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Distributed Hybrid Power State Estimation
Under PMU Sampling Phase Errors
Jian Du, Shaodan Ma, Yik-Chung Wu, and H. Vincent Poor, Fellow, IEEE

Abstract—Phasor measurement units (PMUs) have the advan-
tage of providing direct measurements of power states. However,
as the number of PMUs in a power system is limited, the traditional
supervisory control and data acquisition (SCADA) system cannot
be replaced by the PMU-based system overnight. Therefore, hy-
brid power state estimation taking advantage of both systems is im-
portant. As experiments show that sampling phase errors among
PMUs are inevitable in practical deployment, this paper proposes a
distributed power state estimation algorithm under PMUphase er-
rors. The proposed distributed algorithm only involves local com-
putations and limited information exchange between neighboring
areas, thus alleviating the heavy communication burden compared
to the centralized approach. Simulation results show that the per-
formance of the proposed algorithm is very close to that of central-
ized optimal hybrid state estimates without sampling phase error.

Index Terms—Phase mismatch, PMU, SCADA, state estimation.

I. INTRODUCTION

D UE to the time-varying nature of power generation and
consumption, state estimation in the power grid has al-

ways been a fundamental function for real-time monitoring of
electric power networks [1]. The knowledge of the state vector
at each bus, i.e., voltage magnitude and phase angle, enables the
energy management system (EMS) to perform various crucial
tasks, such as bad data detection, optimizing power flows, main-
taining system stability and reliability [2], etc. Furthermore, ac-
curate state estimation is also the foundation for the creation and
operation of real-time energy markets [3].
In the past several decades, the supervisory control and data

acquisition (SCADA) system, which consists of hardware for
signal input/output, communication networks, control equip-
ment, user interface and software [4], has been universally es-
tablished in the electric power industry, and installed in virtually
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all EMSs around the world to manage large and complex power
systems. The large number of remote terminal units (RTUs)
gather local bus voltage magnitudes, power injection and cur-
rent flow magnitudes, and send them to the master terminal unit
to perform centralized state estimation. As these measurements
are nonlinear functions of the power states, the state estimation
programs are formulated as iterative reweighted least-squares
solution [5], [6].
The invention of phasor measurement units (PMUs) [7], [8]

has made it possible to measure power states directly, which is
infeasible with SCADA systems. In the ideal case where PMUs
are deployed at every bus, the power state can be simply mea-
sured, and this is preferable to the traditional SCADA system.
However, in practice there are only sporadic PMUs deployed
in the power grid due to expensive installation costs. In spite
of this, through careful placement of PMUs [9]–[11], it is still
possible to make the power state observable. As PMUmeasure-
ments are linear functions of power states in rectangular coordi-
nates, once the observability requirement has been satisfied, the
network state can be obtained by centralized linear least-squares
[12].
Despite the advantage of PMUs over SCADA, the traditional

SCADA system cannot be replaced by a PMU-based system
overnight, as the SCADA system involves long-term signifi-
cant investment, and is currently working smoothly in existing
power systems. Consequently, hybrid state estimation with both
SCADA and PMU measurements is appealing. One straightfor-
ward methodology is to simultaneously process both SCADA
and PMU raw measurements [13]. However, this simultaneous
data processing, which leads to a totally different set of esti-
mation equations, requires significant changes to existing EMS/
SCADA systems [2], [14], and is not preferable in practice. In
fact, incorporating PMU measurements with minimal change
to the SCADA system is an important research problem in the
power industry [14].
In addition to the challenge of integrating PMUwith SCADA

data, there are also other practical concerns that need to be con-
sidered. Firstly, it is usually assumed that PMUs provide syn-
chronized sampling of voltage and current signals [15] due to
the Global Positioning System (GPS) receiver included in the
PMU. However, tests [16] provided by a joint effort between
the U.S. Department of Energy and the North American Elec-
tric Reliability Corporation show that PMUs from multiple ven-
dors can yield up to sampling phase errors (or
phase error in a 60Hz power system) due to different delays
in the instrument transformers used by different vendors. Sam-
pling phase mismatch in PMUs will make the state estimation
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problem nonlinear, which offsets the original motivation for in-
troducing PMUs. It is important to develop state estimation al-
gorithms that are robust to sampling phase errors.
Secondly, with fast sampling rates of PMU devices, a cen-

tralized approach, which requires gathering of measurements
through propagating a significant computational large amounts
of data from peripheral nodes to a central processing unit, im-
poses heavy communication burden across the whole network
and imposes a significant computation burden at the control
center. Decentralizing the computations across different con-
trol areas and fusing information in a hierarchical structure or
aggregation tree has thus been investigated in [17]–[21]. How-
ever, these approaches need to meet the requirement of local
observability of all the control areas. Consequently, fully dis-
tributed state estimation scalable with network size is preferred
[13], [22], [23].
In view of above problems, this paper proposes a dis-

tributed power state estimation algorithm, which only involves
local computations and information exchanges with imme-
diate neighborhoods, and is suitable for implementation in
large-scale power grids. In contrast to [13], [22] and [23], the
proposed distributed algorithm integrates the data from both the
SCADA system and PMUs while keeping the existing SCADA
system intact, and the observability problem is bypassed. The
challenging problem of sampling phase errors in PMUs is also
considered. Simulation results show that after convergence the
proposed algorithm performs very close to that of the ideal
case which assumes perfect synchronization among PMUs, and
centralized information processing.
The rest of this paper is organized as follows. The state esti-

mation problem with hybrid SCADA and PMU measurements
under sampling errors is presented in Section II. In Section III,
a convergence guaranteed distributed state estimation method is
derived. Simulation results are presented in Section IV and this
work is concluded in Section V.
Notation : Boldface uppercase and lowercase letters will be

used for matrices and vectors, respectively. denotes the ex-
pectation of its argument and . Superscript denotes
transpose. The symbol represents the identity matrix.
The probability density function (pdf) of a random vector is
denoted by , and the conditional pdf of given is denoted
by . stands for the pdf of a Gaussian random
vector with mean and covariance matrix . de-
notes the block diagonal concatenation of input arguments. The
symbol represents a linear scalar relationship between two
real-valued functions. The cardinality of a set is denoted by
and the difference between two sets and is denoted by
.

II. HYBRID ESTIMATION PROBLEM FORMULATION

The power grid consists of buses and branches, where a bus
can represent a generator or a load substation, and a branch can
stand for a transmission or distribution line, or even a trans-
former. The knowledge of the bus state (i.e., voltage magni-
tude and phase angle) at each bus enable the power management

system to perform functions such as contingency analysis, au-
tomatic generation control, load forecasting and optimal power
flow, etc.
Conventionally, the power state is estimated from a set

of nonlinear functions with measurements from the SCADA
system. More specifically, a group of RTUs are deployed by
the power company at selected buses. An RTU at a bus can
measure not only injections and voltage magnitudes at the bus
but also active and reactive power flows on the branches linked
to this bus. These measurements are then transmitted to the
SCADA control center for state estimation. However, as injec-
tions and power flows are nonlinear functions of power states,
an iterative method with high complexity is often needed. The
recently invented PMU has the advantage of directly measuring
the power states of the bus where it is placed and the current
in the branches directly connected to it. Through careful PMU
placement [24], it is possible to estimate the power states of
the whole network with measurements from a small number
of PMUs. With measurements from both SCADA and PMUs,
it is natural to contemplate obtaining a better state estimate by
combining information from both systems (hybrid estimation).
In the following, we consider a power network with the set
of buses denoted by and the subset of buses with PMU
measurements denoted by .

A. PMU Measurements With Sampling Errors

For a power grid, the continuous voltage on bus is denoted as
, with being the amplitude and being

the phase angle in radians. Ideally, a PMU provides measure-
ments in rectangular coordinates: and .
However, for reasons of sampling phase error [15], [16] and
measurement error, the measured voltage at bus would be [16]

(1)

(2)

where is the phase error induced by an unknown and random
sampling delay, and and are the Gaussian mea-
surement noises. On the other hand, a PMU also measures
the current between neighboring buses. Let the admittance at
the branch be , the shunt admittance at bus
be , and the transformer turn ratio from bus to be

. Under sampling phase error, the real
and imaginary parts of the measured current at bus are given
by [5]

(3)

(4)

where , ,
,

, and and are the corresponding Gaussian
measurement errors.
In general, since the phase error is small (e.g., the max-

imum sampling phase error measured by the North American
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SynchroPhasor Initiative is 6 [16]), the standard approxima-
tions and can be applied to (1) and (2),
leading to [25]

(5)

(6)

where and denote the true
power state. Applying the same approximations to (3) and (4)
yields

(7)

(8)

We gather all the PMUmeasurements related to bus as
where is the index of bus

connected to bus , and arranged in ascending order. Using (5),
(6), (7) and (8), can be expressed in a matrix form as [25]

(9)

where ; is the set of all immediate neigh-
boring buses of bus and also includes bus ; and are
known matrices containing elements 0, 1, , , and ;
and the measurement error vector is assumed to be Gaussian

, with being the PMU’s measurement
error variance [26].
Gathering all the local measurements and stacking

these observations with increasing order on as a vector , the
system observation model is

(10)

where , and contain , and
respectively, in ascending order with respect to ;

with arranged
in ascending order; and and are obtained by stacking

and respectively, with padding zeros in appropriate
locations. Since is Gaussian, is also Gaussian with covari-
ance matrix , with

, and the conditional pdf of (10) given and is

(11)

B. Mixed Measurement From SCADA and PMUs

For the existing SCADA system, the RTUs measure ac-
tive and reactive power flows in network branches, bus
injections and voltage magnitudes at buses. The measure-
ments of the whole network by the SCADA system can
be described as [2] where is the vector
of the measurements from RTUs in the SCADA system,

, and
is the measurement noise from RTUs. Due to the nonlinear
function , can be determined by the iterative reweighted
least-squares algorithm [27], and it was shown in [27] that

with proper initialization, such a SCADA-based state estimate
converges to the maximum likelihood (ML) solution with

covariance matrix , where
is the partial derivative of with respect to .

While there are many possible ways of integrating measure-
ments from SCADA and PMUs, in this paper, we adopt the ap-
proach that keeps the SCADA system intact, as the SCADA
system involves long-term investment and is running smoothing
in current power networks. In order to incorporate the polar co-
ordinate state estimate with the PMU measurements in (10),
the work [14] advocates transforming into rectangular coordi-
nates, denoted as . Due to the invariant prop-
erty of the ML estimator [28], is also the ML estimator
in rectangular coordinates. Furthermore, the mean and covari-
ance of can be approximately computed using the lin-
earization method or unscented transform [29]. For example,
based on the linearization method, Appendix A shows that the
mean and covariance matrix of are and

, respectively.
When considering hybrid state estimation, the information

from SCADA can be viewed as prior information for the es-
timation based on PMU measurements. From the definition of
minimum mean square error (MMSE) estimation, the optimal
estimate of is given by , where is the
posterior distribution. Since , the unknown vector to be esti-
mated, is coupled with the nuisance parameter , the posterior
distribution of has to be obtained from ,
and we have

As where and de-
note the prior distribution of and respectively, and

is the normaliza-
tion constant, we have the MMSE estimator

(12)

The distributions and are detailed as follow.
• For , it can be obtained from the distribution of the
state estimate from the SCADA system. While is
asymptotically (large data records) Gaussian with mean
and covariance according to the properties of

ML estimators, in practice the number of observations
in SCADA state estimation is small and the exact distri-
bution of under finite observation is in general
not known. In order not to incorporate prior informa-
tion that we do not have, the maximum-entropy (ME)
principle is adopted. In particular, given the mean and
covariance of , the maximum-entropy (or least-in-
formative) distribution is the Gaussian distribution with
the corresponding mean and covariance [30], [31], i.e.,

. According to the
Gaussian function property that positions of the mean and
variable can be exchanged without changing the value of
the Gaussian pdf, we have

(13)
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• For , we adopt the truncated Gaussian model:

(14)

where and are lower and upper bounds of the trun-
cated Gaussian distribution, respectively; is the unit
step function, whose value is zero for negative and one
for non-negative ; and are the mean and covariance
of the original, non-truncated Gaussian distribution; and

. Moreover, the first order
moment of (14) is

(15)

and the second order moment is

(16)

In general, the parameters of can be obtained through
pre-deployment measurements. For example, the trun-
cated range is founded to be
according to the test results [16]. and can also be
obtained from a histogram generated during PMU testing
[32]. On the other extreme, (14) also incorporates the
case when we have no statistical information about the
unknown phase error: setting , ,
and , giving an uniform distributed in one sam-
pling period of the PMU. Further, as are independent
for different , we have

(17)

Remark 1: Generally speaking, the phase errors in different
PMUs may not be independent depending on the synchroniza-
tion mechanism. However, tests [16, p.35] provided by the joint
effort between the U.S. Department of Energy and the North
American Electric Reliability Corporation show that the phase
errors of PMU measurements is mostly due to the individual in-
strument used to obtain the signal from the power system. Hence
it is reasonable to make the assumption that the phase errors in
different PMUs are independent.
Remark 2: Under the assumption that all the phase errors

are zero, (12) reduces to

(18)

Since both and are Gaussian, according to the
property that the product of Gaussian pdfs is also a Gaussian
pdf [33], we have that is Gaussian. Moreover, since

is independent of , the computation of in
(18) is equivalent to maximizing with respective to
, which is expressed as

(19)

Interestingly, (19) coincides with the weighted least-squares
(WLS) solution in [14].

III. STATE ESTIMATION UNDER SAMPLING PHASE ERROR

Given all the prior distributions and the likelihood func-
tion, (12) can be written as , where

. The integration is complicated
as is coupled with , and its expression is not
analytically tractable. Furthermore, the dimensionality of the
state space of the integrand (of the order of number of buses in
a power grid, which is typically more than a thousand) prohibits
direct numerical integration. In this case, approximate schemes
need to be resorted to. One example is the Markov Chain Monte
Carlo (MCMC) method, which approximates the distributions
and integration operations using a large number of random
samples [31], [34]. However, sampling methods can be com-
putationally demanding, often limiting their use to small-scale
problems. Even if it can be successfully applied, the solution is
centralized, meaning that the network still suffers from heavy
communication overhead. In this section, we present another
approximate method whose distributed implementation can be
easily obtained.

A. Variational Inference Framework

The goal of variational inference (VI) is to find a tractable
variational distribution that closely approximates the
true posterior distribution . The
criterion for finding the approximating is to minimize
the Kullback-Leibler (KL) divergence between and

[35]:

(20)

If there is no constraint on , then the KL divergence
vanishes when . However, in this case, we
still face the intractable integration in (12). In the VI framework,
a common practice is to apply the mean-field approximation

. Under this mean-field approximation, the
optimal and that minimize the KL divergence in (20)
are given by [35]

(21)

(22)

Next, we will evaluate the expressions for and in (21)
and (22), respectively.
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• Computation of :
Assume is known and and

exist. Furthermore, let
be the local mean state vector of the bus; and

be the local covariance of state vectors
between the and buses.
By substituting the prior distributions from (13),

from (14) and the likelihood function from (11) into (21), the
variational distribution is shown in Appendix B to be

(23)

with

(24)

(25)

where

and

Furthermore, the first and second order moments of in (23)
can be easily shown to be and

respectively, with and
and computed according to (15) and (16) as

(26)

(27)

• Computation of :
Assume is known and and

exist. Furthermore, let be the local
mean of the phase error at the bus, and be
the local second order moment. By substituting the prior
distribution from (17), and the likelihood function from
(11) into (22), and performing integration over as shown in
Appendix B, we obtain

(28)

with the mean and covariance given by

(29)

(30)

respectively, where .
From the expressions for and in (23) and (28), it

should be noticed that these two functions are coupled. Con-
sequently, they should be updated iteratively. Fortunately,
and keep the same forms as their prior distributions, and
therefore, only the parameters of each function are involved in
the iterative updating.
In summary, let the initial variational distribution

equal in (13), which is Gaussian with mean
and covariance matrix . We can obtain the up-
dated following (23). After that, will be obtained
according to (28). The process is repeated until converges or
a predefined maximum number of iterations is reached. Once
the converged and are obtained, is replaced
by in (12), and it can be readily shown that equals

.

B. Distributed Estimation

For a large-scale power grid, to alleviate the communication
burden on the network and computation complexity at the con-
trol center, it is advantageous to decompose the state estima-
tion algorithm into computations that are local to each area of
the power system and require only limited message exchanges
among immediate neighbors. From (23)–(25), it is clear that

is a product of a number of truncated Gaussian distribu-
tions , with each component in-
volving measurements only from bus and parameters relating
bus and its immediate neighboring buses. Thus the estimation
of can be performed locally at each bus.
However, this is not true for in (28). To achieve distributed

computation for the power state , a mean-field approximation
is applied to , and we write . Then, the
variational distribution is in the form .
Since the goal is to derive a distributed algorithm, it is
also assumed that each bus has access only to the mean
and variance of its own state from SCADA estimates,
i.e., , with

and .
Then, the optimal variational distributions and can
be obtained through minimizing the KL divergence in (31).
Similar to (21) and (22), the and that minimize (31)
are given by (32) and (33) at the bottom of the next page. Next,
we will evaluate the expressions for and in (32) and
(33), respectively.
• Computation of :
Assume is known for all with mean and covari-

ance denoted by and , respectively. The in (32) can
be obtained from in (23) by setting if , and
we have

(34)

with

(35)
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(36)

with

and

With and in (35) and (36), to facilitate the computation
of in the next step, the first and second order moments of

are computed through (15) and (16) as

(37)

(38)

• Computation of :
Assume for all are known with first and second

order moments denoted by and , respectively. Further-
more, it is assumed that for are also known
with their covariance matrices given by . Now, rewrite (33)
as

(39)

As shown in Appendix C, is in Gaussian form

(40)

with

(41)

(42)

Then, putting and (40) into (39), we ob-
tain

(43)

with

(44)

(45)

Inspection of (41) and (42) reveals that these expressions can
be readily computed at bus and then and can be
sent to its immediate neighboring bus for computation of
according to (43).
• Updating Schedule and Summary:
From the expressions for and in (34) and (43),

it should be noticed that these functions are coupled. Conse-
quently, and should be iteratively updated. Since up-
dating any or corresponds to minimizing the KL di-
vergence in (31), the iterative algorithm is guaranteed to con-
verge monotonically to at least a stationary point [35] and there
is no requirement that or should be updated in any
particular order. Besides, the variational distributions and

in (34) and (43) keep the form of truncated Gaussian and
Gaussian distributions during the iterations, thus only their pa-
rameters are required to be updated.
However, the successive update scheduling might take too

long in large-scale networks. Fortunately, from (41)–(45), it is
found that updating only involves information within two
hops from bus . Besides, from (35) and (36), it is observed that
updating only involves information from direct neighbors
of bus . Since KL divergence is a convex function with respect
to each of the factors and , if buses within two hops
from each other do not update their variational distributions

(31)

(32)

(33)
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at the same time, the KL divergence in (31) is guaranteed to be
decreased in each iteration and the distributed algorithm keeps
the monotonic convergence property. This can be achieved by
grouping the buses using a distance-2 coloring scheme [36],
which colors all the buses under the principle that buses within
a two-hop neighborhood are assigned different colors and the
number of colors used is the least (for the IEEE-300 system,
only 13 different colors are needed). Then, all buses with the
same color update at the same time and buses with different
colors are updated in succession. Notice that the complexity
order of the distance-2 coloring scheme is [36], where
is the maximum number of branches linked to any bus. Since
is usually small compared to the network size (e.g.,

for the IEEE 118-bus system), the complexity of distance-2 col-
oring depends only on the network size and it is independent of
the specific topology of the power network.
In summary, all the all the buses are first colored by the dis-

tance-2 coloring scheme, and the iterative procedure is formally
given in Algorithm 1. Notice that although the modelling and
formulation of state estimation under phase error is complicated,
the final result and processing are simple. During each iteration,
the first and second order moments of the phase error estimate
are computed via (37) and (38); while the covariance and mean
of the state estimate are computed using (44) and (45). Due to
the fact that computing these quantities at one bus depends on
information from neighboring buses, these equations are com-
puted iteratively. After convergence, the state estimate is given
by at each bus.

Algorithm 1: Distributed states estimation

1: Initialization: and
. Neighboring

buses exchange and . Buses with PMUs update
and via (37) and (38). Every bus computes

, via (41)–(45), and sends these four
entities to bus , where .

2: for the iteration do
3: Select a group of buses with the same color.
4: Buses with PMUs in the group compute and via

(37) and (38).
5: Every bus in the group updates its ,

via (41)–(45), and sends them out to its neighbor .
6: Bus computes via (42) and send to its neighbor

.
7: end for

Although the proposed distributed algorithm advocates each
bus to perform computations and message exchanges, but it is
also applicable if computations of several buses are executed by
a local control center. Then any two control centers only need
to exchange the messages for their shared power states.

IV. SIMULATION RESULTS AND DISCUSSIONS

This section provides results on the numerical tests of
the developed centralized and distributed state estimators
in Section III. The network parameters , , , are
loaded from the test cases in MATPOWER4.0 [37]. In each

simulation, the value at each load bus is varied by adding
a uniformly distributed random value within of the
value in the test case. Then the power flow program is run to
determine the true states. The RTUs measurements are com-
posed of active/reactive power injection, active/reactive power
flow, and bus voltage magnitude at each bus, which are also
generated from MATPOWER4.0 and perturbed by independent
zero-mean Gaussian measurement errors with standard devi-
ation [26]. For the SCADA system, the estimates
and are obtained through the classical iterative reweighted
least-squares with initialization [5]. In
general, the proposed algorithms are applicable regardless
of the number of PMUs and their placements. But for the
simulation study, the placement of PMUs is obtained through
the method proposed in [24]. As experiments in [16] show
the maximum phase error is 6 in a 60Hz power system,
is generated uniformly from for each
Monte-Carlo simulation run. The PMU measurement errors
follow a zero-mean Gaussian distribution with standard devi-
ation [26]. 1000 Monte-Carlo simulation runs
are averaged for each point in the figures. Furthermore, it is
assumed that bad data from RTUs and PMU measurements has
been successfully handled [14], [38, Chap 7].
For comparison, we consider the following three existing

methods: 1) Centralized WLS [14] assuming no sampling
phase errors in the PMUs. Without sampling phase error, (10)
reduces to . For this linear model, WLS can
be directly applied to estimate . This algorithm serves as a
benchmark for the proposed algorithms. 2) Centralized WLS
under sampling phase errors in the PMUs. This will show how
much degradation one would have if phase errors are ignored.
3) The centralized alternating minimization (AM) scheme [25]
with and in (13) and (14) incorporated as prior
information. In particular, the posterior distribution is maxi-
mized alternatively with respect to and . While updating one
variable vector, all others should be kept at the last estimation
values.
Fig. 1 shows the convergence behavior of the proposed

algorithms with average mean square error (MSE) defined as
. It can be seen that: a) The centralized VI

approach converges very rapidly and after convergence the cor-
responding MSE are very close to the benchmark performance
provided by WLS with no sampling phase offset. Centralized
AM is also close to optimal after convergence. b) The proposed
distributed algorithm can also approach the optimal perfor-
mance after convergence. The seemingly slow convergence is
a result of sequential updating of buses with different colors
to guarantee convergence. If one iteration is defined as one
round of updating of all buses, the distributed algorithm would
converge only in a few iterations. On the other hand, the small
degradation from the centralized VI solution is due to the fact
that in the distributed algorithm, the covariance of states and
in prior distributions and variational distributions cannot be

taken into account. c) If the sampling phase error is ignored, we
can see that the performance of centralized WLS shows signif-
icant degradation, illustrating the importance of simultaneous
power state and phase error estimation. Fig. 2 shows the MSE
of the sampling phase error estimation ,
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Fig. 1. MSE of the power state versus iteration number for the IEEE 118-bus
system.

Fig. 2. MSE of the phase error versus iteration number for the IEEE 118-bus
system.

where is the converged in (37). It can be seen from the
figure that same conclusions as in Fig. 1 can be drawn.
Fig. 3 shows the relationship between iteration number upon

convergence versus the network size. The seemingly slow con-
vergence of the proposed distributed algorithm is again due to
the sequential updating of buses with different colors. How-
ever, more iterations in the proposed distributed algorithm do
not mean a larger computational complexity. In particular, let us
consider a network with buses. In the centralized AM algo-
rithm [25], for each iteration, the computation for power state
estimation is dominated by a matrix inverse and
the complexity is , while the computation for phase
error estimation is dominated by a matrix inverse and
the complexity is . Hence, for centralized AM algo-
rithm, in each iteration, the computational complexity order is

. On the other hand, in the proposed distributed algo-
rithm, the computational complexity of each iteration at each
bus is dominated by matrix inverses with dimension 2 ((41),

Fig. 3. Iteration numbers upon convergence versus the network size.

Fig. 4. Effect of increasing the number of PMUs on the power state estimate.

(42) (44) and (45)), hence the computational complexity is of
order , and the complexity of the whole network in each
iteration is of order , which is only linear with re-
spect to number of buses. It is obvious that a significant com-
plexity saving is obtained compared to the centralized AM al-
gorithm ( ). Thus, although the proposed distributed al-
gorithm requires more iterations to converge, the total computa-
tional complexity is still much lower than that of its centralized
counterpart. Such merit is important for power networks with
high data throughput.
The effect of using different numbers of PMUs in the IEEE

118-bus system is shown in Fig. 4. First, 32 PMUs are placed
over the network according to [24] for full topological observa-
tion. The remaining PMUs, if available, are randomly placed to
provide additional measurements. The MSE of state estimation
is plotted versus the number of PMUs. It is clear that increasing
the number of PMUs is beneficial to hybrid state estimation.
But the improvement shows diminishing return as the number
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Fig. 5. MSE of power state versus , where is the standard devia-
tion of the PMU’s measurement error.

of PMUs increases. The curves in this figure allow system de-
signers to choose a tradeoff between estimation accuracy and
the number of PMUs being deployed.
Finally, Fig. 5 shows the MSE versus PMU measurement

error variance for the IEEE 118-bus system. It can be seen that
with smaller measurement error variance, the MSE of the pro-
posed distributed method becomes very close to the optimal per-
formance. However, if we ignore the sampling phase errors, the
estimation MSE shows a constant gap from that of optimal per-
formance even if the measurement error variance tends to zero.
This is because in this case, the non-zero sampling phase dom-
inates the error in the PMU measurements.

V. CONCLUSIONS

In this paper, a distributed state estimation scheme integrating
measurements from a traditional SCADA system and newly de-
ployed PMUs has been proposed, with the aim that the existing
SCADA system is kept intact. Unknown sampling phase errors
among PMUs have been incorporated in the estimation proce-
dure. The proposed distributed power state estimation algorithm
only involves limited message exchanges between neighboring
buses and is guaranteed to converge. Numerical results have
shown that the converged state estimates of the distributed algo-
rithm are very close to those of the optimal centralized estimates
assuming no sampling phase error.

APPENDIX A

Let the nonlinear transformation from polar to rectangular
coordinate be denoted by . Assuming and
performing the first-order Taylor series expansion of about
the true state yields

(46)

where is the estimation error from the SCADA
system, and is the first order derivative of ,
which is a block diagonal matrix with the block

for .

Taking expectation on both sides of (46), we obtain

(47)

Furthermore, the covariance is

(48)

APPENDIX B

Derivation of in (21): Since ,
we have . Moreover, as

is a constant, (21) can be simplified
as

(49)

Next, we perform the computation of
. According to (9) and

(10), we have (50) at the bottom of the page. By expanding
the squared norm and dropping the terms irrelevant to , (50)
is simpified as (51) at the bottom of the next page. where the
last line comes from completing the square on the term inside
the exponential and

and

(50)
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Substituting from (17) and
from (51) into (49), we obtain (52) at the bottom of the page.
with

(53)

(54)

It is recognized that (52) is in the form of a truncated Gaussian
pdf. That is, .
1) Derivation of in (22): Similar to the arguments for

arriving at (49), (22) can be simplified as

(55)

For , it can be computed as

(56)

where
and .
By substituting the prior distribution from (13), and

from (56) into (55), and after some
algebraic manipulations [28, pp. 326], we obtain

(57)

with the covariance and mean given by

(58)

(59)

respectively, where

APPENDIX C

From (9), it can be obtained that

.
By expanding the squared norm and dropping the terms irrele-
vant to , we have

(60)

(51)

(52)
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Taking expectation with respect to and over
the above equation, we have

(61)

Then, completing the square for the term in (61) leads to

(62)

with

(63)

(64)
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