms. In our

work, only two out of more than two hundred simulation cases

are un-convergent. The algorithm is also compared with general

optimization algorithms such as “active-set” algorithm and

PAES. The computational time, the performance on different

anchor ratio, and the scalability of this algorithm are also

discussed based on many simulation results.

Sensor network localization is a NP-hard problem with huge

computational complexity. Non-convex constraints introduced

by disconnections are much difficult to solve than convex

constraints, and thus are always avoided in tackling the

localization problem. However, this has led to coarse accuracy

and a lot of useful information has been wasted. From the result

of this paper, it is shown that the non-convex constraints can be

handled when using the proposed algorithm.

REFERENCES

[1] T. Eren, O. K. Goldenberg, W. Whiteley, Y. R. Yang, A. S. Morse, B. D. O.

Anderson, et al., "Rigidity, computation, and randomization in network

localization," in Proceedings of the 23th Annual Joint Conference of the

IEEE Computer and Communications Societies (INFOCOM 2004), 2004,

pp. 2673-2684.

[2] N. Bulusu, J. Heidemann, and D. Estrin, "GPS-less low-cost outdoor

localization for very small devices," IEEE Personal Communications, vol.

7, pp. 28-34, 2000.

[3] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher,

"Range-free localization schemes for large scale sensor networks,"

presented at the the 9th Annual International Conference on Mobile

Computing and Networking (MobiCom 2003), San Diego, CA, USA,

2003.

[4] Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz, "Localization from

mere connectivity," presented at the the 4th ACM International

Symposium on Mobile Ad Hoc Networking & Computing (MobiHoc

2003), Annapolis, Maryland, USA, 2003.

[5] D. Niculescu and B. Nath, "DV based positioning in ad hoc networks,"

Kluwer journal of Telecommunication Systems, pp. 267–280, 2003.

[6] L. Doherty, K. S. J. Pister, and L. El Ghaoui, "Convex position estimation

in wireless sensor networks," in Proceedings of the 20th Annual Joint

Conference of the IEEE Computer and Communications Societies

(INFOCOM 2001), 2001, pp. 1655-1663.

[7] P. Biswas, T.-C. Lian, T.-C. Wang, and Y. Ye, "Semidefinite programming

based algorithms for sensor network localization," ACM Transactions on

Sensor Networks, vol. 2, pp. 188-220, 2006.

[8] (2015). http://en.wikipedia.org/wiki/Multidimensional_scaling.

[9] Y. Shang and W. Ruml, "Improved MDS-based localization," in

Proceedings of the 23rd Annual Joint Conference of the IEEE Computer

and Communications Societies (INFOCOM 2004), 2004, pp. 2640-2651.

http://en.wikipedia.org/wiki/Multidimensional_scaling

0018-9545 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVT.2015.2409319, IEEE Transactions on Vehicular Technology

 13

[10] S. Minhan, C. Wook, and C. Hyunseung, "A cluster-based MDS scheme

for range-free localization in wireless sensor networks," in Proceedings of

International Conference on Cyber-Enabled Distributed Computing and

Knowledge Discovery (CyberC 2010), 2010, pp. 42-47.

[11] (2015). http://en.wikipedia.org/wiki/Singular_value_decomposition.

[12] J. Seung-Hwan and Y. Sang-Jo, "Improved positioning scheme based on

DV-hop for wireless sensor network," in the 9th International Symposium

on Communications and Information Technology (ISCIT 2009), 2009, pp.

69-74.

[13] F. Mourad, H. Snoussi, F. Abdallah, and C. Richard, "Anchor-Based

Localization via Interval Analysis for Mobile Ad-Hoc Sensor Networks,"

IEEE Transactions on Signal Processing, vol. 57, pp. 3226-3239, 2009.

[14] D. Niculescu and B. Nath, "Ad hoc positioning system (APS)," in

Proceedings of IEEE Global Telecommunications Conference

(GLOBECOM 2001), 2001, pp. 2926-2931.

[15] D. Qiao and G. K. H. Pang, "Solutions for connectivity-based sensor

network localization," in Proceedings of IEEE International Conference

on Mechatronics and Automation (ICMA'11), 2011, pp. 1056-1062.

[16] D. Qiao and G. K. H. Pang, "Accuracy improvement of connectivity-based

sensor network localization," presented at the the 25th Canadian

Conference on Electrical and Computer Engineering (CCECE'12), 2012.

[17] M. Terwilliger, A. Gupta, A. Khokhar, and G. Greenwood, "Localization

using evolution strategies in sensornets," in the IEEE Congress on

Evolutionary Computation, 2005, pp. 322-327.

[18] Q. G. Zhang, J. H. Wang, C. Jin, J. M. Ye, C. L. Ma, and W. Zhang,

"Genetic algorithm based wireless sensor network localization," in

Proceedings of the 4th International Conference on Natural Computation

(ICNC 2008) 2008, pp. 608-613.

[19] V. Tam, K. Y. Cheng, and K. S. Lui, "Using micro-genetic algorithms to

improve localization in wireless sensor networks," Journal of

Communications, vol. 1(4), 2006.

[20]D. Manjarres, J. Del Ser, S. Gil-Lopez, M. Vecchio, I. Landa-Torres, and R.

Lopez-Valcarce, "A novel heuristic approach for distance- and

connectivity-based multihop node localization in wireless sensor

networks," Soft Computing, vol. 17, pp. 17-28, 2011.

[21] J. Senshan, S. Kam-Fung, Z. Zirui, A. C. So, and Y. Yinyu, "Beyond

convex relaxation: A polynomial-time non-convex optimization approach

to network localization," in INFOCOM, 2013 Proceedings IEEE, 2013, pp.

2499-2507.

[22] R. Storn and K. Price, "Differential evolution - a simple and efficient

heuristic for global optimization over continuous spaces," Journal of

Global Optimization, vol. 11, pp. 341–359, 1997.

[23] K. Price, R. Storn, and J. Lampinen, Differential Evolution: A Practical

Approach to Global Optimization: Springer, 2005.

[24] S. Das and P. N. Suganthan, "Differential Evolution: A Survey of the

State-of-the-Art," IEEE Transactions on Evolutionary Computation, vol.

15, pp. 4-31, 2011.

[25] A. K. Qin, V. L. Huang, and P. N. Suganthan, "Differential evolution

algorithm with strategy adaptation for global numerical optimization,"

IEEE Transactions on Evolutionary Computation, vol. 13, pp. 398-417,

2009.

[26] P. Rocca, G. Oliveri, and A. Massa, "Differential evolution as applied to

electromagnetics," IEEE Antennas and Propagation Magazine, vol. 53, pp.

38-49, 2011.

[27] H. A. Hejazi, H. R. Mohabati, S. H. Hosseinian, and M. Abedi,

"Differential evolution algorithm for security-constrained energy and

reserve optimization considering credible contingencies," IEEE

Transactions on Power Systems, vol. 26, pp. 1145-1155.

[28] C. Cheng-Hung, L. Cheng-Jian, and L. Chin-Teng, "Nonlinear system

control using adaptive neural fuzzy networks based on a modified

differential evolution," IEEE Transactions on Systems, Man, and

Cybernetics, Part C: Applications and Reviews, vol. 39, pp. 459-473,

2009.

[29] G. W. Greenwood, "Using differential evolution for a subclass of graph

theory problems," IEEE Transactions on Evolutionary Computation, vol.

13, pp. 1190-1192, 2009.

[30] T. F. Chan and L. A. Vese, "Active contours without edges," IEEE

Transactions on Image Processing, vol. 10, pp. 266-277, 2001.

[31] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer,

"Self-adapting control parameters in differential evolution: a comparative

study on numerical benchmark problems," IEEE Transactions on

Evolutionary Computation, vol. 10, pp. 646-657, 2006.

[32] J. Ronkkonen, S. Kukkonen, and K. V. Price, "Real-parameter

optimization with differential evolution," in The IEEE Congress on

Evolutionary Computation, 2005, pp. 506-513.

[33] J. Liu and J. Lampinen, "On setting the control parameter of the differential

evolution method," presented at the Proceedings of the 8nd international

conference on soft computing (MENDEL 2002), 2002.

[34] J. Liu and J. Lampinen, "A fuzzy adaptive differential evolution

algorithm," Soft Computing, vol. 9, pp. 448-462, 2005.

[35] H.-Y. Fan and J. Lampinen, "A trigonometric mutation operation to

differential evolution," Journal of Global Optimization, vol. 27, pp.

105-129, 2003.

[36] Z. Jingqiao and A. C. Sanderson, "JADE: adaptive differential evolution

with optional external archive," IEEE Transactions on Evolutionary

Computation, vol. 13, pp. 945-958, 2009.

[37] D. P. K.Zielinski, and R. Laur, "Run time analysis regarding stopping

criteria for differential evolution and particle swarm optimization,"

Proceeding of the 1st iternational conference of Exp./Process/System

Modelling/Simulation/Optimization, , 2005.

[38] F. Xue, A. C. Sanderson, and R. J. Graves, "Modeling and convergence

analysis of a continuous multi-objective differential evolution algorithm,"

in The IEEE Congress on Evolutionary Computation, 2005, pp. 228-235

Vol.1.

[39] D. Qiao and G. K. H. Pang, "Evolutionary approach on connectivity-based

sensor network localization," Applied Soft Computing, vol. 22, pp. 36-46,

2014.

[40] (2015). http://jmetal.sourceforge.net/.

[41] J. D. Knowles and D. W. Corne, "Approximating the nondominated front

using the pareto archived evolution strategy," Evolutionary Computation,

vol. 8, pp. 149-172, 2000.

[42] D. Qiao, "Solutions for Wireless Sensor Network Localization," Doctor of

Philosophy, Department of Electrical and Electronic Engineering, The

University of Hong Kong, Hong Kong, 2012.

[43] L. Zhang, L. Liu, C. Gotsman, and S. J. Gortler, "An as-rigid-as-possible

approach to sensor network localization," ACM Transactions on. Sensor

Networks, vol. 6, pp. 1-21, 2010.

[44] X. Ji and H. Zha, "Sensor positioning in wireless ad-hoc sensor networks

using multidimensional scaling," in Proceedings of the 23rd AnnualJoint

Conference of the IEEE Computer and Communications Societies

(INFOCOM 2004), 2004, pp. 2652-2661.

[45] M. Cucuringu, Y. Lipman, and A. Singer, "Sensor network localization by

eigenvector synchronization over the Euclidean group," ACM

Transactions on Sensor Networks In press 2011.

[46] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, III, R. L. Moses, and N.

S. Correal, "Locating the nodes: cooperative localization in wireless sensor

networks," Signal Processing Magazine, IEEE, vol. 22, pp. 54-69, 2005.

Dapeng Qiao (S’11) received the B.Eng. degree in

electronic engineering and information science from

Shan Dong University, Jinan, China, in 2005, the

Master degree from Harbin Institute of Technology,

Harbin, China, in 2007, and the Ph.D. degree from

The University of Hong Kong, Hong Kong, in 2012.

He is currently an assistant professor in the School of

Automation, Beijing Institute of Technology, China.

His current research interests include sensor network

localization, motion control, and optimization with applications in sensor

networks and control theory.

Grantham K. H. Pang (S’84–M’86–SM’01)

obtained his Ph.D. degree from the University of

Cambridge in 1986. He was with the Department of

Electrical and Computer Engineering, University of

Waterloo, Canada, from 1986 to 1996 and then joined

The University of Hong Kong. Since 1988, he has

published over 70 journal papers and 120 international

conference papers. He has also obtained five U.S.

patents, one European patent and one Chinese patent.

His research interests include bio-medical informatics, visual surveillance,

machine vision for surface defect detection, optical communications, logistics,

intelligent control and expert systems

http://en.wikipedia.org/wiki/Singular_value_decomposition
http://jmetal.sourceforge.net/

