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Convergence Analysis of the Variance in
Gaussian Belief Propagation

Qinliang Su, Member, IEEE, and Yik-Chung Wu

Abstract—It is known that Gaussian belief propagation (BP) is
a low-complexity algorithm for (approximately) computing the
marginal distribution of a high dimensional Gaussian distribu-
tion. However, in loopy factor graph, it is important to determine
whether Gaussian BP converges. In general, the convergence
conditions for Gaussian BP variances and means are not nec-
essarily the same, and this paper focuses on the convergence
condition of Gaussian BP variances. In particular, by describing
the message-passing process of Gaussian BP as a set of updating
functions, the necessary and sufficient convergence conditions of
Gaussian BP variances are derived under both synchronous and
asynchronous schedulings, with the converged variances proved to
be independent of the initialization as long as it is chosen from the
proposed set. The necessary and sufficient convergence condition
is further expressed in the form of a semi-definite programming
(SDP) optimization problem, thus can be verified more efficiently
compared to the existing convergence condition based on compu-
tation tree. The relationship between the proposed convergence
condition and the existing one based on computation tree is also
established analytically. Numerical examples are presented to
corroborate the established theories.

Index Terms—Convergence, Gaussian belief propagation,
graphical model, factor graph, loopy belief propagation, message
passing, sum-product algorithm.

I. INTRODUCTION

I N signal processing and machine learning, many problems
eventually come to the issue of computing the marginal

mean and variance of an individual random variable from a high
dimensional joint Gaussian probability density function (PDF).
A direct way of marginalization involves the computation of the
inverse of the precision matrix in the joint Gaussian PDF. The
inverse operation is known to be computationally expensive for
a high dimensional matrix, and would introduce heavy commu-
nication overhead when carried out in distributed scenarios.
By representing the joint PDF with a factor graph [1],

Gaussian BP provides an alternative to (approximately) calcu-
late the marginal mean and variance for each individual random
variable by passing messages between neighboring nodes in
the factor graph [2]–[5]. It is known that if the factor graph
is of tree structure, the belief means and variances calculated
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with Gaussian BP both converge to the true marginal means
and variances, respectively [1]. For a factor graph with loops,
if the belief means and variances in Gaussian BP converge,
the true marginal means and approximate marginal variances
are obtained [6]. Recently, a novel message-passing algorithm
has been proposed in [7] for inference in Gaussian graphical
model by choosing a special set of nodes to break loops in
the graph. Although this algorithm computes the true marginal
means and improves the accuracy of variances, it still needs to
use Gaussian BP as an underlying inference algorithm. Thus,
in this paper, we focus on the message-passing algorithm of
Gaussian BP only.
With the ability to provide the true marginal means upon con-

vergence, Gaussian BP has been successfully applied in low-
complexity detection and estimation problems arising in com-
munication systems [8]–[10], fast solver for large sparse linear
systems [11], [12], sparse Bayesian learning [13], estimation in
Gaussian graphical model [14], etc. In addition, the distributed
property inherited from message passing algorithms is particu-
larly attractive for applications requiring distributed implemen-
tation, such as distributed beamforming [15], inter-cell interfer-
ence mitigation [16], distributed synchronization and localiza-
tion in wireless sensor networks [17]–[19], distributed energy
efficient self-deployment in mobile sensor networks [20], dis-
tributed rate control in Ad Hoc networks [21], and distributed
network utility maximization [22]. Moreover, Gaussian BP is
also exploited to provide approximate marginal variances for
large-scale sparse Bayesian learning in a computationally effi-
cient way [23].
However, Gaussian BP only works under the prerequisite that

the belief means and variances calculated from the updating
messages do converge. So far, several sufficient convergence
conditions have been proposed, which can guarantee the means
and variances converge simultaneously [6], [24], [25]. How-
ever, in general, the belief means and variances do not neces-
sarily converge under the same condition. It is reported in [24]
that if the variances converge, the convergence of the means can
always be observed when suitable damping is imposed. Thus,
it is important to ensure the variances of Gaussian BP to con-
verge in the first place. In the pioneering work [24], the mes-
sage-passing procedure of Gaussian BP in a loopy factor graph
is equivalently translated into that in a loop-free computation
tree [26]. Based on the computation tree, an almost necessary
and sufficient convergence condition of variances is derived. It
is proved that if the spectral radius of the infinite dimensional
precision matrix of the computation tree is smaller than one, the
variances converge; and if this spectral radius is larger than one,
the Gaussian BP becomes ill-posed. However, this condition is
only ‘almost necessary and sufficient’ since it does not cover
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the scenario when the spectral radius is equal to one. More cru-
cially, this convergence condition requires the evaluation of the
spectral radius of an infinite dimensional matrix, which is al-
most impossible to be calculated in practice.
In this paper, with the fact that the messages in Gaussian

BP can be represented by linear and quadratic parameters, the
message-passing process of Gaussian BP is described as a set
of updating functions of parameters. Based on the monoton-
ically non-decreasing and concave properties of the updating
functions, the necessary and sufficient convergence condition of
messages’ quadratic parameters is derived first. Then, with the
relation between BP messages’ quadratic parameters and belief
variances, the necessary and sufficient convergence condition
of belief variances is developed under both synchronous and
asynchronous schedulings. The initialization set under which
the variances are guaranteed to converge is proposed as well.
The convergence condition derived in this paper is proved to be
equivalent to a semi-definite programming (SDP) problem, thus
can be easily verified. Furthermore, the relationship between
the proposed convergence condition and the existing one based
on computation tree is also established. Our result fills in the
missing part of the convergence condition in [24] on the case
when the spectral radius of the infinite dimensional matrix is
equal to one.
The rest of this paper is organized as follows. Gaussian BP is

reviewed in Section II. Section III analyzes the updating process
of Gaussian BP messages, followed by the necessary and suffi-
cient convergence condition of quadratic parameters in the mes-
sages in Section IV. The derivation of the necessary and suf-
ficient convergence condition of belief variances is presented
in Section V. Relationship between the condition proposed in
this paper and the existing one based on computation tree is es-
tablished in Section VI. Numerical examples are presented in
Section VII, followed by conclusions in Section VIII.
The following notations are used throughout this paper. For

two vectors, and mean the inequalities
are held in all corresponding elements. Notations and

represent any eigenvalue and the maximal eigenvalue
of matrix , respectively. Notation means the spectral ra-
dius of . Notations and represent the -th and -th
element of a vector and matrix, respectively.

II. GAUSSIAN BELIEF PROPAGATION

In general, a Gaussian PDF can be written as

(1)

where with being the number
of random variables; is the precision matrix with

being its -th element; and
is the linear coefficient vector. In many signal processing
applications, we want to find the marginalized PDF

. For a Gaussian
, this can be done by completing the square inside the ex-

ponent of (1) as ,
and then the marginalized PDF is obtained as

(2)

with the mean and the variance .
However, the required matrix inverse is computationally expen-
sive for a large dimensional , and introduces heavy commu-
nication overhead to the network when the information is
located distributedly.
On the other hand, the Gaussian PDF in (1) can be ex-

panded as ,
where and

. Based on this expansion, a factor graph1 can
be constructed by connecting each variable with its associ-
ated factors and . It is known that Gaussian
BP can be applied on this factor graph by passing messages
among neighboring nodes to obtain the true marginal mean and
approximate marginal variance for each variable.
In Gaussian BP, the departing and arriving messages corre-

sponding to variables and are updated as

(3)

(4)

where with
being the set of index pairs of any two connected variables and

being the set of indices of all variables; is
the time index; is the set of indices of neighboring variable
nodes of node , and is the set but excluding the
node . After obtaining the messages , the belief at
variable node is equal to

(5)

It has been proved that always converges to in
(2) exactly if the factor graph is of tree structure [1], [6]. For
loopy factor graph, if converges, the mean of
will converge to the true mean , while the converged variance
is an approximation of [6].
Assume the arriving message is in Gaussian form of

, where
and are the arriving precision and arriving linear
coefficient, respectively. Inserting it into (3), we obtain

, where

(6)

(7)

are the departing precision and linear coefficient, respectively.
Furthermore, substituting the departing message
into (4), we obtain

(8)

1The factor graph is assumed to be connected in this paper.
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If , the integration equals to a constant, and thus

. There-

fore, and are updated as

(9)

(10)

where ‘not defined’ arises since under the case of ,
the integration in (8) becomes infinite and the message

loses its Gaussian form. After obtaining
, the variance of belief at each iteration is computed as

(11)

From (9) and (10), it can be seen that the messages
of Gaussian BP maintain the Gaussian form only when

for all . Therefore, we have the following
lemma.
Lemma 1: The messages of Gaussian BP are always in

Gaussian form if and only if for all .

III. ANALYSIS OF THE MESSAGE-PASSING PROCESS

In this section, we first analyze the updating process of
, and then derive the condition to guarantee the BP

messages being maintained at Gaussian form.

A. Updating Function of and Its Properties

Under the Gaussian form of messages, substitutting (6) into
(9) gives

(12)

By writing (12) into a vector form, we obtain

(13)

where is a vector-valued function containing components
with arranged in ascending order first on and

then on , and is defined as

(14)

and are vectors containing elements and ,
respectively, both with arranged in ascending order
first on and then on . Moreover, define the set

(15)

Now, we have the following proposition about and .
Proposition 1: The following claims hold:

P1) For any , if , then ;
P2) For any , if , then ;
P3) is a concave function with respect to .
Proof: Consider two vectors and in , which

contain elements and with arranged
in ascending order first on and then on . For any

, according to the definition of in (15), we have
. Then, if , it can be easily seen

that as well. Thus, we have .
The first-order derivative of with respect to for

is computed to be

(16)

Thus, is a continuous and strictly increasing function
with respect to the components for with
. Hence, we have if , then .
To prove the third property, consider the simple func-

tion under the domain of first. It can be

easily derived that the second order derivative of is

, where the inequality holds due to .

Thus, is a concave function with respect to .

Since is the composition

of the concave function and the affine mapping
, the composition function is also con-

cave with respect to ([28], p. 79). Due
to as de-
fined in (15), then implies that .
Thus, we can infer that is a concave function with
respect to .
Notice that convexity is also exploited in [29] to derive the

convergence condition for a general min-sum message-passing
algorithm, which reduces to Gaussian BP when it is applied to
the particular quadratic function . The convexity
in [29] means that the quadratic function can be decomposed
into summation of convex functions, which is different from the
convexity in the updating function here.

B. Condition to Maintain the Gaussian Form of Messages

First, define the following set2

(17)

With notations and , the
following proposition can be established.
Proposition 2: The set has the following properties:
P4) is a convex set;
P5) If , then ;
P6) If , then and
for all .
Proof: As is a concave function for

according to P3), thus is also concave for

2The simpler symbol is reserved for later use.
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. The set of which satisfies the con-
dition of is a convex set [28]. Thus,

is also a convex set.
If , we have and . According to

the definition of in (15), . Putting
this fact into the definition of in (14), it is obvious that

. Therefore, we have the relation that
for all .
Finally, if , we have and . Hence,

according to the P1). Applying on both sides
of and using P2), we obtain . Further-
more, since and , we also have
. By induction, we can prove in general that and

for all .
Now, we give the following theorem.
Theorem 1: There exists at least one initialization such

that the messages of Gaussian BP are maintained at Gaussian
form for all if and only if .

Proof:
Sufficient Condition:
If , by choosing an initialization and

applying P6), it can be inferred that for all .
Moreover, according to the definitions of in (15) and in
(17), we have , and thereby for all ,
or equivalently for all
according to the definition of set in (15). Due to

as given in (6), we obtain
for all and . According to Lemma 1, it can be
inferred that the messages are maintained at Gaussian form for
all .
Necessary Condition:
We prove this necessary condition by contradiction.

When , suppose that there exists a such
that the messages are maintained at Gaussian form for
all . According to Lemma 1, we can infer that

for all , or
equivalently for all from the
definition of in (15).
Now, choose another initialization satisfying both

and . Due to and
, by using P2), we have ,

that is, . Furthermore, substituting
into (14) gives , and thereby . Com-
bining with leads to .
Due to the assumption , by applying P2) to

, we obtain .
Combining with the fact as proved above, we have

. By induction, it can be derived
that

(18)

Then, from the definition of in (15), the assumption
is equivalent to

for all , where are the elements of
with arranged in the same order as . By
rearranging the terms in , we
obtain . Applying

shown in (18) into this inequality, it can be in-
ferred that ,
that is, for all . Combining with

shown in (18), for all , we have

(19)

It can be seen from (18) and (19) that is a monotonically
non-increasing and lower bounded sequence. Thus, must
converge to a vector , that is, .
On the other hand, substituting (12) into (19) gives

. Due to , it

can be inferred from P1) and (18) that , or equiv-
alently . Together with the fact

, we obtain . Since
converges to , taking the limit on both sides of

the inequality gives . Hence,
. From the definition of in (15),

we have . Combining with , according
to the definition of in (17), it is clear that . This
contradicts with the prerequisite . Therefore, cannot
be .

IV. NECESSARY AND SUFFICIENT CONVERGENCE CONDITION
OF MESSAGE PARAMETER

According to Theorem 1, Gaussian form of messages may
only be maintained for some . Thus, the choice of initial-
ization also plays an important role in the convergence of

.

A. Synchronous Scheduling

In this section, we will investigate the convergence condition
of under synchronous scheduling, whichmeans that
is updated as . The necessary and suf-
ficient convergence condition under nonnegative initialization
set is derived first. Then, the convergence condition is proved
to hold under a more general initialization set.
Lemma 2: converges to the same point for

all if and only if .
Proof: See Appendix A.

Obviously, the initialization used by the conver-
gence condition in [24] is implied by the proposed initialization
set in Lemma 2. In the following, we show that the
initialization set could be further expanded to the set

(20)

where means the interior of . Notice that the set
consists of the union of three parts.
• The first part corresponds to the initialization set
given in Lemma 2.

• For the case but , the second
part is empty. Also, according to Lemma 2, we have

. Thus, the third part of set re-

duces to . Due to the fact that implies
given by P5), we have .
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• For the case , according to (63), we have
for any . This implies

. Obviously, in this case, we
also have .

Therefore, if , the set is always larger than the set
.

Theorem 2: converges to the same point for all
if and only if .

Proof: The first part of corresponds to the
case covered in Lemma 2, thus has already been established. To
prove the sufficiency, we consider the case and the
case but , respectively.
For the case , it is known from (20) that

in this case. To prove the theorem,
we will first prove that converges to the same point
for all . Then, notice that for any

, it can be upper bounded by a point
from and lower bounded by a point from .
Because both the upper bound and lower bound converge to
, we can easily extend the convergence to the much larger

set .
First, we prove that converges to for all

. To do this, we establish the following three facts first.
1) For any , according to P6), we have

and . With P5), we also
have . It can be seen that is a mono-
tonically non-decreasing and upper bounded sequence,
thus converges to a fixed point, which is denoted
as . On the other hand, let correspond
to a point in the first part of , due to , we
have . By using P2), applying to

for times gives . Since
and converge to and , respectively,

taking the limit on both sides of gives
. Due to , the definition

of in (17) implies that , that is,
. Combining with

established above, we obtain . Together with
the fact , we obtain

(21)

2) For a , construct a vector

(22)

where . Since is a concave function over
and , we have

, or equiva-
lently .
According to P2), applying to this inequality gives

.
Because of the concave property of , it is known that

. Thus, we
have .
By induction, it can be inferred that

for all . With
given by (22), we obtain

(23)

where . Since and
is a convex set as indicated in P4), we have

. According to P6),
is a monotonically non-decreasing sequence.

Furthermore, according to P5), is also upper bounded
by . Thus, converges to a fixed point, which is de-
noted as . Taking limits on both sides of (23) gives

(24)

3) From given by (21), we have
and . If and is close

to 1, the relation
always holds, that is,

(25)

Rearranging the terms in (25) gives
. Due to

given in (22), thus (25)
implies that there always exists a such that

. Now, applying to for
times, from P2), we obtain , or
equivalently . Taking the limit on both sides
of , it can be inferred that

(26)

Now, we make use of (21), (24) and (26) to prove that the con-
vergence limit is identical to the convergence limit .
Combining (21) and (26) gives

(27)

From the second inequality of (27), we have
. Substituting this relation into (24), we can infer that
. Comparing this result to the first inequality of (27),

we obtain . Due to , (24) becomes
. For , the relation is equivalent

to . Combining it with the second inequality in (27),
we obtain

(28)

Next, we will extend the initialization set to the whole
set . For any ,
we can always find a and a
such that . According to P2), ap-
plying to this inequality repeatedly gives

. Since and
both converge to , thus con-

verges to , too.
Now, consider the case but . In this case,

according to the discussion after (20), . For
any , we can always find a such
that . Applying to this inequality for
times, from P2), we obtain .
Since converges to , thus also converges to .
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On the other hand, if , according to Theorem 1,
the messages of Gaussian BP passed in factor graph lose the
Gaussian form, thus the parameters of messages cannot
converge in this case.

B. Asynchronous Scheduling

In this section, convergence conditions under asynchronous
scheduling schemeswill be investigated.Modified from the syn-
chronous updating equation in (12), arriving precision in asyn-
chronous scheduling is updated as

(29)

where is the set of time instants at which are up-
dated; is the last updated time instant of

at time . In this paper, we only consider the totally
asynchronous scheduling defined as follows.
Definition 1. (Totally Asynchronous Scheduling) [27]: The

sets are infinite, and satisfies
and for all .

In order to prove the convergence of under asyn-
chronous scheduling given by Definition 1, we need to find a
sequence of nonempty sets for such that the
following two sufficient conditions are satisfied [27]:
• Synchronous Convergence Condition: the sequence of sets
satisfy 1) ; 2) for

; 3) converges to a fixed point;
• Box Condition: can be written as product of subsets
of individual components for all .

While the formal proof of asynchronous convergence under
these conditions are provided in [27], we give a brief intuitive
explanation below. Suppose when
for all , or expressed using the Box Condition

for . Now, consider the updating of an individual
component . Due to , we can al-

ways find a such that when , we have
and thereby for all

. Putting into function in (29)
and applying condition 2) in Synchronous Convergence Condi-
tion, we have for . Thus,

by choosing , we have when

for all . Further due to con-
ditions 1) and 3) in Synchronous Convergence Condition, we
know that will gradually converge to a fixed point.
Theorem 3: converges for any and all

choices of schedulings if and only if .
Proof: We first prove the sufficient condition. Since

, as given in the proof of Theorem 2, for any ,
there always exist an element and

such that . Construct a
sequence of sets as

(30)

Since , we have
according to P6). Further, for any , putting
into (14), we have , thereby . Since

converges according to Theorem 2, then
for all . Thus, according to P2), by applying to

and by induction, we have .
By exploiting and
the definition of in (30), we have

(31)

Now, for any , by applying to
, we obtain . Thus,

from the definition of in (30), we have the relation

(32)

Furthermore, according to Theorem 2, we have

, hence will converge to the fixed

point . Thus, the set satisfies the Synchronous
Convergence Condition [27]. Furthermore, according to
the definition of in (30), means

for all , that is,
with

. Thus, can be represented in form of
product of subsets of individual components for all

, and thereby the Box Condition is satisfied. Hence,
the sufficient condition is proved.
On the other hand, if , according to Theorem 1,

the messages of Gaussian BP passed in factor graph lose the
Gaussian form, thus the parameters of messages cannot
converge in this case.
From Theorems 2 and 3, it can be seen that the convergence

condition of under asynchronous scheduling is the same
as that under synchronous scheduling.

V. NECESSARY AND SUFFICIENT CONVERGENCE CONDITION
OF BELIEF VARIANCE

Although the convergence conditions for are de-
rived in the last section, what we are really interested in
is the convergence condition for the belief variance .
According to (11), the variance and are re-
lated by , or equivalently

.

A. Convergence Condition

In order to investigate the convergence condition of , we
present the following lemma first.
Lemma 3: If and , then for

all or for all .

Proof: In the proof, we first consider the special case under
tree-structured factor graph as well as the impact of initializa-
tions. Then, for the case of loopy factor graph, we prove that
there exists at least one node such that .

At last, we demonstrate that either for all

or for all will hold.

First, if the factor graph is of tree structure, according to
properties of BP in a tree structured factor graph, it is known
that [1]. Due to , we have

, and thereby for
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all . In the following, we focus on the factor graph con-
taining loops.
If , according to Theorem 2, converges to the

same point for any initialization . Due to

, then always exists and is

identical for all . Therefore, we only need to consider
a specific initialization, e.g., .
Second, we prove for at least one node .

Due to the factor graph containing loops, we can always find a
node such that , where means the cardinality of
a set. Denote nodes as two neighbors of node , that is,

. Since , from (63), we have .
Applying this relation to

gives

(33)

By further using , we can easily obtain

(34)

Notice that in (34) can be
written as (35),

(35)

where the equality holds because

from (12); and is obtained by using the

limiting form of (12) . Com-

bining (34) and (35) gives

(36)

Due to from Lemma 2, then . From the
definition of in (15), for all , we have

(37)

By using (37) and implied by (63), we can infer
for all , and

thereby

(38)

Since the factor graph contains loops, there always exists a walk
with such that all

and for . Then, using (36) repeatedly
on such a walk gives

(39)

where the last equality holds due to . Due to
, there exists a node such that . By

exploiting the fact that due to , we obtain
. Combining with

(37), we can infer that

(40)

Putting (38) and (40) into (39), we obtain
. Applying this result to (33)

gives for all , and thereby .

At last, we will prove that for all or

for all . Notice that the relation in (35)

holds for any . Thus, taking the limit on both sides of
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(35) and recognizing that

and , we obtain

(41)

Since for all
given in (37), according to (41), if , then

for all nodes , and vice versa.

Similarly, if , then for all nodes

, and vice versa. Recall that we have proved there
exists a node with . Therefore, for a fully

connected factor graph, either for all or

for all .

Obviously, if , then exists, and

hence the convergence condition of is the same as that of
. However, Lemma 3 reveals that the scenario

cannot be excluded. Thus, we have the following theorem.
Theorem 4: with converges to the same positive

value for all under synchronous and asynchronous
schedulings if and only if , where

(42)

Proof: First, we prove if , then converges for
any . From the definition of in (42), if , then

. According to Theorems 2 and 3, converges to
for all under both synchronous and asynchronous
schedulings. Thus, will

converge to . Due to , there ex-
ists a such that and for
all . Due to , it can be inferred from (63) that

. Putting this result into , we
obtain and its inverse exists. Thus, if

, the variance converges to

.

Next, we prove by contradiction that if converges for
, then . Suppose that . This assump-

tion contains two cases: 1) ; 2) and
for some . First, consider the case

. Due to , according to Theorem 1, the mes-
sages of Gaussian BP passed in factor graph cannot maintain
Gaussian form, hence becomes undefined. Therefore, the
variance cannot converge in this case, which contradicts
with the prerequisite that converges. Second, consider the
case . Due to , according to Theorems 2 and 3,

converges to for any . According to
Lemma 3, we further have

for all or for

all . If for all , combining
with , we can infer from the definition of in (42)
that , which contradicts with the assumption .

On the other hand, if for all , ob-
viously, the variance cannot con-

verge, which contradicts with the prerequisite that con-
verges. In summary, we have proved that if converges for
all , then cannot hold, or equivalently we must
have .
Remark 1: Due to the belief mean

, if the convergence condition of

belief variance is already known, the convergence of
is determined by that of message parameters . As

pointed out in [24], is updated in accordance to a set
of linear equations upon the convergence of belief variances.
Thus, after deriving the convergence condition of , we
can then apply the theories from linear equations to analyze
the convergence condition of belief mean . However, the
convergence condition of belief mean would be lengthy
and will be investigated in the future.

B. Verification Using Semi-Definite Programming

Next, we show that whether is can be determined by
solving the following SDP problem [30]

(43)

The SDP problem (43) can be solved efficiently by existing soft-
wares, such as CVX [31] and SeDuMi [32], etc.
Theorem 5: if and only if the optimal solution of

(43) satisfies .
Proof: First, notice that the SDP problem in (43) is equiv-

alent to the following optimization problem

(44)

If , according to definition of in (42), there must exist a
such that , and

for all . Obviously, these three conditions are equivalent to
for all

and for all . Thus, by defining
, it can be seen that satisfies the

constraints in (44). Due to , thus we
have . Since is a feasible solution of the minimization
problem in (44), the optimal solution of (44) cannot be greater
than , hence it can be inferred that .
Next, we prove the reverse also holds. If is

the optimal solution of (44) with
must satisfy the constraints in (44), thus the following
three conditions hold: 1) ; 2)
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; 3) . For
the second constraint, if , the

function becomes unde-

fined, thus will never happen.
Hence, we always have .
For the third constraint, due to , it can be in-
ferred that . Now, comparing

and
with the definition of set in (42),

we have , and hence .
Remark 2: Using the alternating direction method of multi-

pliers (ADMM) [27], the SDP problem in (43) can be reformu-
lated into locally connected low-dimensional SDP sub-prob-
lems, thus can be solved distributively. Not only this avoids
the gathering of information at a central processing unit, the
complexity is also reduced from of directly
solving SDP to per iteration of using ADMM
technique. Furthermore, since what we are really interested in
is to know whether , ADMM can stop its updating imme-
diately if an intermediary vector is found to be within . Thus,
the required number of iterations can be reduced significantly.
Because the derivation of ADMM is well-documented in [27],
[33], we do not give the details here. It should be emphasized
that despite of the low complexity of ADMM at each iteration,
due to the unknown number of required iterations, it cannot be
proved that the overall complexity is always lower than that of
direct matrix inverse .
Remark 3: As discussed after (20), we know that

if . In particular, with a proof
similar to that of Theorem 5, it can be shown that if the SDP

(45)

has a solution , then the optimal must be a point in
.

VI. RELATIONSHIP WITH THE CONDITION BASED ON
COMPUTATION TREE

In this section, we will establish the relation between the
proposed convergence condition and the one proposed in [24],
which is the best currently available. For the convergence con-
dition in [24], the original PDF in (1) is first transformed into
the normalized form

(46)

where and
with denoting a diagonal matrix

by only retaining the diagonal elements of . Then, Gaussian
BP is carried out with and using the updating equations in
(6), (7), (9) and (10). Under the normalized and , we de-
note the corresponding message parameters as and .
With , the corresponding belief variance can be calculated

Fig. 1. Illustration of computation tree and computation sub-tree
within the dashed line.

using (11) as . The variance of the

original PDF can be recovered from . Moreover,

under the normalized , the sets and can also be
defined similar to (15), (17), (20) and (42), respectively.
By noticing that the message-passing process of Gaussian

BP in the factor graph can be translated exactly into the mes-
sage passing in a computation tree, [24] proposed a conver-
gence condition for belief variance in terms of compu-
tation tree. A computation tree is constructed by choosing
one of the variable nodes as root node and as its di-
rect descendants, connected through factor node

, where is the index of any descendant. For
each descendant , the neighbors of excluding its parent node
are connected as next level descendants, also connected through
the corresponding factor nodes. The process is repeated until the
computation tree has layers of variables nodes (in-
cluding the root node). The computation tree is completed by
further connecting factor node to
variable node for . Furthermore, a computation sub-
tree can be obtained by cutting the branch of
in the first layer from . An example of computation
tree as well as computation subtree corre-
sponding to a fully connected factor graph with four variables
are illustrated in Fig. 1.
By assigning to each variable node with a new index

can be viewed as a factor graph for a
new PDF, where denotes the number of variable nodes
in . The new PDF represented by is

(47)
where is a vector; and are the
corresponding precision matrix and linear coefficient vector,
respectively. According to the equivalence between the mes-
sage-passing process in original factor graph and that in com-
putation tree [6], [24], under the prerequisite of and

, it is known that

(48)

Similarly, the computation sub-tree can also be
viewed as a factor graph with being the corresponding
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symmetric precision matrix in the PDF. Furthermore, if (48)
holds, we also have

(49)

where . In ([24], Proposi-

tion 25), it is proved that if , the vari-

ance converges for ; but if

, Gaussian BP becomes ill-posed. Notice that the limit
always exist and are identical for all

([24], Lemma 24). The following lemma and theorem reveal the
relation between the proposed convergence condition and that
based on computation tree.
Lemma 4: If for all and , then

converges to for .
Proof: See Appendix B.

Now, we give the following theorem.
Theorem 6: if and only if either of the following two

conditions holds:
1) ;

2) with

, and for all and .
Proof:

Sufficient Condition:
First, we prove that if , then

. With the monotonically increasing property of
([24], Lemma 23) and the assumption that its limit is smaller
than 1, we have with

. Expressing in terms of eigenvalues, we have
, or equivalently

(50)

For a symmetric , the eigenvalues of are ,
and (50) is equivalent to

(51)

Due to , it can be obtained from (51) that
, that is,

(52)

Notice that the diagonal element of a symmetric matrix is al-
ways smaller or equal to the matrix’s maximum eigenvalue [34],
that is, . Combining with the fact that
for a positive definite matrix, its diagonal elements are positive,
we obtain . Since the upper bound
of (51) applies to all eigenvalues, we obtain

(53)

Due to from (48) and
, it can be inferred from (53) that

for all . Due to

from (52), we have , and according to

Lemma 4, always converges to . Thus, it can be
inferred that . With ,
we obtain

(54)

Combining (54) with , it can be inferred that
by the definition, thus .
Next, we prove the second scenario. Due to , ac-

cording to Lemma 4, converges to , and thereby
and exists. Due to , ac-

cording to Lemma 3, it is known that
for all or for all . From
the prerequisite , we can infer that

holds for all . Combining with

, we can see that , thus .
Necessary Condition:
In the following, we will first prove that the precision matrix

of a computation tree can always be written into a special struc-
ture by re-indexing the nodes in the tree. Based on the special
structure, the necessity is proved by the method of induction.
First, notice that changing indexing schemes in the compu-

tation tree does not affect the positive definiteness of the corre-
sponding precision matrix . So, we consider an indexing
scheme such that the precision matrix for can
be represented in the form

. . .
. . .

...
...

...
. . .

. . .

(55)

where for
is a vector with length . Notice

that the -order computation tree con-
sists of the root node and a set of -order computation
sub-trees with the corresponding root node .
The lower-right block diagonal structure of (55) can be easily
obtained by assigning consecutive indices to nodes inside
each sub-tree . Moreover, since there is only one
connection from node to the root node of each sub-tree

contains only one nonzero element .
Then, by assigning the smallest index to the root node in each

, the only nonzero element in must locate
at the first position. Therefore, the precision matrix
can be represented in the form of (55).
When , obviously, . Suppose
for some , we need to prove . From (55),

it is clear that if and only if the following two
conditions are satisfied ([34], p. 472):

(56)

(57)
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where denotes block diagonal matrix with the ele-
ments located along the main diagonal. Due to for
all by assumption, then its sub-matrices for
all , thus the first condition (56) holds. On the other
hand, for the second condition (57), we write

(58)

where the equality holds since has only one nonzero
in the first element, and

from (49); and holds due to

given in (12).

If , according to Theorem 4, we have

(59)

Due to , then also implies . According
to (63), it can be inferred that . Combining with
(59), we obtain . Substituting
the result into (58), it can be inferred that the second condition
(57) holds as well. Thus, we have for all
and . Furthermore, from (59), it is obvious that

.

From , we obtain , and hence
. Since represents a tree-struc-

tured factor graph, it is proved in ([24], Proposition 15) that
. Therefore, it can be obtained

that , and thereby

(60)

Finally, if , due to from (52),

we have . Together with (54), it can be inferred that
under the prerequisite of , the conditions

and are automatically

satisfied. Therefore, if , we have either

or

and .
From Theorems 4 and 6, it can be obtained that the variance

converges as , and diverges as

, which are consistent with the results

proposed in [24]. Moreover, it can be seen from Theorem 6
that it is not sufficient to determine the convergence of variance

by using only. This fills in the

gap of [24] in the scenario of . Albeit

with similar conclusions to [24], we need to emphasize that the
criterion proposed in [24] is not easy to

check in practice due to the infinite dimension, while our condi-
tion can be verified by solving an SDP problem given in

Fig. 2. The value of under different correlation strength .

Theorem 5. Moreover, the initialization is expanded from the a
single choice in [24] to a much larger set
in this paper. The flexibility on the choice of initialization is
useful to accelerate the convergence of variance if the ini-
tialization is chosen close to the convergent point.

VII. NUMERICAL EXAMPLES

In this section, numerical experiments are presented to cor-
roborate the theories in this paper. The example is based on the
20 20 precision matrices constructed as

(61)

where is a coefficient indicating the correlation strength
among variables; and is the -th element of the vector

.
The varying of correlation strength induces a series of ma-
trices, and the positive definite constraint required by a
valid PDF is guaranteed when .
Fig. 2 illustrates how the optimal solution of (43) varies

with the correlation strength . It can be seen that the optimal
solution always exists and the condition holds for
all , while no feasible solution exists in the SDP
problem (43) when . According to Theorem 4, this
means that if , the variance with con-
verges to the same point for all initializations under
both synchronous and asynchronous schedulings. On the other
hand, if , the variance cannot converge.
To verify the convergence of belief variances under

, Fig. 3 shows how the variance of the 1-st variable
evolves as a function of when , which is slightly
smaller than 0.5859. It can be observed that the variance
converges to the same value under both synchronous and asyn-
chronous schedulings and different initializations of
and , where is the optimal solution of (45).
For the asynchronous case, a scheduling with 30% chance of
not updating the messages at each iteration is considered. On
the other hand, Fig. 4 verifies the divergence of variance
when , which is slightly larger than 0.5859. In this
figure, synchronous scheduling and the same initializations as
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Fig. 3. Illustration for the convergence of variance under different
schedulings and initializations with being the optimal solution of (45).

Fig. 4. Illustration for the divergence of variance with being the
optimal solution of (45).

that of Fig. 3 are used. It can be seen that fluctuates as
iterations proceed, and does not show sign of convergence.

VIII. CONCLUSION

In this paper, the necessary and sufficient convergence con-
dition for the variances of Gaussian BP was developed for syn-
chronous and asynchronous schedulings. The initialization set
of the proposed condition is much larger than the usual choice
of a single point of zero. It is proved that the convergence con-
dition can be verified efficiently by solving an SDP problem.
Furthermore, the relationship between the convergence condi-
tion proposed in this paper and the one based on computation
tree was established. The relationship fills in a missing piece of
the result in [24] where the spectral radius of computation tree
is equal to one. Numerical examples were further proposed to
verify the proposed convergence conditions.

APPENDIX A
PROOF OF LEMMA 2

First, we prove that converges for any given
. For any , according to P5), we have .

Thus, for any , the relation always holds.

Notice that due to and . Applying
P2) to , we obtain . Combining it
with from P6) gives . On the other hand,
substituting into (14) gives

(62)

Due to , thus . Combining it with
gives . Applying to

, it can be inferred from P2) that
. Together with as claimed by P6),

we obtain . By induction, we can infer that

(63)

It can be seen from (63) that is a monotonically non-in-
creasing but lower bounded sequence, thus it converges.
Next, we prove that converges to the same point for all

. For any , according to P2), applying
on both sides of gives .
Combining this relation with (62) leads to .
Applying on this inequality for more times, it can be
obtained from P2) that for all

. By denoting , it is obvious that

also converges to the .
Finally, since is a fixed point of , hence

. From (63), we obtain . Due to ,
thus by definition. Applying P1), it can be inferred that

. Combining with the fact , according
to the definition of in (17), we obtain .
On the other hand, if , according to Theorem 1, the

messages of Gaussian BP passed in factor graph cannot bemain-
tained at the Gaussian form, thus the parameters of messages

cannot converge in this case.

APPENDIX B
PROOF OF LEMMA 4

Due to , then , hence the diagonal
elements [34]. With and

, we have

(64)

Next, we prove for . Obviously,
. Suppose holds for some , and

according to the definition of in (15), this is equivalent to
. Substituting this inequality into

(14) gives . Then applying
into (64) gives for all

, or equivalently . Thus, we have
for all .

Finally, substituting into (13) gives ,
and thereby . From and P2), ap-
plying on both sides of for times gives

(65)

From and (65), we have . Putting the
result into (64) gives for all . To-
gether with (65), it can be seen that is a monotonically
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non-increasing and lower bounded sequence. Thus, con-
verges to a fixed point with . Moreover, from

and (65), we have . Putting the result into
the limiting form of (64) gives

for all , or equivalently . Combining with
, we obtain by the definition of .
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