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Abstract—The sensor network localization based on 

connectivity can be modeled as a non-convex optimization problem. 

However, current models only consider the convex constraints i.e. 

connections among the nodes. The proposed method considers not 

only the connection constraints, but also the disconnection 

constraints, which are non-convex in nature. It is argued that the 

connectivity-based localization problem should be represented as 

an optimization problem with both convex and non-convex 

constraints. In this paper, an algorithm combining a modified 

differential evolution (DE) algorithm and heuristics is presented 

for the situation that the communication range value is unknown. 

The developed algorithm has a new crossover procedure, with 

refined procedures to produce a new generation of 

individuals/candidates. A “single node treatment” procedure is 

also designed for the search procedure to formulate a new set of 

coordinate locations to jump out from the local minimum. The 

final solution can reach the most suitable configuration of the 

unknown nodes (nodes without knowing their location) because all 

the information on the constraints has been used. Simulation 

results have shown that better solutions can be obtained when 

compared with other convex-constraint methods. The proposed 

method also gives better result than other general non-convex 

optimization methods. 

 
Index Terms—wireless sensor network, localization, 

connectivity, optimization, differential evolution, non-convex 

constraints. 

I. INTRODUCTION 

osition estimation is necessary in many applications such as 

remote patient monitoring, package and person tracking, 

environment monitoring and wildlife habitat monitoring. In 

these systems, there could be hundreds of low-cost sensor nodes, 

which can take some simple measurements. Based on either the 

distances or the connectivity among the nodes, we would like to 

estimate the location of these nodes in the sensor network. It is 

necessary to accurately localize the sensors in order to measure 

data which is geographically meaningful. 

For applications like automatic guidance, and wildlife habitat 
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tracking, GPS-like devices are widely used. However, GPS 

devices are expensive and inefficient on power consumption [1]. 

Thus, in sensor networks with a large number of sensor nodes, 

attaching a GPS device to each node is not practical. In most 

cases, there are only a few nodes with known positions in the 

whole sensor network, while others are unknown. The only 

information between the known nodes (nodes knowing their 

location) and the unknown nodes (nodes without knowing their 

location) is the communication among them, which can imply 

the distance or connectivity between the nodes. Localization in 

a sensor network is to use any useful information for the best 

position estimation of the unknown nodes. As connectivity 

requires less hardware and is much cheaper to establish than 

distance measurement, connectivity-based localization is more 

attractive. When having obtained the connectivity information 

between any pair of nodes, a good algorithm to abstract useful 

information for localization and to serve accurate position 

estimation is the challenge. This paper concentrates on the 

localization algorithms based on connectivity. 

The current solutions of the connectivity-based localization 

problem can fall into two categories. The first class of methods 

tries to find the number of direct connections between two 

nodes. In other words, the number of hops from one node to 

another needs to be calculated. Hence, they use the hop count to 

roughly represent the distance between two nodes. The centroid 

method [2], the Approximate Point In Triangulation (APIT) [3], 

the multidimensional scaling–MAP (MDS–MAP) (also known 

as MDS) [4], and Distance Vector–Hop (DV-Hop) [5] all 

belong to this category. The other class of methods models the 

connectivity-based localization problem as a constrained 

optimization problem. The connectivity information becomes 

the constraints that the optimization result must satisfy. For 

example, convex position estimation (CPE), also called 

semi-definite programming (SDP) [6], selects the convex 

constraints and formulates the problem as a convex 

optimization problem. This method has been used as a starting 

point for further searching [7] in distance-based localization. 

However, due to the lack of non-convex constraints, the solution 

obtained tends to have the estimated nodes crowd together, and 

so the nodes cannot “keep distance” from each other, which 

could give an overall erroneous result in practice.  Besides, SDP 

cannot work in the case that communication range is not 

available. When the communication range is assumed unknown, 

the available algorithms included centriod localization, MDS 

and DV-hop, which are introduced next. 

Centroid localization is probably the earliest and simplest 

approach. A proximity-based and coarse approach is proposed 

by Bulusu and Heidemann [2]. Every unknown node receives 

several nearby anchors’ information. The location information 

A Modified Differential Evolution with Heuristics Algorithm 

for Non-convex Optimization on Sensor Network 

Localization 

Dapeng Qiao, Grantham K.H. Pang, Senior Member, IEEE 

P 

mailto:pubs-permissions@ieee.org
mailto:dpqiao@eee.hku.hk
mailto:gpang@eee.hku.hk


0018-9545 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVT.2015.2409319, IEEE Transactions on Vehicular Technology

 2 

of the anchors is used, and the estimated location of the 

unknown node is assumed to be the average of the location of all 

the nearby anchors.  

The basic MDS method [4, 8] can estimate the positions of all 

the unknown nodes by using the distance information between 

any two nodes. An extension of MDS [4, 9, 10] for the 

connectivity-based localization problem has also been 

developed. First, a rough estimate of the relative node distance 

is obtained based on hop count information. One hop is one 

direct connection between two nodes. The hop count between 

any two nodes roughly represents the distance. Then, the 

relative positions are calculated by Singular Value 

Decomposition (SVD) [11] on the estimated distance 

information matrix. Finally, absolute positions of the unknown 

nodes are estimated based on the relative positions and the 

positions of the anchors. The computational complexity of this 

method is about O(n³) time for a sensor network of n nodes. 

MDS has also been modified for the connectivity-based 

localization problems based on the hop count information to 

replace the estimated distance between a pair of nodes [10].  

Another well-known localization algorithm is DV–Hop [5, 

12-14]. The idea of DV–Hop is to transform the distance to all 

anchors from hops to units of length measurement using the 

average size of a hop. DV–Hop was first proposed by Niculescu 

[14], and improved by many researchers. Anchors broadcast 

their location information to other anchors, and such 

information will be flooded with the hop count increment. Every 

anchor knows the hop count from any other anchor, and uses 

this information to estimate the average hop size. The distance 

between an anchor and an unknown node is computed by the 

hop size and the hop count between them. Finally, trilateration 

is used when the distances between an unknown node and at 

least three anchors are obtained by the above computation.  

These connectivity based algorithms only consider the 

connections between nodes, and ignore the disconnections. 

Disconnection is actually important information on connectivity, 

which can provide a better solution with nodes “keeping 

distance” from each other. However, if disconnections 

information is used, the computational complexity of the 

localization algorithm will be greatly increased, which most 

researchers try to avoid. As far as we know, there is no other 

research which takes disconnections into consideration to 

calculate the sensor locations. The aim of this paper is to utilize 

the disconnection information and a new algorithm based on 

modified differential evolution algorithm has been developed to 

deal with all connectivity information of the network.  This 

paper first gives a formal definition of the connectivity-based 

localization problem. The connectivity-based localization is 

formulated as a non-convex optimization problem with 

connections being modeled as convex constraints, and the 

disconnections being modeled as non-convex constraints. An 

algorithm based on the differential evolution and heuristics of 

the localization problem is proposed and compared with the 

available localization algorithms in the same situation such as 

centroid, MDS and DV-Hop. In addition, the proposed 

algorithm is compared with other non-convex optimization 

methods. In our previous work [15], an ‘active-set algorithm’ 

has been used to solve this non-convex optimization problem, 

and will be compared with the new algorithm in this paper. 

Furthermore, a widely used two-objective evolutionary 

algorithm called Pareto Archived Evolution Strategy (PAES) 

[16] was used as a benchmark solution to the problem and it is 

also compared with the new algorithm.  

II. PROBLEM DEFINITION 

The situation considered in this paper is that every node 

(including anchors) has identical communication range, which 

is unknown and needs to be estimated. The communication area 

of every node is modeled as a perfect disk, which means its 

antenna is omni-directional. The connection is established if 

and only if another node is within this disk. The known 

information includes some anchors’ locations and the 

connectivity information between any two nodes. The following 

description and simulations of the algorithms are all based on 

this formulation.  

A formal definition of the connectivity-based localization 

problem is given in this section. Let ( , )networkG V E  be a given 

network, where V denotes the nodes of the network and E 

denotes the edge of the network. Let V be partitioned into two 

sets:  1,...,aV m  of anchors;  1,...,bV m m n   of 

sensors (unknown nodes). E is also partitioned into two 

sets:   , : ,ab a bE i j E i V j V     which are the edges 

between a sensor and an anchor;   , : ,bb bE i j E i j V    

which are the edges between two sensors. 

For each anchor i
aV , the position 2

ia   is assumed to be 

known. For each sensor 
bi V , the position 2

ib   is assumed 

to be unknown. Let   , , : , , {0,1}ab a bC i j k i V j V k     be 

the connectivity information between a sensor and an anchor. 

Also let   , , : , , {0,1}bb bC i j k i j V k    be that between two 

sensors. The value k  in 
abC  or 

bbC  is binary (either 0 or 

1): k =0 if there is no connection between node i and j; k =1 if 

there is connection between node i and j. Let a be a vector 

containing the positions of the anchors   2

a

m

i i Va a   .  

The goal of the network localization problem is to determine 

the coordinates of all the sensors:   2

b

n

i i Vb b   , such that b 

satisfies the following constraints. Let R be the maximum 

distance (called the range) within which connectivity can be 

established. 
2

2i ja b is the distance between one anchor and 

one unknown node; 
2

2i jb b is the distance between two 

unknown nodes. 

If k =1 

2
2

2

2
2

2

( , )

( , )

i j ab

i j bb

a b R for i j E

b b R for i j E

   

   


        

else k =0 

2
2

2

2
2

2

( , )

( , )

i j ab
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a b R for i j E

b b R for i j E

   

   


. 

From the inequalities based on whether any two sensors 
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(including one sensor and one anchor) are in connection or not, 

the constraints behind those inequalities can be classified into 

convex constraints and non-convex constraints as shown in 

Figure 1 and Figure 2. 

i j

dij

R

ij i jd z z R  

convex constraint

 
Figure 1 A convex constraint is established when 

ijk =1, 
ijd  is the distance 

between node i and node j; 
iz ,

jz are the coordinates of node i and node j 

i j

dij

R

ij i jd z z R  

non-convex constraint

 
Figure 2 A non-convex constraint is established when ijk =0, ijd  is the 

distance between node i and node j; 
iz , jz are the coordinates of node i and 

node j 

III. THE MODIFIED DE WITH HEURISTICS ALGORITHM FOR 

SENSOR NETWORK LOCALIZATION 

There are many methods for non-convex optimization, such 

as Particle Swarm Optimization (PSO), Simulated Annealing 

(SA), Genetic Algorithm (GA), and other evolutionary 

algorithms. Researchers have applied them in sensor network 

localization, but just limited to range-based scenario. 

Terwilliger et al. [17] and Zhang et al. [18] both use 

evolutionary algorithm to tackle the localization problem in 

which the distances among the nodes are known. The target of 

the evolutionary algorithm is to minimize the difference 

between the known distances and the distances based on 

estimated nodes position. Tam et al. [19] use a genetic 

algorithm (GA) /evolutionary algorithm to estimate the position 

of one single node based on its hop counts to its three nearest 

anchors. In their method, there is a GA for estimating the 

position of each unknown node. The computational complexity 

is small also because the scale of the GA is small 

(population<30). In each GA, only part of the population with 

better performance is used in computation, which also decreases 

the computation cost. Hence, the evolutionary algorithm by 

Tam should be used for many times to estimate all the unknown 

nodes. The accuracy is similar to the DV-Hop due to the same 

principle in utilizing the hop count to anchors. Diana et al. [20] 

also utilize soft computing approach to the range-based 

localization, which is summarized as two objective functions: 

Cost Function and Soft Constraint Violation. Other popular 

non-convex optimization algorithms, such as interior-point 

algorithm [21], are also tried in range-based scenario. In total, 

current non-convex optimization methods achieved good 

accuracy in range-based scenario. However, for the range-free 

scenario, there is still no accurate algorithm because the 

distance information is replaced by connectivity information, 

which makes the problem more difficult. In this paper, we 

analyze the characteristics of connectivity-based nodes, and 

utilize them to modify evolutionary algorithm. As an 

evolutionary algorithm, differential evolution algorithm is used 

in this paper not only because it is easy to handle, but also 

because its idea of using difference between two individuals is 

similar with movement of a node from one position toward 

another position. Therefore, differential evolution is suitable for 

the node position estimation in nature. 

A. Introduction of Differential Evolution (DE) Algorithm 

Differential Evolution (DE) is a population-based method 

that optimizes a problem by iteratively trying to improve a 

candidate solution with regard to the value of its objective 

function(s). The problem that it can solve can be nonlinear and 

non-differentiable. During every iteration of its computation, 

there is a group of candidate solutions called population, and 

each candidate is called an individual in this population. 

Population is improved generation (same to iteration) by 

generation untill one individual in it is found to be satisfactory. 

The improvement is the core part of this algorithm, which 

contains three procedures: mutation, crossover and selection in 

Figure 3. DE, which is firstly introduced by Storn and Price [22], 

shows more efficiency than other non-convex algorithms such 

as simulated annealing, genetic algorithms [22] and 

evolutionary programming [23]. Differential evolution is called 

“differential” because its mutation procedure introduces the 

difference between two individuals into the next population. To 

help illustrate our proposed algorithm, the normal DE algorithm 

is first introduced below. 

An optimization target has been formulated to minimize f(x), 

where x is the vector containing the variables. Each individual in 

any population is an estimate of x. In the first stage, the first 

population is generated by randomness or given information. 

Then each individual in the population will be operated by the 

following procedures: mutation, crossover and selection. The 

“better” individuals (individuals whose objective function f(x) is 

smaller) are selected into the next population, i.e. the population 

in the next generation. The loop will stop when a satisfactory 

individual has been found. 

Mutation Crossover SelectionInitialization

 
Figure 3 The main procedures of differential evolution (mutation, crossover, 

and selection are included in the loop) 

Mutation: Assume that the number of individuals in a 

population is NP (number of population members, also called 

population size). For the first population, each individual can be 

initialized randomly. The individuals in the next population will 

be generated from the current population. For each individual in 

a population indexed by G, a trial vector v is generated 

according to 

, , , , ,( ) ( )i G best G i G a G b Gv x x x F x x         (1) 

where ,i Gx  is the ith individual in population G, ,a Gx  and ,b Gx  

are two other individuals in population G, which are different 

from ,i Gx ; ,best Gx  is the “best” individual in this population (i.e. 

the objective function of ,best Gx : f( ,best Gx ) is the smallest among 

all the individuals in population G);   and F  are two 

parameters less than 1, which make v contains the information 

of the best individual, and the difference between two random 

individuals.   makes v close to the best individual. That is: v is 
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closer to 
,best Gx  when   becomes larger. However,   cannot 

be 1, otherwise v will become 
,best Gx  and lost its own diversity. 

On the other hand, F  brings some randomness from two 

random individuals, which should be smaller than 1 to avoid 

vibration. Besides, these two parameters cannot be too small to 

influence v. In a typical implementation, to obtain enough 

information from 
,best Gx ,

,a Gx  and 
,b Gx ,   is set to be 0.8 and 

F is 0.9 [24, 25].  When x consists of only two variables, this 

mutation procedure can be illustrated by Figure 4. The small 

circles are the individuals in population G. The newly generated 

vector v is denoted as the black dot. By using 
,a Gx , 

,b Gx , and 

,best Gx , v has a chance to become “better” than 
,i Gx  

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

x1

x2
,i Gx

,best Gx ,a Gx

,b Gx

v

, ,( )a G b GF x x

, ,( )best G i Gx x 

individuals in generation G

v

 
Figure 4 Geometrical illustration of mutation to generate v for a 

two–dimensional case 

Crossover: After deriving the trial vector v in mutation, the next 

step is crossover. In order to increase diversity of the individuals, 

the crossover procedure uses some elements in the current 

individual 
,i Gx  and other elements in v, and combines them into 

a new vector u. An example to illustrate how the new vector u is 

generated can be found in Figure 5. The elements of u are 

copied from the corresponding elements v or 
,i Gx  with the same 

index.  In the example, elements 3, 4, and 6 are chosen from v, 

while other elements, i.e. 1, 2, 5, and 7 are copied from ,i Gx . It 

must be noted that in a typical DE, for any element in u, whether 

it is chosen from v or from ,i Gx  is totally random. This can 

introduce randomness to the population, and help generate 

individuals which may be more suitable for the optimization 

target. This procedure can also be explained by the equation

 (2), where the function rand(j) returns a random number from 

0 to1; CR is a constant that defines which vector will make more 

contribution to u. It is always bigger than 0.5 because v has 

higher chance to be “better” than ,i Gx .  In most cases, it is 

usually set to be around 0.8 by experience to make the crossover 

more efficient [24].  

,

( )

( ) ( )

j

j

i G j

v if rand j CR
u

x if rand j CR


 



       (2) 

where ,, , ( )j j i G jv u x  are the jth elements in vector ,, , i Gv u x , 

respectively; ( )rand j  is a random number from 0 to 1. 

,i Gx uv

7

2

3

4

5

6

j=1

3

4

5

7

2

3

4

5

6

j=1

 
Figure 5 Random choice of elements in crossover of a typical DE 

Selection: In the end, the individual 
, 1i Gx 

 in the next 

population is generated. The “better” vector between u and 
,i Gx  

is selected as 
, 1i Gx 

. 

,

, 1

,

( ) ( )i G

i G

i G

u if f u f x
x

x otherwise



 


     (3) 

Since DE was developed, there have been many applications 

of DE to solve the optimization problems in various domains of 

engineering including electromagnetics [26], power saving [27], 

control systems [28] and image processing [29, 30]. The DE 

algorithm becomes popular because it has demonstrated good 

convergence properties and is easy to understand in principal 

[31]. Nowadays, there are still some researchers focusing on 

improving DE’s performance. They mostly concentrate on 

finding proper setting of the control parameters, i.e. F, CR, and 

NP, to expedite the convergence velocity. The determination of 

values for those three parameters has been studied. It has been 

suggested that a good choice would be: F=0.4 to 0.95, CR=0.9, 

and NP is 3 to 8 times of the dimension of the variable vector 

[32]. A fuzzy adaptive DE is introduced by Liu et al. [33], 

which uses fuzzy logic controllers to adapt the parameters F and 

CR. The simulation on some standard test functions shows that 

the fuzzy adaptive DE can converge faster than DE with fixed F 

and CR when the dimensionality of the problem is high or the 

problem concerned is complicated [34]. Other self-adaptive DE 

algorithms [31] use self-adaptive method to determine the value 

of F and CR, which considers F and CR as the last two additive 

elements in each variable vector. 

Moreover, there are some variants of DE to speed up 

convergence such as more complicated mutations [35], and 

“current to pBest” mutation [36] which is similar to the 

crossover procedure in this section, with the current individual 

is replaced by the top 10% individuals in the past populations. 

In [37], computational complexity of DE has been discussed 

and various stopping criteria is investigated from the viewpoint 

of computational complexity, which is max( * * )O NP D G , 

where D is the dimension of variable vector, 
maxG  is generation 

number that the algorithm will stop at. DE is also used in 

multi-objective optimization. A mathematical modeling and 

convergence analysis of a continuous multi-objective 

differential evolution is studied in [38]. It must be noted that like 

many other evolutionary algorithms, there is no proof of 

convergence for DE.  

Our wireless sensor network localization problem is a 

non-convex and non-differential problem. The original DE 

algorithm was attempted in our problem, but no convergence 

has ever been achieved when the number of nodes exceeds ten 

(i.e. with twenty variables). In the following sections, a 
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modified DE algorithm will be presented.  

B. The Objectives and the Variable Vector 

The connectivity based localization problem is modeled as 

minimizing two objectives: “wrong_connection_count” and 

“wrong_distance”, which describe the number of wrong 

connections and the error distance caused by these wrong 

connections, respectively. DE evaluates the two objectives of 

the candidate solutions in each generation, and uses them to find 

out the ‘better’ candidates. Wrong connection contains two 

cases: connection between a pair of nodes is mistaken/violated 

as disconnection, and disconnection is violated as connection. 

“Wrong_connection_cout” is used to count wrong connections 

of all node pairs in a candidate solution. If the connectivity 

(including connection and disconnection) between a pair of 

nodes is violated, the distance between them indicates how 

serious the violation is. Therefore, “wrong_distance”, which 

describe the error between this distance and the range value, is 

set to be the second objective. 

The modified DE algorithm aims to minimize the above two 

objectives, with a combination of the original evolutionary 

algorithm and some heuristics. Besides, the value of the 

communication range of a sensor can be assumed to be 

unknown, which makes the search for a solution more difficult. 

The variable vector (i.e. candidate solution) for this localization 

problem includes the unknown coordinates and the estimated 

range R̂ . Let n be the number of unknown nodes in the 

localization problem. The dimension of an individual, which is 

an estimation of the variable vector (T) is therefore 2n+1 as 

below. (Note that m denotes the number of anchors; unknown 

nodes are node m+1, node m+2, …, node m+n).  

1
ˆ

mx  1
ˆ

my  2
ˆ

mx  2
ˆ

my  3
ˆ

mx  3
ˆ

my 
ˆ

m nx 
ˆ

m ny  R̂
 

The pseudo-code for the two objectives: 

“wrong_connection_count” and “wrong_distance” are shown 

as Figure 6 and Figure 7, where T is the variable vector, and 

abE ,
bbE  have been introduced in Section II. Note that 

ijk =0 or 

1 shows that node i and j are disconnected or connected, which 

is the given information. On the other hand, 

( R̂ -    
2 2

i j i j
x x y y   )>=0) and 

( R̂ -    
2 2

i j i j
x x y y   )<0) indicates the node i and node 

j in the candidate solution T are disconnected or connected. 

 
function wrong_connection_count(T) 

wrong_connection_count ←0; 

for all (i,j)   abE  bbE    

    if ( ijk =1&( R̂ -    
2 2

i j i j
x x y y   )<0) | 

( ijk =0&( R̂ -    
2 2

i j i j
x x y y   )>=0) 

wrong_connection_count←wrong_connection_count+1; 

   end if  

end for 

return wrong_connection_count 

Figure 6 Pseudo-code for the first objective wrong_connection_count(T) 

 

 

function wrong_distance (T)  

wrong_distance ←0; 

for all (i,j)   
abE  bbE    

if (
ijk =1&( R̂ -    

2 2

i j i j
x x y y   )<0) | 

( ijk =0&( R̂ -    
2 2

i j i j
x x y y   )>=0) 

  wrong_distance ←wrong_distance +abs( R̂ -    
2 2

i j i j
x x y y   ); 

end if  

end for 

return wrong_distance 

Figure 7  Pseudocode for the second objective wrong_distance (T) 

C. The Characteristics of Sensor Network Localization 

Problem 

As the range value is unknown, the problem is more complex 

because other variables (the coordinates of the unknown nodes) 

depend on this range value to count the number of “wrong 

connection” and calculate the “wrong_distance”. However, 

different from the usual optimization problems, the localization 

problem has its own characteristics, which can be used to help 

with convergence. Below are the characteristics of the problem: 

1.  The variable vector (T) is formed by the coordinate pairs 

of the unknown nodes. When searching for the positions of the n 

unknown nodes, the position of one node may be moved while 

the other n-1 nodes and the range value remain static. Therefore, 

it is reasonable to partition an individual 
,i Gx   as in the 

formulation of T.  Furthermore, there exists a direction to search 

for the node locations. That is: between the two nodes in a 

wrong connection, the node with less wrong connections to its 

neighboring nodes is preferred to stay unchanged. 

2. Once a wrong connection is encountered, the searching for 

the new position of the related nodes also has a direction. There 

are two kinds of wrong connections:  

(a) A connection has been mistaken as a disconnection; 

(b) A disconnection has been mistaken as a connection. 

Situation (a) can be illustrated by the relationship between node 

i and k in Figure 8. From the known connectivity information, 

they are connected, which means the distance between them 

should be less than the range value. However, the estimation 

(shown in their positions in Figure 8) violates this relationship. 

Therefore, one node should be moved towards the other untill 

the distance between them is less than the range value (as shown 

by the gray arrows). On the other hand, situation (b) illustrated 

by node i and j should be corrected by moving away from each 

other (as shown by the white arrows). Therefore, the direction of 

node movement should not be completely random, and the 

above heuristic should be incorporated into the algorithm. 

i

j

k  
Figure 8 The illustration of wrong connections 
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D. New Crossover 

Based on the first characteristic, each movement of a single 

node would correspond to the change of two variables in the 

crossover procedure of DE. The new crossover, which is 

illustrated in Figure 9, utilizes this characteristic and makes 

crossover follow a direction. Compared with the typical 

crossover, this new procedure makes the crossover not “blind” 

any more. The variables in u is still constructed by part of v and 

part of 
,i Gx , however the choice is not totally random, which is 

different from typical crossover. The rule of the choice is: if a 

pair of variables (presenting one node location) in v (the 

mutation result) has better performance than the corresponding 

pair of variables in 
,i Gx , the pair of variables in v will be chosen 

as the elements in u. Otherwise, the pair of variables in 
,i Gx  is 

copied to u. In this manner, u has higher chance to 

outperform
,i Gx , which makes crossover more efficient.  

The evaluation should be reasonable, while it must be with 

acceptable computation complexity because it is done as a part 

of crossover. In this algorithm, the performance of each pair of 

variables is evaluated by the two objectives: 

wrong_connection_count and wrong_distance. The searching 

direction is based on these objectives with respect to each node. 

In the example of Figure 9, the node m+1: 
1 1( , )m mx y 

and node 

m+3: 
3 3( , )m mx y 

  in v are assumed to make 

wrong_connection_count smaller than the corresponding nodes 

in 
,i Gx , or with equal wrong_connection_count but smaller 

wrong_distance. In this step, to reduce the computational 

complexity, the two objectives are simplified. When counting 

wrong connections of a particular node, for example, node m+1, 

only the wrong connections related to node m+1 (i.e. wrong 

connections between node m+1 and any other nodes) are 

counted. The wrong connections not related to node m+1 are 

ignored to reduce computation cost. The two objectives with 

respect to one node are just used in the new crossover and can be 

found in equation (4). It must be noted that the last element of u, 

which represents the value of R (range), is set to be the last 

element of v. 

,i Gx uv

1mx 

1my 

2mx 

2my 

3mx 

3my 

4mx 

4my 

1mx 

1my 

3mx 

3my 

1mx 

1my 

2mx 

2my 

3mx 

3my 

4mx 

4my 

2 2 1( )m nu R 2 2 1m nv    
Figure 9 Choice of the elements in the new crossover, which should satisfy 

equation (4) 
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k k

k k
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i G k i G k

v v if case

wrong connection count v v

wrong connection count x x

or case

u u wrong connection count v v

wrong connection count x x

and wr







 





 

2 1 2

, 2 1 , 2
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_ ([ ])

_ ([( ) ( ) ])

[( ) ( ) ]

k k

i G k i G k

i G k i G k

ong distance v v

wrong distance x x

x x otherwise

















 





(4) 

where k is the index of the unknown nodes, 

1, 2, ,  k m m m n     ; 
2 2 , 2, , ( )k k i G kv u x  mean the 2kth 

element in vector 
,, , i Gv u x , respectively. 

_ _wrong connection count  and _wrong distance  are 

functions with respect to one node (two variables in a variable 

vector) here, because the wrong connections only related to 

node k are checked in this step. 

In the crossover procedure of the original DE, the value CR is 

modified by considering only randomness in the search.  In the 

new crossover, a search direction has been given. This will 

accelerate the search, but may lead to difficulty in jumping out 

from local minimum. Therefore, two steps: “Alternative 

generation” and “Final selection” have been added in the next 

section. 

E. Flowchart of the proposed algorithm 

Initialization

local_min_indicator

=1 or 2?

Mutation

New Crossover

Selection

Alternative Generation

Final Selection

Single Node

Treatment

Performance Check:

If current population

has the same two

objectives to the last

population,

local_min_indicator++;

else

local_min_indicator=0

YES

NO

 
Figure 10 Flowchart of modified DE algorithm 

An overall flowchart of the modified DE algorithm is shown 

in Figure 10. One important item in the algorithm is an indicator 

called ‘local_minimum_indicator’. It is used to keep track of the 

progress during the iterations. The value of this indicator would 

be incremented whenever there is no change to the performance 

with respect to the two objectives (“wrong_connection_count” 

and “wrong_distance”) obtained by the best individual in the 

population. It is initialized to 0 at the beginning. The initial 

population contains many individuals, which greatly affect the 

convergence of the proposed algorithm. If these initial values 

are totally random numbers, the proposed algorithm is hard to 

be convergent even after thousands of iterations. Therefore, 

reasonable initial values are needed. As we known from the 

introduction section of this paper, although not accurate, MDS 

which only considers connections can give a roughly estimation 
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of the nodes’ positions. Individuals of the initial population are 

generated based on the MDS result. Each individual is a 

variation of the MDS result. MDS is utilized as the initial value 

because it is quick and easy to obtain. Furthermore, compared 

with other methods only considering connections, MDS 

estimates nodes to be clustered, and therefore have the nature to 

produce less local minimum if being set as initial value [16]. 

“Single node treatment” is used to treat local minimum, which 

will be introduced in the next section. The details on the 

procedures of the modified DE algorithm are as follows: 

Step 1: Mutation: for each individual 
,i Gx  in the current 

population T, use (1) to generate v, where   and F  are set as 

0.8 and 0.9.  

Step 2: New Crossover: generate u from v and 
,i Gx  as 

equation (4).        

Step 3: Selection: generate 
, 1i Gx 

 by the function (5) 

     

,

, 1

,

,

,

1:

_ _ ( )

_ _ ( )

2 :

_ _ ( )

_ _ ( )

_ ( )

_ ( )

i G

i G

i G

i G

i G

u if case

wrong connection count u

wrong connection count x

or case

x wrong connection count u

wrong connection count x

and wrong distance u

wrong distance x

x otherwise












 


 






   (5) 

where wrong_connection_count  and wrong_distance  are 

functions with respect to one variable vector. The last element 

(the th2m+2n+1  element) of 
, 1i Gx 

, which represents the 

value of range is 
2 2 1m nu  

 

Step 4: Alternative Generation: an alternative individual 

, 1_ i Gx new   is then generated based on adding some 

randomness to the current , 1i Gx  . The idea is to generate an 

alternate coordinate for each node coordinate in 
,i Gx  as shown 

in Figure 11. The angle is random but the radius would depend 

on the number of wrong connections. If the number of wrong 

connections is large, the newly generated alternate coordinate 

would be further away.  

Let 
, 1 2 1 2 2 2 3 2 4 2 2 1 2 2 2 2 1([ ],[ ],...,[ ], )T

i G m m m m m n m n m nx x x x x x x x           

, 1 2 1 2 2 2 3 2 4

2 2 1 2 2 2 2 1

_ ([ _ _ ],[ _ _ ],...,

[ _ _ ], _ )

i G m m m m

T

m n m n m n

x new x new x new x new x new

x new x new x new

    

    



The new node coordinates (as a pair of variables) are 

2 1 2 2 1 2[ _ _ ] [ ] *[cos sin ]k k k kx new x new x x radius        (6) 

where 

2 1 2(0 1)* _ _ ([ ]) / 5;k kradius rand wrong connection count x x 

5 is used to ensure the distance between the new node and the 

original node is less than two twice of the node density.   is a 

random value from 0 to 2 ; k  is the index of the unknown 

nodes, 1, 2, ,  k m m m n     . 

radius



(x2k-1,y2k)

(x2k-1,y2k)+radius*(cos,sin)

 
Figure 11 An alternative individual is generated 

Still, the last element of
, 1_ i Gx new 

 is set to be the same to 

that of 
, 1i Gx 

, which means the range value keeps unchanged in 

this step. 

Step 5: Final Selection: the new generation of variables 

obtained at the end of the current iteration would depend on 

, 1i Gx 
 and 

, 1_ i Gx new 
. In a typical situation (i.e. when 

local_min_indicator = 0), the new generation is formed by 

choosing the best 50% from both 
, 1i Gx 

 and 
, 1_ i Gx new 

. 

However, when in a special situation encountering local 

minimum, and with no improvement in convergence (i.e. when 

local_min_indicator ≧ 3) even after using a special procedure 

called “single node treatment” (to be discussed in the next 

subsection), the following selection would be carried out: 

 All the individuals in , 1i Gx   and , 1_ i Gx new   would be ranked 

according to the wrong_connection_count. 

 The first 50% of the new generation is obtained from adding 

randomness to the top 50% of 
, 1i Gx 

 , in which each node 

coordinate would be added with a value of 1 or -1 randomly. 

The variation of this value is designed to be less than the 

length of the network area divided by the square root of the 

number of nodes. 

 The next 25% of the new generation is obtained from 25% to 

50% of , 1i Gx   . The idea is to discard the top 25% of , 1i Gx   

deliberately so as to jump out from the local minimum. 

 The final 25% of the new generation is obtained from the top 

25% of , 1_ i Gx new  . 

Three parts provide necessary population in the next 

generation. The first part is the fundamental population which 

should take the majority. The second part is the ‘radical’ 

population with more randomness. The third part is used to 

enhance the weight of the ‘typical’ population.  There is no an 

optimal proportion setting of the three parts, but the setting 

should fulfill that the first part should take at least 50% while the 

last two parts should not be too small. 

F. Single Node Treatment 

Two reasons contribute to the convergence of the search for 

coordinates. The first is the new crossover step, which 

introduces a direction during crossover. The second is 

“alternative generation” and “final selection”, which introduce 

randomness in the population. After using these two effective 

methods, fast convergence is observed in the search for the 

nodes’ positions. However, they are not enough to reach the 

final result as there may still be some local minimums near to the 

final answer. In other words, most nodes are localized, while 

only a few nodes produce wrong connections. In this section, a 

newly developed procedure called “single node treatment” will 

be described to help jump out from local minimums. The 

method is motivated from the second characteristic discussed in 
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section III.C. When a wrong connection is encountered, two 

questions need to be answered:  

 How far should a node be moved? 

 Which node should be moved? 

To answer the first question, the proposed algorithm would 

move a node for a distance equals to the absolute difference 

between the range value R̂ (in T) and 

,
ˆ

i jd =    
2 2

i j i j
x x y y   , which is the estimated distance 

between node i to node j. An example is shown in Figure 12, 

which is based on the wrong connections described in Figure 8. 

There are three nodes under consideration. There is a 

disconnection between node i and k, but they are supposed to be 

connected. There is a connection between node i and j, but they 

are supposed to be disconnected. Hence, node i has two wrong 

connections and should be moved (see the first figure in Figure 

12). The direction and the distance of the two movements are 

determined in this step. First, node i is moved towards node k 

(the second figure), and then moved away from node j (the third 

figure). However, in the second move, the disconnection 

between node i and k re-appears. In other words, the wrong 

connection between node i and node j is fixed, but the 

connection between node i and k is still wrong. It can be fixed in 

the next iteration by moving k, which is shown in the last figure. 

i

j

k

i

j

k

i

j

k

i

j

k

next iteration

 
Figure 12 An example of the single node movement 

Next, the second question regarding node movement is 

addressed. In most cases, the node with more wrong 

connections has a higher probability to be the wrong node than 

the node with less or zero wrong connections. Therefore, the 

node with more wrong connections should be chosen as the 

node to be moved. However, there are some situations where the 

node with less wrong connections should be moved. Figure 13 

illustrates the above situation using an example. The blue lines 

and red lines represent the wrong connections. The blue lines 

denote the mistaken connections for disconnections, and the red 

lines denote the mistaken disconnection for connections. 

Triangles are the estimated positions, while circles are the real 

positions. We only focus on the nodes that involve wrong 

connections. In the first figure, node 50’ has two wrong 

connections which are with node 2 and 12. Only node 50’ can be 

moved because node 2 and 12 are both anchors. However, after 

node 50’ steps forward to node 12, a new red line between it and 

node 89’ appears (the middle figure). If the node with more 

wrong connections should be moved, then node 50’ should be 

moved again rather than node 89’, which would result in a 

situation very similar to before (the third figure). The above 

would result in endless movement of node 50’, which cannot 

resolve the situation. Hence, it is not always correct that a node 

with more wrong connections should be moved. In most cases, 

we should move the node with more wrong connections, but we 

still need to leave some chances for moving the node with less 

wrong connections to get rid of the endless movement case in 

Figure 13. Therefore, the chance of moving the node with more 

wrong connections should be larger than 1/2, but not too close 

to 1. In the proposed algorithm, this chance is assigned to be 2/3. 

That means there is still a 1/3 chance to move the node with less 

wrong connections. 
12

2

50

50'

89 89'

 

12

2

50

50'

89 89'

  

12

2

50

50'

89 89'

 
Figure 13 Illustration on node movement  

IV. SIMULATION RESULTS AND COMPARISON  

A. Comparison with other current convex-constraint methods 

The simulations of this paper are conducted in different 

topologies (different graphs) to obtain convincing result. 

Different topologies introduce different location arrangement of 

the nodes. This arrangement in our topologies is random. Thus, 

in some topologies most nodes may be clustered, and in other 

topologies, nodes are nearly evenly distributed. The clustered 

network and sparse network may be found in even one topology, 

while most nodes are crowded in one half of this topology and 

there are fewer nodes in the other half. More topologies can 

produce higher chance to get different networks, and therefore 

show more convincing result.  

The proposed algorithm is applied in a 100-node network, in 

which the first 20 nodes are anchors. All the nodes are placed in 

a 10 by 10 square region. The only known information is 

whether any two nodes are connected or not. This connection 

information is obtained when setting the range value to 2. 

Results are obtained based on ten different topologies and the 

algorithm is attempted for 10 times for each topology. 

Furthermore, because the evolutionary algorithm contains some 

randomness in computation, the result of our proposed 

algorithm is not unique. Therefore, in each topology, the 

algorithm is carried out for 10 times to obtain convincing result 

range. TABLE I shows the related parameters. 

The accuracy of the estimation is evaluated by the difference 

between the estimated positions of unknown nodes and the 

positions of the corresponding unknown nodes when the 

problem is setup. The average error per unknown node (average 

error) is calculated by the formula next. 

1

ˆ ˆ( ) ( )
m n

i i i i

i m

x x y y

error per node
n



 

  




 

where ( ˆ
ix , ˆ

iy ) is the estimated position of node i, ( ix , iy ) is the 
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real position of the node i. 

The average errors of the proposed algorithm for the 10 

topologies are shown in the box plot of Figure 15. The mean 

values are around 0.3. It must be mentioned that there are two 

outliners in No.8 which are above 4.5. They are caused by two 

un-convergent results. In No.8, eight trials are convergent, the 

result of the other two trials are obtained when the maximum 

number of iteration is reached. They may be convergent when 

more generations are obtained, but for this algorithm, the 

convergence cannot be guaranteed. Out of the 100 different 

simulations using the DE with heuristics algorithm, these are the 

only two un-convergent cases. The estimated range values are 

very close to the real value of 2, except the two un-convergence 

cases which are shown as red crosses of No.8 in Figure 14. The 

comparison between our algorithm and other algorithms is 

shown in Figure 15, which indicates that the proposed algorithm 

has error around 25% of centroid localization, 30% of DV-Hop 

and 30% of MDS. It must be noted that MDS, DV-Hop and 

centroid method give a unique result in different trials. Hence, 

they are presented by dots, not boxplot. In summary, the 

proposed algorithm can improve the accuracy greatly. This 

sacrifices on the computational complexity. In the same 

simulation environment (a normal PC with MATLAB installed), 

MDS and DV-Hop use about 15s to finish one simulation, while 

the centroid localization spends much less. Our proposed 

algorithm uses about 10s to finish each iteration, and there are at 

least 30 iterations in a single simulation. Therefore, the 

proposed algorithm will spend about 5 minutes in a normal PC 

(Intel Core Quad CPU 3GHz, RAM 4GB) and be over 20 times 

slower than other algorithms such as MDS, centroid and 

DV-Hop shown in TABLE II. Generally speaking, a network 

with one hundred nodes can be accurately localized within five 

minutes by a normal PC using the proposed algorithm. However, 

this proposed algorithm can reach the best accuracy in the 

theory because it uses all known information. The computation 

time will be reduced with the development of computer 

hardware. It is useful in network with slower nodes, such as 

glacier monitoring, which needs accurate localization and have 

slow moving or quiet nodes. 
TABLE I 

PARAMETERS OF THE SENSOR NETWORK 

Parameter Value 

m 20 

n 80 

R (range) 2 

Boundary [0,10]*[0,10] 

Number of topology 10 

Number of trials 10 

Max number of iteration 400 

TABLE II 

COMPARISON OF COMPUTATIONAL TIME OF DIFFERENT ALGORITHMS 

Algorithm Computational time 

 MDS  15-20s 

 centroid  less than 1s 

DV-Hop  15-20s 

DE with heuristics  around 300s 

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10
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Figure 14 Estimated range when range=2 

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10
0

0.5

1

1.5

a
v
a
ra

g
e
 e

rr
o
r

 

 

MDS

DV-Hop

centroid

 
Figure 15 The average error compared with other algorithms’ average error 

when range=2 

Above comparison is implemented in the randomly 

distributed networks without any obstacles in the square area. 

More obvious accuracy improvement by the proposed 

algorithm can be found in the networks with big obstacle(s) such 

as C-shape networks. The simulation on below C-shape network 

is interesting, which significantly demonstrates the advantage of 

the proposed algorithm. To more straightforwardly show the 

accuracy improvement, we assume there is wall in the right half 

of a square area and randomly generate a map with 25 nodes as 

Figure 16. The prior known information contains the position of 

8 anchors (marked as small green dots) and the connectivity 

information. The green lines are the connections among the 

nodes. The other 17 nodes’ positions and the range value are 

needed to estimate. The estimated position should be near to the 

real positions of the 17 nodes (small circles in the figure). Real 

value of the range is 3. In the current implementation, the 

number of population (NP) is set to be 100. The algorithm 

makes use of the MDS result and its vibration as the initial 

population. 

 
Figure 16 A sensor network with 25 nodes 
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Figure 17 The estimation result of MDS (the left one) and the proposed 

algorithm(the right one) 

For the estimation results, we use MDS to compare the 

proposed algorithm because MDS not only ignores 

disconnections, but also is the starting point of the iteration of 

our algorithm. The accuracy improvements can be clearly 

shown from the comparison. In Figure 17, the left figure shows 

MDS’s results while the proposed algorithm’s estimation is the 

right one. MDS shows very coarse estimation, most estimated 

nodes (small triangles) are far away from their real positions and 

almost failed in the C-shape network. Even with this coarse 

estimation as the starting point, our algorithm can reach 

reasonable solutions, in which the small triangles are the 

estimation of the proposed algorithm. The two objectives in 

different iteration can be shown in TABLE III. In the first 

iteration, the best individual among the first population 

generated from MDS result and random range value has 

wrong_connecion_count: 10, and wrong_distance: 32.962. The 

single node treatment procedure is applied in the 9th iteration, 

when detecting the last iteration with local_min_indicator being 

1. The values of the two objectives, specially the value of 

wrong_distance decrease greatly due to the operation of single 

node treatment. Other iterations utilize the modified DE 

algorithm while the local_min_indicator is 0. In the last 

iteration, the two objectives are both 0, which means the 

estimated positions of the unknown nodes satisfy all the convex 

and non-convex constraints. The estimated range value is 2.906, 

which is very close to the real range value of 3. 
TABLE III 

TWO OBJECTIVES FOR EACH ITERATION OF THE PROPOSED ALGORITHM IN 

25-NODE NETWORK 

Iteration WC WD Indicator Range 

1 22 32.961773 0 2.533473 

2 19 31.422041 0 2.460921 

3 16 27.675494 0 2.768528 

4 14 24.637071 0 2.612727 

5 12 19.094194 0 2.789369 

6 10 27.307769 0 2.318219 

7 9 20.679309 0 2.605094 

8 9 20.679309 1 2.605094 

9 7 3.358320 0 2.855567 

10 5 2.486910 0 2.925609 

11 4 1.258011 0 2.938039 

12 2 0.325556 0 2.714406 

13 2 0.055372 0 2.841072 

14 0 0.000000 0 2.906340 

B. Comparison with ‘active-set’ algorithm and PAES 

(non-convex methods) 

In [15], a non-convex optimization algorithm called 

“active-set” has been used to solve the localization problem. It 

assumes that the range value is known, and the target is to 

minimize the first objective “wrong_connection_count”. In [39], 

a two-objective evolutionary algorithm PAES is used to solve 

the connectivity-based localization problem. These two 

methods provide solutions for general non-convex optimization 

problem. In this section, the modified DE with heuristics 

algorithm is compared with those two methods. 

“Active-set” algorithm does not need gradient in the 

objective function, and its constraints can be nonlinear and 

non-convex. It is implemented by Matlab and uses the result of 

semi-definite programming (SDP) as a starting point. The 

implementation of PAES can be found from jMetal[40]. PAES 

may represent the simplest possible nontrivial algorithm 

capable of generating diverse solutions in the Pareto optimal set. 

The simplest form: (1+1) evolution strategy, which is applied in 

this paper, employs local search but uses a reference archive of 

previously found solutions in order to identify the approximate 

dominance ranking of the current and candidate solution vectors 

[41]. PAES comprises three parts: the candidate solution 

generator, the candidate solution acceptance function, and the 

non-dominated-solution (NDS) archive. The candidate solution 

generator is similar to simple random mutation hill-climbing, 

but prefers the less crowded solutions in order to keep diversity 

preservation. It maintains a single current solution and, at each 

iteration, produces a single new candidate via random mutation. 

The detail information of ‘active-set’ and (1+1)-PAES 

algorithm can be found in [15] and [41]. 

 The simulation is under the No.1 topology of the section A, 

with a range of 1.5. Every algorithm (except “active-set”) is 

carried out for 30 trials and the results are drawn as boxplots. 

The error per node of the algorithms is displayed in Figure 18. 

The “active-set” algorithm has uniform result in different trials, 

and so it is displayed as a short red line. The performance of 

PAES is better than “active-set”. Modified DE with heuristics 

can give better accuracy than PAES even if the range value is 

assumed unknown. It must be mentioned that no convergence 

(i.e. no results) are obtained by the “active-set” and PAES 

algorithm if the range value is assumed unknown. In addition, 

there is no convergence if the starting points are random. 
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Figure 18 Comparison of accuracy of the non-convex algorithms  

The computational complexity of our proposed algorithm is 

compared with PAES which is also an evolutionary algorithm. 

Here, we analyze their time complexity in terms of the number 

of computation in meeting the two objectives. The two 

objectives with respect to one node (i.e. two variables) can be 

found in the description of the “New Crossover” (subsection C 

in section III). Its computational complexity is nt, which is O(n), 

where n is the number of nodes, t is time used to compute 

distance between two nodes and compare it with range value. 

The two objectives with respect to one individual (i.e. all 

unknown nodes together with the range value) are given in 

Figure 6 and Figure 7. Its computational complexity is 2n t . 

which is 2( )O n . It’s because all possible pairs of nodes needs to 
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be evaluated. For each individual in one generation, during the 

step of “New Crossover”, every individual must compute the 

two objectives with respect to each node, but this computation 

should be on n nodes. So, the complexity in “New Crossover” is 

n*nt. The steps of “Selection” and “Final Selection” (Step 3 and 

5 in subsection III.C) both compute the two objectives with 

respect to one individual, and their computational complexity is 

2* 2n t . Therefore, together with the computational complexity 

of “New Crossover”, the complexity of each individual in one 

generation is 3* 2n t . Assume that 
1g  generations for 

population NP are needed to be convergent, the total 

computational complexity is 3
1g NP 2n t . On the other hand, the 

(1+1) PAES’s complexity is 
2g a 2n t , where 

2g  is the average 

number of generations needed for convergence, and a is the 

archive size [41]. In the simulation, a=100, and NP=100. It is 

observed that 
1g  is around 30 and 

2g is around 100000. 

Therefore, the complexity of the modified DE with heuristics is 

nearly 0.1% of that of PAES. Considering that the current PAES 

algorithm has the range value assumed to be known while our 

algorithm assumes range value to be unknown, the reduction in 

computational complexity of the proposed algorithm compared 

with PAES is more obvious. 

C. Results on the Scalability of the Algorithm 

The performance of this algorithm for different sizes of 

networks is evaluated in the next simulation. In section A, the 

simulation is on a 100-node network in a 10 by 10 square region, 

and the communication range is 2. In this section, with the same 

settings, four different sizes of networks (the number of node 

are changed to 50, 75, 125, and 150) are tested to compare with 

the result of the 100-node network. For the comparison to be 

meaningful, the communication range has to be changed in 

order to keep the same connection degree. The number of nodes 

is changed to 50, 75, 125, and 150, while each node is connected 

to 10 nodes on average (which is the connection degree). These 

four networks are all with anchor ratio of 20%. 

To achieve similar “connection degree” in the former network 

(100 nodes, range=2), the ranges for different cases of the 

networks are shown in TABLE IV. The ranges of those cases 

are computed based on that the square of range should be 

inversely proportional to the number of nodes [42].  
TABLE IV 

THE PARAMETERS OF THE SIMULATIONS ON DIFFERENT NETWORK SCALES 

Number of nodes (q) Range (r) Degree Anchor ratio 

50 2 2  9.56 20% 

75 4 3  10.133 20% 

100 2 10.04 20% 

125 4 5  10.608 20% 

150 4 6  10.84 20% 

TABLE V 

COMPARISON OF THE SETUP RANGE AND THE ESTIMATED RANGE 

Number of nodes      Range (in TABLE III) 
Mean value of estimated 

range (in Figure 20) 

50 2.8284     3.1038 

 75 2.3094 2.3265     

100 2 1.9972        

125 1.7889     1.7554     

150 1.6330 1.6441 

The estimated average error for different scales of network is 

shown in Figure 19. The error becomes smaller when the scale 

of the network is increased. It can be explained by the fact that 

within the same region, the network with more nodes would lead 

to more constraints and this can improve the location accuracy. 

The estimated communication range is shown in Figure 20. The 

mean values of the estimated range are compared with the setup 

(true) range values in TABLE V. It is noticed that only the error 

of the estimated range for the 50-node network is a little bit 

larger than the other cases. It may be caused by having less 

constraints in the 50-node network.  

The next simulation result shows the result of the proposed 

algorithm for different anchors ratios. The range is set to 2, and 

the total number of nodes is 100. The number of anchors varies 

from 10, 20, 30, 40 to 50. Each set of simulation is carried out 

for 10 times, and all of them are based on the 1st topology (No.1). 

The error per node (average error) is drawn as boxplots in 

Figure 22. When these boxplots in Figure 19 are compared with 

the average error of MDS, DV-hop, and centroid method, the 

improvement of our proposed algorithm (modified DE) is 

clearly shown as Figure 21. It can be observed that the error is 

decreased when the anchor ratio is increased. The result on the 

estimated range is shown in Figure 23. The final results are all 

close to the actual range value of 2. In Figure 24, it can be seen 

that the iteration time of the simulations for different anchor 

ratios is decreased when the anchor ratio is increased. This is 

not only because the number of parameters become less, but 

also because the number of constraints decreases. They both 

make the optimization less complex, which is the reason that 

less iterations are used. 

The simulations are conducted in networks with 100 to 

150 nodes due to the computational complexity. For networks 

with more nodes, the application of our proposed algorithm can 

be implemented by the distributed method described in [9, 

43-45]. The distributed manner calculates the unknown sensors’ 

position by using their neighbors’ locations, not all the nodes. 

The procedure includes: divide, calculate, and stitch. A graph is 

first divided into several sub-graphs, and then the position of the 

unknown nodes are found for every sub-graph separately, and 

then the pieces of sub-graphs are stitched together [46]. The 

public nodes of two nearby sub-graphs are used for the 

foundation in the stitching process. Networks with several 

hundreds of nodes can be tackled by being divided into several 

sub-networks, and computation cost on each sub-network is 

acceptable using our proposed algorithm. 

The convergence cannot be guaranteed. This is the nature 

of DE algorithm. However, it is a good algorithm based on two 

reasons. The first is the chance to be convergent is 99% from all 

simulations in our paper. From the simulations, within 400 

iterations, only two un-convergent cases appear in 200 trials. 

The probability to encounter un-convergence is just 1% within 

400 iterations. This percentage will become lower while more 

iterations are conducted. The second is the un-convergent cases 

still give acceptable estimations of positions. The results of 

un-convergent cases (the two outliers of No.8 in Figure 15) are 

much better than other algorithms, and are comparable with the 

convergent results. 
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Figure 19 The average error in different scales 

of network 
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Figure 20 The estimated range in different scale of 

network 

   10%    20%    30%    40%    50%    
0

0.5

1

1.5

a
v
a
ra

g
e
 e

rr
o
r

 

 
MDS

DV-Hop

centroid

Modified DEBoxplot

anchor ratio   
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anchor ratios 
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Figure 22 The average error of an 100-node 

problem with different anchor ratios (only to show 

the boxplots in Figure 21) 

   10%    20%    30%    40%    50%    

1.96

1.98

2

2.02

2.04

2.06

anchor ratio

e
s
ti
m

a
te

d
 r

a
n
g
e

  
Figure 23 The estimated range for different anchor 

ratios 
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Figure 24 The iteration number for different 

anchor ratios 

 

 

I. CONCLUSION 

In this paper, a revised formulation of the connectivity-based 

localization problem is proposed which would require the 

search algorithm to find the sensor range as well as the location 

of the unknown nodes. The communication range of the sensor 

node is not assumed to be known a priori. A modified 

differential evolution (DE) algorithm for connectivity-based 

sensor network localization has been developed to solve this 

problem. The two objectives are on minimizing the violated 

constraints and the amount of the violation. The localization 

problem has two particular characteristics when compared with 

other common optimization problem. The first characteristic is 

on constructing a “new crossover” step of the modified DE. It 

gives a direction of search, but loses some randomness which is 

necessary of DE. Therefore, another step “alternative 

generation” is added to produce more randomness. “Final 

selection” selects the best individuals from the population 

produced by “new crossover” and “alternative generation”. The 

second characteristic is used when the modified DE encounters 

a local minimum. This is formulated as “single node treatment” 

to correct the violated connections and disconnections for each 

node-pair with these violations. This treatment can make the 

iteration of the modified DE to jump out from the local 

minimum quickly. In the simulations, the modified DE with 

heuristics obtained much better accuracy. The error of this 

algorithm is only 20% of the error of former algorithms. In our 

work, only two out of more than two hundred simulation cases 

are un-convergent. The algorithm is also compared with general 

optimization algorithms such as “active-set” algorithm and 

PAES. The computational time, the performance on different 

anchor ratio, and the scalability of this algorithm are also 

discussed based on many simulation results. 

Sensor network localization is a NP-hard problem with huge 

computational complexity. Non-convex constraints introduced 

by disconnections are much difficult to solve than convex 

constraints, and thus are always avoided in tackling the 

localization problem. However, this has led to coarse accuracy 

and a lot of useful information has been wasted. From the result 

of this paper, it is shown that the non-convex constraints can be 

handled when using the proposed algorithm. 
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