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Abstract: Different from traditional methods, this paper formulates the logit-based stochastic 

dynamic user optimal (SDUO) route choice problem as a fixed point (FP) problem in terms of 

intersection movement choice probabilities, which contain travelers’ route information so that the 

realistic effects of physical queues can be captured in the formulation when a physical-queue traffic 

flow model is adopted, and that route enumeration and column generation heuristics can be avoided in 

the solution procedure when efficient path sets are used. The choice probability can be either 

destination specific or origin-destination specific, resulting into two formulations. To capture the 

effect of physical queues in these FP formulations, the link transmission model is modified for the 

network loading and travel time determination. The self-regulated averaging method (SRAM) was 

adopted to solve the FP formulations. Numerical examples were developed to illustrate the properties 

of the problem and the effectiveness of the solution method. The proposed models were further used to 

evaluate the effect of information quality and road network improvement on the network performance 

in terms of total system travel time (TSTT) and the cost of total vehicle emissions (CTVE). Numerical 

results show that providing better information quality, enhancing link outflow capacity, or 

constructing a new road can lead to poor network performance. 

Keywords: Dynamic traffic assignment; Stochastic dynamic user optimal; Intersection movement; 

Fixed point problem; Vehicle emissions. 
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1. Introduction 

Traffic congestion and emissions are major problems in Hong Kong and many other urban cities. 

These problems can be handled by appropriate transportation planning and traffic management, with 

the use of Dynamic Traffic Assignment (DTA) models.  

DTA models can be developed by either the simulation-based approach (e.g., Yagar, 1971; 

Mahmassani, 2001; Florian et al., 2008; Tian and Chiu, 2014) or the analytical approach (see Peeta 

and Ziliaskopoulos, 2001 and Jiang et al., 2011 for comprehensive reviews). The simulation approach 

focuses on enabling practical deployment of the DTA models for realistic highway networks, the 

applicability of the models in real-life highway networks, and the ability of the models to adequately 

capture traffic dynamics and microscopic driver behavior such as lane changing. However, the solution 

properties of the models, such as solution existence and uniqueness, are not guaranteed and cannot be 

determined in advance. The analytical approach often formulates DTA problems in terms of certain 

well-known mathematical problems, such as mathematical programming problems (e.g., Merchant and 

Nemhauser, 1978a,b; Carey, 1987; Carey and Subrahmanian, 2000; Ziliaskopoulos, 2000; Waller and 

Ziliaskopoulos,  2006b; Nie, 2011; Waller et al., 2013), optimal control problems (e.g., Friesz et al., 

1989; Ran et al., 1993), variational inequality (VI) problems (e.g., Friesz et al., 1993; Ran and Boyce, 

1996; Chen and Feng, 2000; Huang and Lam, 2002; Han, 2003), nonlinear complementarity problems 

(NCP) (e.g., Wie et al., 2002; Ban et al., 2008), fixed-point problems (e.g., Smith, 1993; Lim and 

Heydecker, 2005; Szeto et al., 2011), differential complementarity systems (e.g., Ban et al., 2012), and 

differential VI problems (e.g., Friesz et al., 2001; Han et al., 2013c). Different from the simulation-

based DTA models, the solution properties can be determined beforehand. 

DTA models have two fundamental components: the travel choice principle and the traffic flow 

component (Szeto and Lo, 2006). The travel choice principle depicts travelers’ propensity to travel, 

e.g., how they select their routes, departure times, modes, or destinations. Travel time is one important 

element in such choices. Commonly adopted travel choice principles include the dynamic user optimal 

(DUO) principle (e.g., Friesz et al., 1993, 2013b; Ran and Boyce, 1996; Yang and Meng, 1998; Huang 

and Lam, 2002; Lo and Szeto, 2002a,b; Waller and Ziliaskopoulos, 2001, 2006a; Golani and Waller, 

2004; Han, 2007; Ng and Waller, 2012; Ukkusuri et al., 2012; Iryo, 2013; Blumberg-Nitzani and Bar-

Gera), the SDUO principle (e.g., Ran and Boyce, 1996; Chen and Feng, 2000; Han, 2003; Lim and 

Heydecker, 2005; Szeto et al., 2011) and the dynamic system optimal (DSO) principle (e.g., Merchant 

and Nemhauser, 1978a,b; Carey, 1987, 2001; Li et al., 1999; Carey and Subrahmanian, 2000; 

Ziliaskopoulos, 2000; Nie, 2011; Doan and Ukkusuri, 2012; Carey and Watling, 2012; Qian et al., 

2012; Han et al., 2013a, b; Ma et al., 2014; Mesa-Arango and Ukkusuri, 2014; Shen and Zhang, 2014). 

The DUO/SDUO/DSO principle assumes that travelers select their routes and/or departure times to 

minimize their individual actual/perceived/marginal travel cost, such as travel time.  

The traffic flow component depicts how traffic propagates inside a traffic network and hence 

governs the network performance in terms of travel time (see e.g., Szeto, 2008; Sumalee et al., 2012; 
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Ngoduy, 2013; Zhang et al., 2013; Zhong et al., 2013; Zhu et al., 2013; Balijepalli et al., 2014; Chen et 

al., 2014; Chiabaut et al., 2014). This is sometimes referred to as a dynamic network loading (DNL) 

model. The existing approaches for developing DNL models can be broadly classified into two 

categories: non-physical queue models and physical queue models. Exit functions (e.g., Merchant and 

Nemhauser, 1978a,b; Carey, 1987, 1990; Carey and Srinivasan, 1993), link performance functions 

(e.g., Ran and Boyce, 1996; Chen and Hsueh, 1998; Ban et al., 2008) and the point queue models (e.g., 

Huang and Lam, 2002; Nie and Zhang, 2005) can be put under the first category. These models have a 

simpler calculation but fail to capture some fundamental traffic dynamics such as queue spillback. The 

second category includes advanced exit flow models which are developed based on either Daganzo’s 

(1994, 1995) solution scheme (i.e., Cell Transmission Model (CTM)) or Newell’s (1993) solution 

scheme to the Lighthill and Whitham (1955) and Richards (1956) (LWR) hydrodynamic model of 

traffic flow (see Kuwahara and Akamatsu, 2001; Lo and Szeto, 2002a,b for example). They can 

describe traffic dynamics on a road network, including shock waves and queue spillback over multiple 

links, and are popularly applied to calculate travel times for DTA models in the past decade (e.g., 

Kuwahara and Akamatsu, 2001; Lo and Szeto, 2002a,b; Szeto and Lo, 2004; Szeto et al., 2011). 

Recently, Yperman (2007) proposed the link transmission model (LTM) which can be considered as a 

combination of Daganzo's (1994, 1995) CTM with a triangular fundamental diagram and Newell's 

(1993) solution scheme. Since each whole link is treated as one cell, the LTM's computational 

efficiency is much higher than that of classic numerical solution schemes for the LWR model, whilst 

retaining the same accuracy when the true fundamental diagram is triangular.  

 The success of the resultant analytical DTA model in capturing the effect of queue spillback 

depends on not only the choice of traffic flow models but also the choice of decision variables used in 

the formulation. Traditionally, either link or path inflow variables are used in the model and the 

corresponding models are referred to as link-based models (e.g., Friesz et al., 1989; Ran and Boyce, 

1996; Wie et al., 2002; Ban et al., 2008) and path-based models (e.g., Friesz et al., 1993; Chen and 

Feng, 2000; Huang and Lam, 2002; Lo and Szeto, 2002a,b; Szeto and Lo, 2004, 2006; Lim and 

Heydecker, 2005; Szeto et al., 2011; Meng and Khoo, 2012). Link-based models do not require having 

the path set information in advance, in which the path set can be large even for a medium-scale 

highway network. Hence, these models can avoid path enumeration and path set generation heuristic in 

the solution procedure and have the potential to be applied to large-scale highway networks. Link-

based DTA models cannot, however, capture queue spillback since the link flow variables cannot 

model traffic at intersections. 

 In contrast, path-based models have important information, such as path inflows and the path set, 

to model traffic at diverges and merges. Path-based models can, therefore, track spillback queues when 

a realistic traffic flow or DNL model is used. Path-based models also have the advantage that 

stochastic assignment using logit-type models can be applied easily, ensuring much faster convergence 

to an equilibrium than a deterministic approach. Nevertheless, the main disadvantage of such models is 

that they require explicit enumeration of the path choice set, which can be very time consuming, even 
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for medium networks. Hence, for large-scale network applications, path enumeration has not been 

used to obtain the path set. Instead, path-set generation (e.g., Bliemer et al., 2004) has been used in 

these applications, which have generated paths when needed. Also, unused paths can be deleted. 

However, this path set generation and deletion procedure is a heuristic and solution convergence may 

not be guaranteed. Some smarter ways of using route sets, such as the concept of subpaths, were 

developed to improve the efficiency of commuting resources (e.g., Chabini, 2001; Raadsen, et al. 

2010). In spite of these, it is unclear whether they can be applied to SDUO problems. For logit-based 

SDUO models, the dynamic stochastic network loading (DYNASTOCH) method, which is an 

extension of Dial’s (1971) stochastic network loading (STOCH) method for the static stochastic user 

equilibrium (SUE) assignment problem, was usually adopted in the solution procedure to avoid 

explicit enumeration of the path choice set (Ran and Boyce, 1996; Han, 2003). Nonetheless, the 

optimal solutions obtained by this method are link inflow rates, which do not contain the travelers’ 

path information, and hence traffic dynamics, including queue spillback and junction blockage, cannot 

be captured in link-based models unless that inflow rates are augmented by other variables (such as 

exit flow, queue lengths) and auxiliary variables to model physical queues. 

 To retain the advantages of both the link-based and the path-based models, Long et al. (2013b) 

proposed an intersection-movement-based DTA model. They formulated the DUO traffic assignment 

problem in terms of approach proportions, i.e., the proportion of traffic on the current link or node that 

select a downstream link when leaving an intersection (or a node). This definition requires either two 

adjacent links or one origin and one of its outgoing links to define an intersection movement. This is 

different from the classical definition that only downstream link is used to define the proportion. An 

approach proportion implicitly contains the travelers’ path information since a path can be deduced by 

checking the downstream links involved in defining the approach proportions from the origin to the 

destination. As a result, this type of models can retain the advantages of both the link-based models 

and the path-based models: 1) Path enumeration and path generation heuristics can be avoided in the 

solution procedure, and; 2) the realistic effects of physical queues can be captured when a physical 

queue DNL model is adopted. Therefore, the intersection-movement-based DTA formulation is 

superior with the other two types of formulations when the effect of physical queues is considered. 

However, Long et al. (2013b) only considered the DUO principle. Whether this intersection-based 

approach can be applied to DTA with a more general principle such as the SDUO principle is 

questionable.  

In this paper, we formulate the SDUO problem as a FP problem in terms of intersection movement 

choice probabilities, which can also be interpreted as approach proportions. An intersection movement 

contains travelers’ path information so that queue spillback can be captured when a realistic DNL 

model is used. The choice probabilities can be destination specific or origin-destination specific, 

resulting into two models. The decision variables of the two proposed DTA models are the time-

dependent intersection movement choice probabilities, which are used as the inputs of a DNL model. 

The corresponding link flow and link travel time can be obtained by a DNL model. The proposed FP 
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models are general in the sense that it can incorporate any types of DNL models to depict traffic flow 

propagation inside the traffic network and determine travel times as long as the model can produce a 

unique mapping from approach proportion to link travel time. Because of the computation efficiency 

of the LTM and its ability to capture queue spillback and shockwave phenomena, we develop a DNL 

model based on the LTM. However, the LTM requires path flow rates as the inputs. Therefore, we 

propose a modified LTM (MLTM) in which the inputs are intersection movement choice probabilities. 

The MLTM is used to generate the cumulative inflows into and outflows from each link over time and 

derive dynamic link travel time functions.  

Both intersection-movement-based SDUO models are solved by the self-regulated averaging 

method (SRAM) proposed by Liu et al. (2009). The SRAM was initially developed to solve the 

deterministic network SUE assignment problem (e.g., Liu et al. 2009; Long et al., 2010, 2014), and 

further used to solve a multi-class doubly SDUO problem (Szeto et al., 2011). The SRAM is faster 

than the method of successive averages (MSA), which is a widely used method in solving traffic 

assignment problems (e.g., Sheffi, 1985; Ran and Boyce, 1996; Nielsen et al., 1998; Han, 2003). For 

DNL, other than using the MLTM to estimate link travel times, we avoid path enumeration by using a 

method modified from DYNASTOCH. 

This paper also provides numerical examples to illustrate the properties of the problem and the 

effectiveness of the solution method. The proposed models were further used to evaluate the effect of 

information quality and road network improvement on the network performance in terms of total 

system travel time (TSTT) and the cost of total vehicle emissions (CTVE). Numerical results show 

that providing better information quality, enhancing link outflow capacity or constructing a new road 

may lead to poor network performance. 

The main contribution of this paper includes the following:  

1) This paper proposes a novel methodology which adopts intersection-movement-based 

decision variables and Dial’s (1971) stochastic network loading (SNL) concept to formulate 

logit-based SDUO route choice problems as fixed point (FP) problems; to the best of our 

knowledge, this paper is the first one to formulate the SDUO problems using both the 

intersection movement and Dial's concepts; moreover, FP formulations define the 

equilibrium flow pattern through local conditions, unlike variational inequality formulations, 

and provide an effective way to include equilibrium conditions within network design or O-

D matrix update from traffic counts (Cantarella, 1997);  

2) This paper analyzes the mathematical properties of the problems rigorously. In particular, 

this paper proves that the proposed intersection-movement-based SDUO route choice 

models follows logit-based SDUO route choice principle, and are equivalent to the link-

based model in the literature;  

3) This paper proposes intersection-movement-based SNL methods, examines its properties, 

and develops a solution approach based on these methods to solve the SDUO problems; this 



 6

solution approach does not relying on path generation heuristics, path enumeration 

techniques and subpath concepts to solve the problems and perform SNL;  

4) This paper illustrates the properties of the SDUO problems using simple numerical 

examples. Specifically, the paper shows that providing better information quality, enhancing 

link outflow capacity or constructing a new road can lead to poor network performance in 

terms of TSTT and CTVE, and that a higher travel demand may result in lower CTVE. 

The remainder of this paper is organized as follows. In the next section, each of the two 

intersection-movement-based SDUO problems is formulated as a FP problem. In Section 3, the 

MLTM, a discretized travel time model and the measure of network performance are introduced. In 

Section 4, the SRAM is presented to solve the proposed SDUO models. Numerical examples are given 

in Section 5, and finally, conclusions are provided in Section 6. 

2. Model formulation 

In this section, we firstly review the path-based SDUO problems and two definitions of an efficient 

path set. Based on these definitions, this section proposed two intersection-movement-based SDUO 

models with no restriction on the choice of the traffic flow model adopted. 

2.1. Problem setting and notations 

We consider a road network G(N, A), where N and A denote the sets of nodes and links, 

respectively. Link ( , )a aa l h  is the link with the tail node al  and the head node ah , a A . ( )A i  is the 

set of links whose tail node is i ; ( )B i  is the set of links whose head node is i . R and S denote the sets 

of origin nodes and destination nodes, respectively. rsK  denotes the path set of origin-destination (OD) 

pair (r, s). We discretize the time period T of interest and the departure time period DT  into finite sets 

of time intervals { 1,2, , }K k K    and { 1,2, , }DDK k K   , respectively. Let   be the interval 

length such that K T   and D DK T  . Without loss of generality, the unit of time used in this paper 

is in time interval, and we assume that each traveler travel from his/her origin to his/her destination by 

his/her vehicle. This means that the occupancy of each vehicle is assumed to equal one. Following 

most of DTA works (e.g., Ran et al., 1993; Wie et al., 2002; Ban et al., 2008; Friesz et al., 2013; 

Waller et al., 2013), the network is assumed to be empty initially. We note that if the network was not 

empty initially, the procedures of dynamic network loading and travel time determination were 

required slight modifications to cater the traffic initially inside the network, and the travel times of 

flows entering the network were increased if the initial traffic contributed to congestion to the flows 

and remained unchanged otherwise. However, the assumption of the presence of initial traffic in the 

network does not affect the proofs of all the propositions in general in this paper because the mapping 

between travel time and traffic flow is still unique. The following notations are adopted to formulate 

the SDUO problem: 

( )rsq k  traffic demand generated at origin r during interval k and traveling to destination s. 

( )au k  inflow into link a during interval k. 
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( )s
au k  inflow into link a during interval k and to destination s. 

( )s
abu k  inflow into link a during interval k and through link ( )ab A h  to destination s. 

( )rs
au k  inflow that departs from origin r, enters link a during interval k and travels to destination s. 

( )rs
abu k  inflow that departs from origin r, enters link a during interval k and passes through link 

( )ab A h  to destination s.  

( )aU k  cumulative number of vehicles that enter link a by the end of interval k. 

( )rs
aU k  cumulative number of vehicles that depart from origin r, enter link a by the end of interval k 

and travels to destination s. 

( )abU k  cumulative number of vehicles that enter link a by the end of interval k and pass through link 

( )ab A h . 

( )s
abU k  cumulative number of vehicles that enter link a by the end of interval k and pass through link 

( )ab A h  to destination s. 

( )rs
abU k  cumulative number of vehicles that depart from origin r, enter link a by the end of interval k 

and pass through link ( )ab A h  to destination s. 

( )av k  outflow from link a during interval k. 

( )s
av k  outflow from link a during interval k to destination s. 

( )s
abv k  outflow from link a during interval k and through link ( )ab A h  to destination s.  

( )rs
av k  outflow that departs from origin r, exits link a during interval k and travels to destination s. 

( )rs
abv k  outflow that departs from origin r, exits link a during interval k and passes through link 

( )ab A h  to destination s. 

( )aV k  cumulative number of vehicles that leave link a by the end of interval k. 

( )rs
aV k  cumulative number of vehicles that departs from origin r, enters link a by the end of interval 

k and travels to destination s. 

( )abV k  cumulative number of vehicles that leave link a and enter link ( )ab A h  by the end of 

interval k. 

( )s
abV k  cumulative number of vehicles that leave link a and enter link ( )ab A h  by the end of 

interval k and travel to destination s. 

( )rs
abV k  cumulative number of vehicles that depart from origin r, leave link a and enter link ( )ab A h  

by the end of interval k and travel to destination s. 

( )rs
ig k  flow from origin r to destination s arriving at node i during interval k. 

( )a k  average link travel time for travelers entering link a during interval k. 

( )rs
a k  link choice probability of travelers who depart from origin r, enter link a during interval k 

and travel to destination s. 

( )rs
ab k  intersection movement choice probability of travelers who depart from origin r, enter link a 

during interval k and pass through link ( )ab A h  to destination s. 

( )s
ab k  intersection movement choice probability of travelers who enter link a during interval k and 

pass through link ( )ab A h  to destination s. 

( )rs
pf k  inflow that departs from origin r, enters path p during interval k and travels to destination s. 
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( )rs
p k  actual travel time for travelers who enter the network during interval k and travel from r to s 

through path p. 

ˆ ( )rs
p k  perceived actual travel time for travelers who enter the network during interval k and travel 

from r to s through path p. 

( )rs
pP k  probability of travelers entering path p between r and s during interval k. 

( )s
aL k  likelihood of travelers who enter link a during interval k and travel to destination s. 

( )s
abL k  likelihood of travelers who enter link a during interval k and pass through link ( )ab A h  to 

destination s. 

( )rs
aL k  likelihood of travelers who depart from origin r, enter link a during interval k and travel to 

destination s. 

( )rs
abL k  likelihood of travelers who depart from origin r, enter link a during interval k and pass 

through link ( )ab A h  to destination s. 

( )s
aW k  weight for travelers who enter link a during interval k and travel to destination s. 

( )s
abW k  weight for travelers who enter link a during interval k and pass through link ( )ab A h  to 

destination s. 

( )rs
aW k  weight for travelers who depart from origin r, enter link a during interval k and travel to 

destination s. 

( )rs
abW k  weight for travelers who depart from origin r, enter link a during interval k and pass through 

link ( )ab A h  to destination s. 

( )is k  minimum travel time for travelers departing from node i during interval k to destination s  

( )is
a k  minimum travel time for travelers from node i to destination s entering link ( )a A i  during 

interval k. 

( )s
ab k  minimum travel time for travelers entering link a during interval k and traveling from node 

al  (i.e., the tail node of link a) to destination s through link ( )ab A h . 

π   vector of minimum travel times to destinations via specific links [ ( ), ( )]is s
a abt t π . 

By definition, the minimum travel times ( )is
a k  and ( )s

ab k  can be calculated as follows: 

( ) ( ) ( ( )), , , ( ),ah sis
a a ak k k k i N s S a A i k K           , and (1) 

( ) ( ) ( ( )), , , ( ),ah ss
ab a b a ak k k k s S a A b A h k K           , (2) 

where ( )ak k  may not always be an integer, and a linear interpolation of minimum travel times is 

adopted to handle the non-integer cases. (Similarly, linear interpolation will also be applied to other 

variables and functions with the argument ( )ak k  throughout this paper.) Eq. (1) states that the 

minimum travel time from origin node i to destination s via link a is equal to the sum of travel time 

over link a and the minimum travel time from the head node of link a to destination s. Eq. (2) states 

that the minimum travel time from the tail node of link a to destination s via link b is equal to the sum 

of travel time over link a and the minimum travel time from the head node of link a to destination s via 

link b.  
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2.2. Stochastic dynamic user optimal route choice problem 

In the SDUO route choice problem, travelers’ departure times are assumed to be fixed and hence 

travelers’ departure time choice behavior is not be modeled. Moreover, it is assumed that actual route 

travel times are perceived differently by travelers due to variations in their perception and exogenous 

factors, and for each departure time interval and each OD pair, each of the perceived route travel times 

is assumed to be a random variable (Ran and Boyce, 1996). The random variable is equal to the sum of 

two components: a systematic term and an error term: 
ˆ ( ) ( ) ( )rs rs rs

p p pk k k    , (3) 

where ( )rs
p k  is a random error term, and represents the perception error of the travel time over route p 

between OD pair (r, s) for travelers departing during interval k. It should be pointed out that the 

randomness of perceived travel times also depends on modelling approximation, such as zoning, as 

well as modeling errors, such as missing attributes. 

With the definition of the perceived route travel time for each departure time interval, the static 

SUE principle stated by Daganzo and Sheffi (1977) can be directly extended to describe the optimality 

condition of the SDUO problem in the discrete time setting, which can be expressed as follows (Ran 

and Boyce, 1996): 

If, for each OD pair during each time interval, the travel times perceived by travelers departing 

during the same time interval are equal and minimal, then the dynamic traffic flow over the network is 

in a travel-time-based SDUO state. 

Mathematically, this condition can be formulated as follows: 
( ) ( ) ( ), , , ,rs rs rs

p p rs Df k q k P k r R s S p K k K      , (4) 

where 
ˆ ˆ( ) Pr{ ( ) ( ), }, , , ,rs rs rs

p p h rs rs DP k k k h K r R s S p K k K          . (5) 

Equation (5) defines the route choice probability of travelers entering path p between OD pair (r, s) 

during interval k as the probabilities that the perceived travel time over path p between OD pair (r, s) 

when they depart from r during interval k is not greater than the perceived travel time over other paths 

between (r, s). This equation implies that the sum of route choice probabilities of all routes connecting 

the same OD pair for travelers departing during the same time interval equals one. Moreover, by 

definition, the route choice probabilities and demands are non-negative. Hence, Eq. (4) implies  
( ) 0, , , ,rs

p rs Df k r R s S p K k K      , and (6) 

( ) ( ), , ,rs rs
p D

p

f k q k r R s S k K     . (7) 

If, for each OD pair and departure time interval, the perception errors of route travel times follow 

the identical and independent Gumbel distributions with mean zero and identical standard deviation, 

then Eq. (4) immediately becomes a multinomial logit-based dynamic stochastic route choice model, 

and the route choice probabilities can be formulated as follows: 
exp[ ( )]

( ) , , , ,
exp[ ( )]

rs
prs

p rs Drs
p

p

k
P k r R s S p K k K

k


 




     


, (8) 
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where   is a positive dispersion parameter that reflects an aggregate measure of drivers’ perception of 

travel times (Sheffi, 1985). A higher value of θ indicates that drivers have more accurate perception of 

travel times or higher information quality on the traffic network condition (Lo and Szeto, 2004). 

2.3 Efficient path set 

In general, path choice set generation is required for solving both the static SUE and SDUO 

problems. Several algorithms (e.g., Dial’s (1971) STOCH algorithm and k-shortest path algorithms) 

can be applied for this purpose. Since the STOCH algorithm and its dynamic extension (i.e., the 

DYNASTOCH algorithm) do not need to enumerate the path set and allows performing a logit-based 

stochastic network loading efficiently, they are popularly used for solving stochastic traffic assignment. 

For example, Huang (1995) adopted the STOCH algorithm to generate the path set for solving static 

SUE models. Ran and Boyce (1996) extended Dial’s STOCH algorithm and developed the 

DYNASTOCH algorithm to address the SDUO route choice problem. The DYNASTOCH algorithm 

was later used by Han (2003). Lim and Heydecker (2005) used the STOCH algorithm to generate the 

path set for solving the SDUO problem with simultaneous departure time and route choices.  

Both the STOCH and DYNASTOCH algorithms rely on the concept of efficient or reasonable 

paths to generate a path choice set for the stochastic traffic assignment problems. In the literature, 

various definitions on efficient or reasonable paths were given. Dial’s (1971) definition on an efficient 

path can be stated as follows: 

Definition D1. A path between an OD pair is reasonable if it includes only links that take travelers 

further away from the origin and closer to the destination. 

Ran and Boyce’s (1996) definition on an efficient path can be stated as follows: 

Definition D2. A path between an OD pair is reasonable if it includes only links that take travelers 

closer to the destination. 

Based on these two definitions, we have the following.  

Proposition 1. The path set under Definition D1 is a subset of the path set under Definition D2. 

The proof is given in Appendix A.1. 

These two reasonable path definitions depend on a measure of travel cost associated with or travel 

distance of each link, such as free-flow travel time. Although the measure can be defined as a function 

of time, the measure should be constant so that the set of reasonable paths remain unchanged from 

iteration to iteration during solving SDUO assignment and can be fixed in advance before solving 

SDUO assignment; otherwise, changes in this path set from iteration to iteration happen and cause the 

flow patterns to fluctuate over iterations, and no convergent solution can be produced eventually when 

solving SDUO assignment (Han, 2003; Lim and Heydecker, 2005). Hence, the efficient path concepts 

in this paper are presented for static networks and are based on free flow travel time (e.g., Han, 2003). 

Moreover, the reasonable path set is not a function of departure time. 

All reasonable paths between an OD pair form a path set for that OD and also a sub-network. Let 

( , )rs rs rsG N A  be the sub-network with respect to OD pair (r, s), where rsN  and rsA  are the sets of 

nodes and links in the sub-network rsG , respectively. Then, we have the following proposition. 



 11

Proposition 2. (Acyclicity of sub-network). Under Definition D1 or D2, the sub-network rsG  is a 

directed acyclic graph. 

 The proof is given in Appendix A.2. 

Definition D3. (Topological distance). Let the length of every link in the sub-network rsG  be 1. Then, 

the topological distance of a node is defined as the minimum distance from that node to destination s. 

In other words, the topological distance of a node in the sub-network rsG is defined as the minimum 

number of links required to pass through from that node to destination s. 

Definition D4. (Ascending (descending) pass). An ascending (descending) pass is a sequential visit to 

each node of a sub-network rsG  following the increasing (decreasing) order of topological distance. 

Let ( )rsA i  and ( )rsB i  be, respectively, the set of links whose tail and head nodes are i  in the sub-

network rsG . Then, we can prove the following. 

Proposition 3. Under Definition D2, for any common node in two sub-networks 1r sG  and 2r sG , where 

1 2, ,r r R s S  , the topological distance of that node in the sub-network 1r sG  is equal to that in the sub-

network 2r sG .  

The proof is given in Appendix A.3. 

 

2.4. Dynamic network constraints 

Dynamic network constraints are generally used to formulate the feasible domain of DTA 

problems. Those constraints can be classified into five categories (Ran and Boyce, 1996, Ban et al., 

2008): mass balance constraints, first-in-first-out (FIFO) constraints, flow conservation constraints, 

flow propagation constraints, and definitional constraints. The mass balance constraints define the 

relationship among link flows (i.e., the number of vehicles on the link), inflow rates, and outflow rates: 

the rate change in the link flow at each time instant is equal to the difference between the inflow rate 

and the outflow rate at that time. The FIFO constraints require that vehicles that enter the link earlier 

leave it sooner. Most of the DUO-based traffic assignment models tend to implicitly guarantee FIFO 

by using a proper link travel time model which satisfies this property. This is because explicitly 

imposing this category of constraints may increase the problem complexity and computation burden. 

In this paper, we do not present the first two categories of constraints, which are implicitly satisfied in 

the implementation of DNL. The last three categories of constraints are discussed in detail as follows. 

The flow propagation constraints represent the consistent evolvement of traffic flows in both 

temporal and spatial domains. In continuous-time space, they describe the relationship between 

cumulative link inflow, cumulative link outflow, and time-dependent link travel times: 

( ( )) ( ),      ,rs rs rs
a a aV t t U t r R,s S,a A t T        . (9) 

where ( )rs
aU t  ( ( )rs

aV t ) is the cumulative number of vehicles that depart from origin r, enter (leave) link 

a by the time t, and travels to destination s, and ( )a t  is travel time for travelers entering link a at time 

t   . Following Ban et al. (2008), we use an “inverse link travel time function” ( ) ( ( ))a a ap t t p t    , 

where ( )ap t  denotes the travel time over link a for vehicles exiting the link at time t. Eq. (9) can be 

expressed as follows: 
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( ) ( ( )),      ,rs rs rs
a a aV t U t p t r R,s S,a A k K         . (10) 

When time is discretized, t = k . Then, it follows 

( ) ( ),  and ( ) ( ),      ,rs rs rs rs rs
a a a aU k U k V k V k r R,s S,a A k K         .  (11) 

By definition, we have 

( ) ( ) ( 1),      ,rs rs rs rs
a a au k U k U k r R,s S,a A k K        , and (12) 

( ) ( ) ( 1),      ,rs rs rs rs
a a av k V k V k r R,s S,a A k K        . (13) 

Definition D5 (Critical inflow interval) (Long et al., 2011). A critical inflow interval with respect to 

interval k is defined as follows: 
0max{ | ( ) ( ), }k a a an U V k k       . (14) 

where 0
a   is the free flow travel time on link a. 

With the assumption of a constant flow rate during each time interval, substituting Eqs. (10) and 

(11) into Eq. (13), and using linear combinations for the cumulative inflow curves, we can obtain a 

linear combination of link inflows for link outflows, given as follows 

0
,( ) ( ),      , , , ,

a

rs rs rs
a a k a

k

v k u r R s S a A k K



 

      



  (15) 

where ,a k   is the proportion of inflow that enters link a during interval   and leaves the link during 

interval k. If 1k kn n  , all vehicles that leave link a during interval k enter the link during the same 

interval kn , and hence  , 1 (( 1) ) ( ) /kn
a k a ap k p k        , and , 0,a k kn     ; otherwise, 

 1 1

1
,

1 1 (( 1) ) / ,  if ,

1,                                                    if ,

( ) / ,                        if ,

0,                                            

k a k

k k
a k

a k k

n k p k n

n n

k p k n n

 


 

 



     

 


  


 



 

       otherwise.








  

The flow conservation constraints require that all flows entering any node (except the destination 

node) together with the demand generated at this node must exit from this node, and can be formulated 

as follows: 

( )

( )

( )

( ) ( ), , ;

( ) ( )      
( ), , \ ,

rs

rs

rs

r rs rs rs
i b D

b B irs rs
i a rs rs

a A i b D
b B i

q k v k r R,s S,i N k K

g k u k
v k r R,s S,i N k K K








      


  
    




 

 (16) 

where 1r
i   if i r , and 0r

i   otherwise. 

By definition, link inflow must be nonnegative: 

( ) 0,      ,rs rs
au k r R,s S,a A k K      . (17) 

2.4. Link-based model 

To our best knowledge, almost all models for the SDUO problems are path-based. However, the 

logit-based SDUO problem can be solved without finding path flows. Hence, we believe that there 

should be a corresponding link-based model. In this paper, we show that the link-based model for the 

logit-based SDUO problem can be developed using the theory of the DYNASTOCH algorithm, which 

is an extension of Dial’s (1971) STOCH algorithm for the static SUE problem and was firstly 

proposed by Ran and Boyce (1996). The DYNASTOCH algorithm assumes that link travel times are 
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functions of link inflow, and link travel times are used to update link inflow during a dynamic logit-

based stochastic network loading process. Therefore, a FP problem for the logit-based SDUO problem 

can be developed using the theory of the DYNASTOCH algorithm. 

According to the DYNASTOCH algorithm of Ran and Boyce (1996), the likelihood of a link to be 

entered by vehicles during interval k in the sub-network rsG  with respect to OD pair (r, s) is expressed 

as follows: 

( ) exp{ [ ( ) ( )]}, ,a al s l srs rs
a aL k k k r R,s S,a A k K         . (18) 

A backward pass method is used to calculate the weight of each link: 

( )

( ) ( ) ( ( )) , ,
a

rs
a

rs rs s rs rs
a a h b a

b A h

W k L k W k k r R,s S,a A k K 


          
  

 , (19) 

where 1
a

s
h   if ah s  and 0

a

s
h   otherwise. 

The choice probability of a link in the sub-network rsG  is given as follows: 

( )

( )
( ) , ,

( )
rs

a

rs
rs rsa
a rs

b
b A l

W k
k r R,s S,a A k K

W k




     


. (20) 

Note that the likelihoods, the weights and the choice probabilities of all unused links are equal to 

zero. That is, ( ) 0rs
aL k  , ( ) 0rs

aW k  , and ( ) 0rs
a k   are satisfied for all  \ rsa A A and , ,r s k .  

Proposition 4. Under Definition D2, 1 2( ) ( )r s r s
a ak k   is satisfied for all 1 2r s r sa A A   and 1 2, , ,r r s k . 

The proof is given in Appendix A.4. 

The link inflow into a link equals the choice probability of this link multiplied by the total flow 

arriving at its entrance node, given by 

0

0

,
( )

,
( )

( )[ ( ) ( )], , ,

( )
( ) ( ), , \ .

a
rs

a b

rs
a b

rs rs r rs rs
a l b k b D

b B l krs
a rs rs rs

a b k b D
b B l k

k q k u r R,s S,a A k K

u k
k u r R,s S,a A k K K





  

 
  

  

      


 
    



 

 












 (21) 

Substituting Eq. (15)  into Eq. (21), we have 

0

0

,
( )

,
( )

( ) ( ) ( ) , , ,
( )

( ) ( ), , \ .

a
rs

a b

rs
a b

rs rs r rs rs
a l b k b D

rs b B l k
a

rs rs rs
a b k b D

b B l k

k q k u r R,s S,a A k K
u k

k u r R,s S,a A k K K





  

 

  

  

              
     


 

 













 (22) 

Link choice probabilities are functions of link travel times, which in turns are functions of link 

inflows. Hence, link choice probabilities are also functions of link inflows. Therefore, the link-based 
SDUO problem can be formulated as a FP problem: to find [ ( ) ( )]

a

rs rs
a lk g ku  such that  

)u f(u , (23) 

where ( )rs
a k  is defined by Eqs. (18)-(20), and ( )

a

rs
lg k  is defined by Eq. (16). 

2.5. Intersection-movement-based model 

2.5.1. Model I 

The output of the link-based model for the SDUO problem is the vector of link inflow [ ( )]rs
au ku , 

which do not contain any path information. Hence, it cannot be directly used as an input to the DNL 
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model with physical queue consideration. One method to overcome this problem is to use intersection 

movement choice probabilities instead of link inflows to formulate the problem.  

For a node that is neither an origin nor a destination in rsG , there are at least one incoming link 

into the node and one outgoing link from it. Then, an intersection movement can be described by a pair 

of incoming and outgoing links. For example, the intersection movement for flows coming from bl  at 

node ah  in Fig. 1 can be described by two links a and b. The intersection movement represents flows 

making through and turning movements at intersections. 

For an origin, the movement of travelers entering into the network is also described by two 

numbers, namely the node and link numbers. A traveler’s departure from an origin can also be viewed 

as an intersection movement, as the origin can be considered as an intersection and the traveler can 

select links for entering the network. For instance, if ah  is also an origin for the concerned OD pair, 

then the intersection movement at ah  is described by the tail node of the outgoing link (i.e., the origin 

node itself) and the outgoing link b. 

An intersection movement implicitly includes the path related information, i.e., how many vehicles 

on a link selecting a turning or though movement at the next intersection or how many vehicles 

departing from an origin selecting a particular downstream link to enter the network. Indeed, each 

intersection movement includes sub-path information where a subpath is formed by two adjacent links 

or by an origin node and an outgoing link from that node. Each intersection movement describes how 

traffic moves either from one link to another or from an origin node to a link. Hence, by checking 

intersection movements from one intersection to the other, a path can be traced from an origin to a 

destination. To illustrate this further, we consider a path from al  to bh  in Fig. 1. Traditionally, it can 

be described by either a sequence of nodes ( al → ah → bh ) or a sequence of links (a→b). Alternatively, 

the path can also be viewed as a sequence of intersection movements ( al →a, a→b). The path can be 

deduced by checking the intersection movements at node al  and bh . 

As path information is implicitly included in this formulation approach, queue spillback can be 

modeled if a physical-queue traffic model is adopted. Modeling queue spillback in this formulation 

only relies on defining the immediate downstream link for the flow on each link. Flows cannot enter 

the downstream link if there is insufficient space and, instead, they form a queue on the upstream link. 

However, as a path set is not required to be known, path enumeration or column generation can be 

avoided during the solution process.  

To incorporate the concept of intersection movements into a formulation, we need to disaggregate 

link flows by intersection movements. As shown in Fig. 1, the inflow into link a during interval k is 

( )rs
au k , which is disaggregated by intersection movements at the next intersection ah . Hence, by 

definition, we have 

( )

( ) ( ), ,
rs

a

rs rs rs
a ab

b A h

u k u k r R,s S,a A k K


      . (24) 

Note that k is the time interval for flows entering link a, not the time interval passing through the 

intersection ah  or leaving link a. 

The disaggregated link flows should satisfy the following three categories of constraints: 
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The flow propagation constraints: 

0
,( ) ( ), , ( ),

a

rs rs rs rs
ab a k ab a

k

v k u r R,s S,a A b A h k K



 

       



 . (25) 

The flow conservation constraints: 

0
,

( ) ( )

( ) ( ) ( ), ,
a

a a b

rs rs r rs rs
ab a l b k ba

b A h b B l k

u k u k u r R,s S,a A k K


 
   

         



 . (26) 

The nonnegativity constraints: 

( ) 0,      , ( ),rs rs rs
ab au k r R,s S,a A b A h k K       . (27) 

Similar to the DYNASTOCH algorithm of Ran and Boyce (1996), the likelihood of an intersection 

movement in the sub-network rsG  can be expressed as follows: 

( ) exp{ [ ( ) ( )]}, , , , ( ),rs s s rs rs
ab a ab aL k k k r R s S a A b A h k K          , and (28) 

( ) exp{ [ ( ) ( )]}, , , ( ),a al s l srs rs
a a DL k k k r R s S a A r k K         . (29) 

Note that Eq. (29) is different from Eq. (18); the set to define link a is different. 

 A backward pass method is used to calculate the weight of each intersection movement: 

( )

( ) ( ) ( ( )) , , , , ( ), ,
b

rs
b

rs rs s rs rs rs
ab ab h bc a a

c A h

W k L k W k k r R s S a A b A h k K 


           
  

  and (30) 

( )

( ) ( ) ( ) , , , ( ),
a

rs
a

rs rs s is rs
a a h ab D

b A h

W k L k W k r R s S a A r k K


         
  

 . (31) 

in the sub-network rsG  is given as follows: 

( )

( )
( ) , , , , ( ),

( )
rs

a

rs
rs rs rsab
ab ars

ab
b A h

W k
k r R s S a A b A h k K

W k





      


, and (32) 

( )

( )
( ) , , , ( ),

( )
rs

rs
rs rsa
a Drs

a
a A r

W k
k r R s S a A r k K

W k





     


. (33) 

If [ ( ), ( )]rs rs
a abk k α  is known, then the intersection movements [ ( ), ( )]rs rs

a abu k u ku can be 

calculated by  

( ) ( ) ( ), , , ( ),rs rs rs rs
a a Du k k q k r R s S a A r k K      , and (34) 

0

0

,
( )

,
( )

( ) ( ) ( ) ( ) , , , , ( ), ,
( )

( ) ( ), , , , ( ), \ .

a
rs

a b

rs
a b

rs rs rs r rs rs rs
ab a l b k b a a D

rs b B l k
ab

rs rs rs rs
ab b k b a a D

b B l k

k k q k u r R s S a A b A h k K
u k

k u r R s S a A b A h k K K





   

 




 
  

 
  

  
            

      


 

 













 (35) 

Definition D6. (Causality of traffic flow). The link travel times for traffic entering during interval k 

depend on traffic entering during or earlier than interval k, but not on traffic entering later than k. 

Causality is an actual traffic behavior. It means that the speed and travel time of a vehicle on a link 

is only affected by the speed of vehicles ahead. It may or may not be captured by traffic flow models. 

According to Definition D6, if the traffic flow modeled by traffic flow model satisfies causality, the 

link travel time ( )a k  depends on the traffic entering during interval k or earlier than k, but not on 

traffic entering later than k.  
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Proposition 5. If the network is empty initially and the network traffic modeled satisfies causality, 

then the intersection movement vector [ ( ), ( )]rs rs
a abu k u ku  which satisfies constraints (25)-(27) is a 

function of the intersection movement choice probability vector [ ( ), ( )]rs rs
a abk k α , and the function 

( )u α  is surjection. In other words, u  can be unilaterally determined by the intersection movement 

choice probability vector α . 

The proof is given in Appendix A.5. 

Based on the preceding discussion, we can have the following: 

 Intersection movements are functions of intersection movement choice probabilities according to 

Proposition 5, 

 Link inflows are functions of intersection movements as shown in Eq. (24), 

 Link travel times are functions of link inflows according to the assumption of the DYNASTOCH 

algorithm, 

 Minimum travel times to destinations are functions of link travel times according to Eqs. (1) and 

(2), and  

 Intersection movement choice probabilities are functions of minimum travel times to destinations 

according to Eqs. (28)-(33). 

Therefore, intersection movement choice probabilities are functions of themselves, and the 

intersection-movement-based SDUO problem can be reformulated as a FP in terms of the vector of 

intersection movement choice probabilities: to find [ ( ), ( )]rs rs
a abk k α  

)α h(α , (36) 

where )h(α  is defined by Eqs. (28)-(33).  

Long et al. (2013a) proved that discretised link travel times based on cumulative curves, which will 

be used for our models, converge to the corresponding continuous-time link travel times if the latter is 

continuous with respect to time instant t. Hence, we have the following assumption for general link 

travel time functions: 

Assumption A1. The link travel time ( )a t  is continuous with respect to time instant t, and link travel 

time ( )a k  converges to link travel times ( )a k   when the interval length   approaches to zero. 

Proposition 6. Under Assumption A1, a solution of the intersection-movement-based model (36) is an 

optimal solution of the logit-based SDUO route choice problem when the interval length approaches to 

zero. 

The proof is given in Appendix A.6. 

Since a route travel choice probability is the multiplication of choice probabilities of intersection 

movements on the route, we can retrieve route travel choice probabilities from intersection movement 

choice probabilities, given as follows: 

1 1

1

1

ˆ ( ) ( ) ( / )
l

i i i

m
rs rs rs
p a a a a

i

P k k t  






  , (37) 

where route p  of OD pair (r, s) consists of links 1 2{ , , , }
lma a a , and lm  is the number of links on that 

route, 
iat  is the arrival time at node 

ial . According to Proposition 6, the route travel choice 
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probabilities retrieved by Eq. (37) is equal to the logit-based SDUO route choice probabilities in Eq. (8) 

when the interval length approaches to zero. In general, time discretization introduces errors for the 

retrieved route travel choice probabilities. 

Proposition 7. Link choice probabilities and intersection movement choice probabilities satisfy the 

following relationship: ( ) ( ( )), , , , ( ),rs rs rs rs
ab b a ak k k r R s S a A b A h k K          . 

The proof is given in Appendix A.7. 

Proposition 8. Under Assumption A1, if * * *[ ( ), ( )]rs rs
a abk k α  is a solution of the FP problem (36), 

then the corresponding link inflow vector *[ ( )]rs
au k  is also a solution of the FP problem (23) when the 

interval length approaches to zero. 

The proof is given in Appendix A.8. 

Definition D7 (Common intersection movement). If 1 2, r s r sa b A A  , then the intersection movement 

(a, b) is defined as a common intersection movement with respect to the sub-networks 1r sG  and 2r sG . 

Proposition 9. Under Definition D2, all the common intersection choice probabilities of travelers who 

depart from any origins, enter a link during the same time interval and pass through the same next link 

to the identical destination are equal. Equivalently, 1 2( ) ( )r s r s
ab abk k   is satisfied for all 1 2, r s r sa b A A   

and 1 2, , ,r R r R s S k K      under Definition D2. 

The proof is given in Appendix A.9. 

2.5.2. Model II 

According to Proposition 9, for each common intersection movement during each time interval, the 

choice probabilities of the common intersection movement are irrespective of origin under Definition 

D2. Therefore, the SDUO problem can be formulated in terms of destination-based variables only. In 

other words, we distinguish flows according to their destinations instead of OD pairs. According to 

Definition D2, all used links for each destination form a sub-network. Let ( , )s s sG N A  be the sub-

network with respect to destination s, where sN  and sA  are the sets of nodes and links in the sub-

network sG , respectively. ( )sA i  and ( )sB i  are, respectively, the sets of links whose tail and head 

nodes are i  in the sub-network sG . Then, we have s rs
rN N   and s rs

rA A  . 

Proposition 10. The sub-network sG  is a directed acyclic graph. 

The proof is similar to that of Proposition 1 and hence is omitted. 

Proposition 11. Under Definition D2, ( ) ( )rs sA i A i  if rsi N . 

The proof is given in Appendix A.10. 

Similar to Model I, if the SDUO problem is formulated in terms of intersection movements, then 

the corresponding model should satisfy the following three categories of constraints: 

The flow propagation constraints: 

0
, ,( ) ( ), , ( ), .

a

s s s s
ab a k ab a

k

v k u s S,a A b A h k K



 

      



  (38) 

The flow conservation constraints: 
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0

0

,
( )

( ) ,
( )

( ) ( ), , , ,

( )
( ), , , \ .

a
s

a b

s
a

s
a b

rs r s s
a l b k ba D

r R b B l ks
ab s s

b A h b k ba D
b B l k

u k u s S a A k K

u k
u s S a A k K K





 


   



  

     


 
   



  
  












 (39) 

The nonnegativity constraints: 

( ) 0,      ,  ,  ( ), s s
ab au k s S a A b A h k K      . (40) 

In Model I, the calculation of likelihoods, weights, and intersection movement choice probabilities 

with respect to each OD pair are independent of origins and can be directly used to calculate 

likelihoods, weights, and choice probabilities with respect to each destination. Herein, we directly give 

the formulae as follows: 

( ) exp{ [ ( ) ( )]}, , , ( ),s s s s s
ab a ab aL k k k s S a A b A h k K         , (41) 

( ) exp{ [ ( ) ( )]}, , , ( ),a al s l ss s
a a DL k k k r R s S a A r k K         , (42) 

( )

( ) ( ) ( ( )) , , , ( ),
b

s
b

s s s s s s
ab ab h bc a a

c A h

W k L k W k k s S a A b A h k K 


          
  

 , (43) 

( )

( ) ( ) ( ) , , , ( ),
a

s
a

s s s s s
a a h ab D

b A h

W k L k W k r R s S a A r k K


         
  

 , (44) 

( )

( )
( ) , , , ( ),

( )
s

a

s
s s sab
ab as

ab
b A h

W k
k s S a A b A h k K

W k





     


, and (45) 

( )

( )
( ) , , , ( ),

( )
s

s
rs sa
a Ds

a
a A r

W k
k r R s S a A r k K

W k





     


, (46) 

where Eq. (46) defines the choice probability of the movements corresponding to flows departing from 

origin r during time interval k to destination s. Note that in Eq. (46), ( )sa A r , not ( )rsa A r  as in Eq. 

(33). 

Given [ ( ), ( )]rs s
a abk k α , the inflows ( )rs

au k  and ( )s
abu k can be determined by: 

( ) ( ) ( ), , , ( ),rs rs rs s
a a Du k k q k r R s S a A r k K      , and (47) 

0

0

,
( )

,
( )

( ) ( ) ( ) ( ) , , , ( ), ,
( )

( ) ( ), , , ( ), \ .

a
rs

a b

rs
a b

s rs rs r s s s
ab a l b k b a a D

s r R b B l k
ab

s s s s
ab b k b a a D

b B l k

k k q k u s S a A b A h k K
u k

k u s S a A b A h k K K





   

 




 
   

 
  

  
           

     


  

 













 (48) 

Proposition 12. If the network is empty initially and the network traffic modeled satisfies causality, 

then the intersection movement vector [ ( ), ( )]rs s
a abu k u ku  which satisfies constraints (38)-(40) is a 

function of the intersection movement choice probability vector [ ( ), ( )]rs s
a abk k α , and the function 

( )u α  is surjection. In other words, u  can be unilaterally determined by the intersection movement 

choice probability vector α . 

The proof is similar to that of Proposition 5. 

Similar to Model I, the intersection-movement-based SDUO problem can be alternatively 

formulated in terms of the vector of destination-based intersection movement choice probabilities, 

given as follows: 
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)α h(α , (49) 

where [ ( ), ( )]rs s
a abk k α  is the intersection movement choice probability vector, and )h(α  is defined 

by Eqs. (41)-(46). 

Definition D8 (Transfer function). A transfer function from the vector of destination-based 

intersection movement choice probabilities to the vector of OD-based intersection movement choice 

probabilities is defined as follows: 

)α y(α , (50) 

where [ ( ), ( )]rs rs
a abk k α , [ ( ), ( )]rs s

a abk k α , and ( ) ( ), , , , ( ),rs s rs rs
ab ab ak k r R s S a A b A h        

k K . Note that the function is unique or a point-to-point mapping. 

Assumption A2. Both )y(α  and α  are used as inputs of DNL models and output the same link 

cumulative flows and link travel times. 

Based on A1, D2 and D8, we have Propositions 13-16. 

Proposition 13. Under Definition D2 and Assumption A2, we have )) ( ))h(y(α y h(α . 

The proof is given in Appendix A.11. 

Proposition 14. Under Definition D2 and Assumption A2, if the vector *α  is a solution of the FP 

problem (49), then * *( )α y α  is a solution of the FP problem (36). 

Proposition 15. Under Definition D2 and Assumptions A1 and A2, if the vector *α  is a solution of the 

FP problem (49), then the corresponding link inflow vector *[ ( )]rs
au t  is also a solution of the FP 

problem (23) when the interval length approaches to zero. 

Proposition 16. Under Definition D2 and Assumption A2, we have 
11

( )- ( ( ))- ( )h α α h y α y α  and 

( )- ( ( ))- ( )


h α α h y α y α . 

The proof of propositions 13, 14, and 16 are given in Appendices 11, 12, 13. Proposition 15 

follows directly from Propositions 9 and 14.  

3. Network traffic flow model and network performance assessment 

3.1. The modified link transmission model 

To capture queue spillback in the FP problems (36) and (49), we developed a MLTM (see 

Appendix B for details) as a network flow propagation model and used it in the FP models, although 

other traffic flow models that can produce a unique mapping from intersection movement choice 

probabilities to link travel times can be incorporated into these FP models. Different from the original 

LTM (Yperman, 2007), the MLTM takes the demands and the choice of probabilities of intersection 

movements as inputs. The MLTM is adopted to implement DNL and generate cumulative link flows, 

which can be further used to compute link travel times. 

3.2. Discretized travel time model 

The proposed intersection-movement-based DTA model is formulated in the discrete time setting 

and thus a discretized link travel time model is required to compute the travel times. In discrete time 

DTA models, the travel time over a link with respect to a particular time interval can be defined as the 
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average travel time of vehicles that enter that link during that interval (Lo and Szeto, 2002a). It can be 

formulated as follows: 
( ) 1 1

( 1)
( ) ( )

( )
( ) ( 1)

a

a

U k

a aU k
a

a a

V v U v dv
k

U k U k


 


  


 


, (51) 

where 1( )aU    and 1( )aV    are the inverse functions of ( )aU   and ( )aV  , respectively. The numerator and 

the denominator of the right hand side of Eq. (51) are total travel time and the number of vehicles that 

enter link a during this interval, respectively. 

In general, it is not possible to obtain the inverse functions 1( )aU    and 1( )aV    in close forms. 

Therefore, piecewise linear functions, such as the step function (SF) (e.g., Lo and Szeto, 2002a) and 

linear interpolation (LI) (e.g., Yperman, 2007), are usually applied to approximate the profiles of 

cumulative flows. With the two types of piecewise linear approximations, Long et al. (2011) 

developed formulations for SF-type and LI-type link travel time functions, and also proposed a 

modified LI-type (MLI-type) link travel time model. The three types of travel time functions are 

proved to satisfy some desirable properties such as FIFO, causality, monotonicity, and continuity. This 

paper uses the MLI-type link travel time model to calculate the link travel times, since it has better 

properties (e.g., with a higher precision) than other two functions (see Long et al. 2011 for the 

discussion of accuracy). 

Given link travel times, the travel time required by vehicles departing from their origin during 

interval k to traverse a path 1 2{ , , , }mp a a a   can be computed by using the following nested function 

(Ran and Boyce, 1996; Huang and Lam, 2002): 

1 2 1 1 1
( ) ( ) ( ( )) ( )

m mp a a a a a ak k k k k      


         . (52) 

where 
1 1

( )a a k  , 
2 2 1

( ( ))a a ak k    ,…, for short. 

Assumption A3. The link flow satisfies link FIFO and causality, and the cumulative outflows are 

continuous with respect to the link inflow vector. 

Note that the flow estimated by the MLTM satisfies the first part of A2 but may not satisfy the 

second part due to queue spillback. Under A2, we have Propositions 17-21. 

Proposition 17. Under Assumption A3, link (route) travel times are continuous with respect to the 

intersection movement choice probability vector α  (α ). 

Proposition 18. Under Assumption A3, )h(α  is a continuous function of the intersection movement 

choice probability vector α . 

Proposition 19. Under Definition D2 and Assumption A3, )h(α  is a continuous function of the 

intersection movement choice probability vector α . 

Proposition 20. Under Assumption A3, the FP problem (36) has at least one solution. 

Proposition 21. Under Assumption A3, the FP problem (49) has at least one solution. 

The proof of proposition 17 follows directly from Proposition 6 in Long et al. (2013b). The proof 

of proposition 18 is given in Appendix A.14. The proof of proposition 19 is basically the same as that 

of Proposition 18.  The proof of proposition 20 is given in Appendix A.15. The proof of proposition 21 

is similar to that of Proposition 20. 
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According to Propositions 20 and 21, the proposed intersection-movement-based SDUO problems 

guarantee solution existence under Assumption A3. However, the link travel times (or route travel 

times) derived by a physical-queue traffic flow model may not be continuous, leading to the possibility 

of the non-existence of SDUO solutions (Szeto and Lo, 2006). 

3.3. Measures of network performance 

3.3.1. Total system travel time 

TSTT is a widely used measure of network performance in various problems, such as signal 

control problems, network design problems, ramp control problems, etc. TSTT is defined as the sum of 

the travel times of all vehicles from their origins to their destinations. It equals the total link travel 

times of all vehicles. Since link inflows during each time interval can be derived by the cumulative 

link inflows, which are outputs of the MLTM, TSTT can be formulated as follows: 
TSTT ( ) ( ) [ ( ) ( 1)] ( )a a a a a

k K a A k K a A

u k k U k U k k 
   

     . (53) 

3.3.2. Total cost of vehicle emissions 

Following Penic and Upchurch (1992), we assume that vehicles travel over a link with a constant 

speed, and the emission rate of a link is a function of its grade and the average speed of vehicles. Let 

M  be the set of types of pollutants considered. For all m M , we adopt the following emission rate 

function: 
( ) [ ( ) ( )] ( )

( , ) m m m
m

m

A s B s A s h g
s g

C s


 
 , (54) 

where ( )mA s  and ( )mB s  are functions of the vehicle average speed s, ( )h g  is a weight function of the 

grade g of roadway, and mC  is a constant. The functions and the constants are given in Table 1, where 

s is in ft/s, g  is in percent, and ( , )m s g  is in grams per vehicle foot. 

According to the constant speed assumption, we can use link travel times to calculate average 

vehicle speeds, given as follows: 

( )
( )
a

a
a

d
s t

t
 , (55) 

where  ad is the length of link a. 

Substituting Eq. (55) in the emission rate function (54), we can obtain the total emissions of the 

whole network, which can be further transferred into a monetary measure, namely CTVE. CTVE can 

be calculated by: 
CTVE ( ( ), ) [ ( ) ( 1)]m m a a a a a

k K m M a A

s k g d U k U k 
  

    , (56) 

where m  is the emission costs of unit pollutant m. The emission costs of unit pollutant are given in 

Table 2. 
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4. Solution algorithm 

4.1. The general scheme 

The general scheme of the whole procedure for solving the intersection-movement-based SDUO 

problem is provided in Fig. 2. In this procedure, the sub-networks for all OD pairs or destinations are 

generated according to Definition D1 or D2. The network flow propagation model is the MLTM (see 

Appendix B for details), and intersection movement choice probabilities are inputs of the MLTM when 

implementing the DNL. The MLTM generates the cumulative inflows into and outflows from each 

link over time and derive dynamic link travel times. Link travel times are further used to implement 

stochastic network loading (as mentioned in Subsection 4.2 for details). After stochastic network 

loading, intersection movement choice probabilities are updated. Finally, if some convergence 

conditions are satisfied, the whole procedure is terminated; otherwise, the DNL is re-implemented 

according to current intersection movement choice probabilities, and repeat the consequent steps. 

4.2. The algorithm of dynamic stochastic network loading 

The algorithm of dynamic stochastic network loading (SNL) in a sub-network is similar to Ran and 

Boyce’s (1996) DYNASTOCH algorithm, but the major differences are their outputs and the ways to 

define minimum travel times to destinations, the likelihoods, and the weights. The outputs of 

DYNASTOCH are link flows whereas the outputs of the algorithm herein are intersection movement 

choice probabilities. Moreover, intersection-movement-based SNL algorithm defines the likelihoods 

and weights based on the intersection movement concept whereas DYNASTOCH is not. The 

intersection-movement-based SNL for the intersection-movement-based SDUO problem is outlined as 

follows: 

Step 0: Using Eqs. (1) and (2) to calculate the minimum travel times to destinations according to the 

current link travel times. 

Step 1: Using Eqs. (28) and (29) for Model I or Eqs. (41) and (42) for Model II to calculate 

intersection movement likelihoods. 

Step 2: Using Eqs. (30) and (31) for Model I or Eqs. (43) and (44) for Model II to calculate 

intersection movement weights in an ascending pass. 

Step 3: Using Eqs. (32) and (33) for Model I or Eqs. (45) and (46) for Model II to calculate 

intersection movement choice probabilities. 

The above algorithm can be used under both Definitions D1 and D2. If Definition D2 is adopted, 

then we only need to distinguish the intersection movements according to their destinations without 

considering their origins. In this case, the intersection-movement-based SNL algorithm can be 

implemented in a destination-based manner.  

Because time is discretized, the weights of intersection movements cannot be calculated exactly, 

and we found that there is a small gap between the retrieved route travel choice probabilities obtained 

by (37) with the probabilities obtained by Eq. (8). In order to improve the accuracy of the weights of 

intersection movements, we adopt a smaller time step for the intersection-movement-based SNL 
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algorithm. We divide each time interval into e smaller time intervals. Let   be the length of the small 

time interval such that  e  . In the intersection-movement-based SNL algorithm, we obtain the 

minimum travel times to destinations, intersection movement likelihoods, and intersection movement 

weights at instant k j  , , {1, 2, }k K j e    . Their values at other time instants are estimated 

by linear interpolation. The effectiveness of this method will be demonstrated in the Section of 

Numerical Examples. 

4.3. The self-regulated averaging method 

The path-based SDUO problems can be solved by any general computational techniques developed 

for VI, such as the diagonalization method (e.g., Ran and Boyce, 1996; Han, 2003), the projection 

method (e.g., Chen and Feng, 2000; Lo and Szeto, 2004), and so on, provided that the convergent 

requirements are satisfied. The SDUO problems are usually solved by the techniques developed for FP 

problems including the method of successive averages (MSA) (e.g., Ran and Boyce, 1996; Han, 2003), 

which relies on a predetermined step size for guaranteeing convergence. However, the convergence 

speed of the MSA is slow due to improper step size (too large or too small for some iterations). Liu et 

al. (2009) proposed a SRAM to deal with the slow convergence problem and to solve the 

deterministic-network SUE problem. The SRAM was further used by Szeto et al. (2011) to solve their 

SDUO problem. The SRAM for solving Model I is outlined as follows: 

Step 1: Initialization. Calculate the vector of initial intersection movement choice probabilities 1α  

using free-flow travel times. Set 1  , 1  , 0 1  , 0 1  , and the convergence 

tolerance 0  . 

Step 2: Stochastic loading. Compute ( )h α  via the intersection-movement-based SNL algorithm. 

Step 3: Determination of the step size. Obtain the step size 1 /   , where 
1 1 -1

1

,     if ( )- ( )- ,

,     otherwise.

    




 


 

 



   


h α α h α α
 (57) 

Step 4: Intersection movement choice probability update. Let 1 ( ( )- )      α α h α α . 

Step 5: Convergence checking. If ( )-  h α α , then stop the algorithm; otherwise, set 1   , 

and go to Step 2. 

The above solution algorithm can be directly used to solve Model II by replacing α  and ( )h  with α  

and ( )h , respectively. Note that if 1    is satisfied, then the SRAM immediately becomes the 

traditional MSA. 

Both the Manhattan norm (1-norm) and the maximum norm (∞-norm) can be used in the SRAM. 

However, the ∞-norm operator is more suitable to evaluate the convergence of the SRAM than the 1-

norm operator. The reason is as follows. Assume α  is a feasible solution of Model II. Then, ( )y α  is a 

feasible solution of Model I. Under Definition D1, α  and ( )y α  can be viewed as approximate 

solutions with the same quality. According to Proposition 16, we have 
11

( )- ( ( ))- ( )h α α h y α y α , 

which implies that the value of the convergence indicator of the feasible solution ( )y α  for Model I can 

be overestimated if the 1-norm operator is used. On the contrary, the precision of a solution can be 
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evaluated in a fair way by using the ∞-norm operator, since we have ( )- ( ( ))- ( )


h α α h y α y α , 

which confirms that α  and ( )y α  are with the same quality. Therefore, we adopt the ∞-norm operator 

to check the convergence of the algorithm in Step 5. Note that the mapping function ( )h α  may not be 

monotonic with respect to α , and hence the SRAM is a heuristic and may not guarantee convergence. 

5 Numerical examples 

In this section, six numerical experiments are presented to illustrate the properties of the proposed 

SDUO problem, the convergence of the solution algorithm, and the effect of information quality and 

road network improvement on network performance. All experiments were run on a computer with an 

Intel (R) Core(TM) 2 Quad Q9550 2.83GHz CPU and a 3.5GB RAM. 

The OD demands of all examples lasted for 30 intervals with a trapezoidal sharp (see Fig. 3). For a 

particular OD pair (r, s), its OD demand increased from zero at the beginning of the 1st interval with a 

constant rate until the end of the 5th interval, maintained the value at a peak of max
rsq  (veh/s) until the 

end of the 15th interval, and then decreased at a constant rate to zero that occurred at the end of the 30th 

interval. The networks were empty initially. The input parameters of the MLTM for each link in all 

example networks were the same and are given as follows: 

 Jam density: 133 vehicles/km (i.e., 7.5 m for every vehicle). 

 Free-flow speed: 54 km/h (i.e., 15 m/s), and backward shock-wave speed: 18 km/h (i.e., 5 m/s). 

 Flow capacity: 1800 vehicles/h/lane (i.e., 0.5 veh/s/lane). 

 The length of each time interval δ: 10 s. 

Example 1: Comparison of the results obtained under different definitions on efficient path sets. 

A test network as shown in Fig. 4 was adopted to illustrate the differences in the results obtained 

under Definitions D1 and D2. This network consisted of 6 nodes, 8 links, and 2 OD pairs (from Nodes 

1 and 2 to Node 3). The free-flow travel time (in s) of each link is also given in Fig. 4. The path sets of 

the two OD pairs under Definitions D1 and D2 are given in Table 3. We can observe that two more 

paths connect OD pair (1,3) under Definition D2 than under Definition D1. This is because links 2-4 

and 6-5 do not take travelers further away from Origin 1, and hence all paths through the two links are 

not efficient for OD pair (1,3) under Definition D1. On the other hand, since links 2-4 and 6-5 take 

travelers closer to the Destination 3, the first and the third paths of this OD pair through the two links 

were efficient for OD pair (1,3) under Definition D2. 

All the links were under the free-flow condition during the whole study period. Under this situation, 

all intersection movements had constant choice probabilities. In Table 4, the choice probabilities of 

two intersection movements with respect to the two OD pairs are given. We can observe that the 

choice probabilities of the intersection movement 2-6-3 with respect to the two OD pairs are positive 

and are not equal to each other under Definition D1. This result implies that all the choice probabilities 

of an intersection movement with the same destination may not be equal under Definition D1 even if 

the choice probabilities are positive. On the contrary, the choice probabilities of the intersection 

movements 2-6-3 and 4-6-5 with respect to the two OD pairs are positive and equal to each other 
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under Definition D2. This result agrees with Proposition 9. i.e., for each intersection movement during 

each time interval, the intersection movement choice probabilities of travelers with the same 

destination are equal under Definition D2 if their probabilities are positive. 

Example 2: Performance of the SRAM  

To illustrate the performance of the SRAM to solve the proposed intersection-movement-based 

SDUO models, we developed a numerical example using the Sioux Falls network as shown in Fig. 5. 

This network consisted of 24 nodes, 76 links, and 528 OD pairs. The travel demand of each OD pair 

equaled half of that in Leblanc et al. (1975). The free-flow travel time and the number of lanes on each 

link are given in Table 5. The grades of all links were zero. The values of the parameters for solution 

algorithms are as follows: 1.5  , 0.01  , 41.0 10   . 

In Figs. 6 and 7, we provided the sub-networks of OD pair (11, 22) and Destination 22. One can 

observe that all the sub-networks are acyclic. We also can observe that the sub-network of OD pair (11, 

22) under Definition D1 is within that of OD pair (11, 22) under Definition D2, and the latter is within 

that of Destination 22. We set 1.0   and applied the SRAM to solve the intersection-movement-

based SDUO models. We then determined the gaps between the retrieved route travel choice 

probabilities obtained by Eq. (37) with the probabilities obtained by Eq. (8), where the mean 

percentage error (MPE) and the maximum percentage error (MaxPE) are defined as follows:  
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The MPEs against various values of e are graphically shown in Fig. 8. One can observe that the 

MPE can be effectively reduced by enlarging the value of e. When e = 5, the MPE is reduced from 

0.023% to 0.0022%, and the MaxPE is reduced from 5.55% to 0.91%. In the following experiments, 

we set e = 5.  

Both the 1-norm operator and the ∞-norm operator were used to determine the step sizes in the 

SRAM. The values of the convergence indicators obtained during the implementation of the algorithm 

are presented in Fig. 9. We can observe that the value of each convergence indicator under the two 

efficient path set definitions gradually decreases as the number of iterations grows up and all of them 

can reach 61.0 10  when 1.0  . The results also show that the 1-norm operator leads to a faster 

convergence than the ∞-norm operator because using the ∞-norm operator can determine a better step 

size in Eq. (57) (i.e., in Step 3). In addition, we can observe that Model I and Model II under 

Definition D2 have the same convergence rate when the ∞-norm is used to determine the step size. 

This result agrees with both Propositions 13 and 16. Since the initial solutions of the two models were 

obtained under the free-flow condition and were equivalent, Proposition 16 ensures that their step sizes 

were equal to each other at the current iteration and the algorithm generated equivalent solutions in the 
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next iteration. Since the 1-norm operator outperformed the ∞-norm operator, only the 1-norm operator 

was used to determine the step sizes in the SRAM in the following experiments. 

To further illustrate the efficiency of the algorithms, we graphically present the required number of 

iterations and CPU time for solving each model in Fig. 10. From this figure, we can observe that the 

solution algorithm for Model I under Definition D1 requires the smallest number of iterations on 

average, while the solution algorithm for Model II under Definition D2 requires the least CPU time on 

average. The solution algorithm for Model I under Definition D2 required both the largest number of 

iterations and the most CPU time. The average CPU times for each component and each iteration of 

the solution algorithm for each model are presented in Table 6. According to this table, most of the 

CPU times for the solution algorithm were spent on the DNL and the DYNASTOCH algorithm. 

Compared with the solution algorithm for Model I, the solution algorithm for Model II under 

Definition D2 was more efficient. The average CPU times spent in each component and in one 

iteration for Model II under Definition D2 were the smallest among the three cases.  

Example 3: Improving the information quality may lead to a worse network performance. 

We were also interested in the influence of the value of the dispersion parameter θ on network 

performance. We first considered the Sioux Falls network. Both TSTT and CTVE are presented in Fig. 

11. We can observe that both TSTT and CTVE under Definition D1 are very close to those under 

Definition D2. The maximum differences in TSTT and CTVE are only 1.35% and 0.84%, respectively. 

This result implies that both Definitions D1 and D2 can be used in the SDUO model to evaluate 

network performance without significantly different results obtained. The result presented in Fig. 11 

also shows that both Models I and II under Definition D2 lead to the same TSTT and CTVE. This 

result matches with Proposition 12. The results presented in Fig. 11 also show that CTVE may 

increase when the value of the dispersion parameter θ grows up. This implies that improving the 

information quality as represented by the value θ (as in Lo and Szeto, 2004) may lead to a worse 

network performance in terms of CTVE. 

This example also adopted a test network as shown in Fig. 12 with two nodes, two parallel links, 

and one OD pair (from Node 1 to Node 2). The number of lanes, the outflow capacity (in veh/s), the 

grade (in percent), and the free-flow travel time (in s) of each link are also given in order inside round 

bracket next to the link in Fig. 12. We varied the dispersion parameter   and solved the SDUO 

problem under different levels of OD demand. The results of TSTT and CTVE are presented in Fig. 13 

when the maximum OD demand is 1.0 veh/s and 1.5 veh/s, respectively. As revealed in this figure, 

both TSTT and CTVE increase as the value of   grows up. Again, it implies that improving the 

information quality may lead to a worse network performance. We noted that improved information 

causing higher TSTT was also previously observed in the static case (e.g., Unnikrishnan and Waller, 

2009). However, we confirm this observation in the dynamic case, and also for CTVE. 

Example 4: An improvement of road outflow capacity may result in an increase in total vehicle 

emissions. 
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The test network used in Example 3 was also adopted in this example. We improved the network 

by enlarging the outflow capacity of the short link (e.g., by adding more lanes). We can observe from 

Fig. 14(a) that TSTT can be reduced by enhancing the outflow capacity of the short link. However, 

this may lead to an increase in CTVE (see Fig. 14(b)). This is an emission paradox (Nagurney, 2000) 

that increasing road outflow capacity results in an increase in total vehicle emissions (and hence 

CTVE). The reason for the occurrence of this emission paradox is that the short link had a higher 

emission rate due to a higher road grade. More vehicles used the short link after its outflow capacity 

was improved. Hence, the total vehicle emission increased. 

Example 5: The addition of a link may result in an increase in TSTT and total vehicle emissions 

This example adopted two test networks as shown in Fig. 15. Fig. 15(a) shows the network before 

a new link was constructed. This network had three nodes, two links, and two OD pairs (i.e., OD pairs 

(1,2) and (1,3). The number of lanes, the outflow capacity (in veh/s), the grade (in percent), and the 

free-flow travel time (in s) of each link are also given in order inside round brackets next to the link in 

Fig. 15(a). Fig. 15(b) reveals the network after link 2-3 was constructed to connect Node 2 and Node 3. 

The parameters associated with the new link are also provided in Fig. 15(b). We varied the dispersion 

parameter   for both the cases with and without link addition, solved the corresponding SDUO 

problem under different levels of OD demand, and computed the changes in network performance in 

Fig. 16. The increases in TSTT and CTVE are presented in Fig. 16. We can observe that the increases 

in TSTT and CTVE are positive for all the values of  . This result implies that the addition of a link 

to a network may lead to a decrease in network performance in terms of TSTT and CTVE. 

Example 6: An increase in travel demand may result in a decrease in total vehicle emissions. 

The network in Fig. 15(b) was also adopted in this example. In this example, we fixed the travel 

demand of OD pair (1,3) to be 1.0 veh/s, but varied the travel demand of OD pair (1,2) from 0.6 veh/s 

to 1.4 veh/s. The CTVEs under different demand levels are graphically shown in Fig. 17. We can 

observe that each of the curves of CTVEs is not monotone as the travel demand of OD pair (1,2) 

grows up. In particular, when the demand increases from a low level to a medium level, CTVE 

decreases. This result implies that a decrease in the travel demand of OD pair (1,2) may result in an 

increase in total vehicle emissions. When the traffic demand of this OD pair increased, the congestion 

on link 1-2, the only path between OD pair (1,2), increased and hence the congestion on path 1-2-3 

between OD pair (1,2) increased. As a result, fewer vehicles traveling between OD pair (1,3) used this 

route and hence link 2-3. The emission rate of link 2-3 was larger than other links due a higher grade. 

The reduction in vehicle emissions from this link was larger than the increment in vehicle emissions 

from other links. Therefore, fewer total vehicle emissions were generated. 

6. Conclusion 

This paper proposes an intersection-movement-based SDUO route choice problem in which we 

focus on the travelers’ choice of intersection movements. Two existing definitions on the efficient path 

set, i.e., Definitions D1 and D2, are considered for the SDUO problem, and two FP models (i.e., 
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Model I and Model II) are respectively developed to formulate the SDUO problem in terms of the OD-

based intersection movement choice probabilities and the destination-based intersection movement 

choice probabilities. We can prove that the two models are equivalent under Definition D2. We also 

developed the MLTM, which is derived from the LTM, as a network flow propagation model which 

takes the demands and the choice of probabilities of intersection movements as inputs. A solution 

algorithm based on the SRAM was developed to solve the proposed SDUO problem. 

Numerical examples were set up to test the performance of the proposed models and algorithm. 

The numerical results show that Model II is consistent with Model I under Definition D2, and Model II 

can be solved more efficiently. The proposed DTA models were further used to evaluate the effects of 

information quality and road network improvement on network performance. Through specific 

examples, we found four interesting phenomena that can occur in networks: (1) an improvement of 

information quality results in an increase in TSTT and total vehicle emissions, (2) an improvement of 

road outflow capacity results in an increase in total vehicle emissions, (3) the addition of a link results 

in an increase in TSTT and total vehicle emissions, and (4) a decrease in travel demand may result in 

an increase in total vehicle emissions. These examples demonstrated that the information quality, the 

transportation network topology, link capacity, as well as the travel demand must be taken into 

consideration in any policies aimed towards the reduction of TSTT and total vehicle emissions. The 

second and the third phenomena related to TSTT are usually referred to as Braess' paradox, i.e., 

improving transportation supply may worsen network performance. This kind of phenomena often 

occurs in highly non-linear systems. 

The SDUO problem addressed in this paper is a logit-based route choice problem, which has long 

been known to have serious shortcomings in representing networks due to the assumption on the 

identical and independent Gumbel distributions of route travel time. In future research, we will be 

interested in extending the proposed approach to develop probit-based or the nested logit SDUO 

models to overcome the shortcomings. In addition, we also plan to use the proposed models for the 

offline transport planning and policy evaluation, such as advanced traveler information services, 

network design (e.g., Szeto et al., 2010, 2014; Miandoabchi et al., 2012a,b), signal control, intersection 

improvement, staggered work hours (e.g., Yushimito et al., 2014), incident detection (e.g., Ghosh and 

Smith, 2014), traffic flow/density forecasting (e.g., ; Szeto et al., 2009; Ye et al., 2012; Anand et al., 

2014; Chiou et al., 2014), and so on. Furthermore, our current formulation and analysis is based on a 

discrete-time setting. Extending the formulation to a continuous-time one is more realistic because 

time is continuous by nature. However, this extension introduces difficulty in analysis and the analysis 

is not straightforward, because continuous-time DTA problems are infinite dimensional mathematical 

programming problems (e.g., Pang and Stewart, 2008), and fundamentally different from discrete-time 

problems that are usually finite dimensional mathematical programming problems (Wie et al., 2002). 

More up-to-date mathematical techniques such as differential variational inequality or differential 

complementarity system are required for analyzing the continuous-time DTA problems rigorously (e.g., 
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Friesz et al., 2010; Ban et al., 2012; Friesz and Meimand, 2014). This extension deserves a full 

investigation and is left for future research. 
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Appendix A: Proof of Propositions 

A.1. Proof of Proposition 1 

Proof. Under Definition D1, all links on any reasonable paths take travelers closer to the destination. 

This is also one of the requirements of a link to be on any reasonable paths under Definition D2. 

Therefore, any path that belongs to the path set under Definition D1 also belongs to the path set under 

Definition D2. This completes the proof. □ 

A.2. Proof of Proposition 2 

Proof. We assume that there exists a cycle in the sub-network rsG , and the node sequence of the cycle 

is 1 2 1{ , , , , }mi i i i . According to Definition D1 or D2, all links on the efficient path take travelers closer 

to the destination, and hence we have 1 2 1ni si s i s i s       , where is  is the minimum travel 

time from node i to destination s. This is a contradiction. Therefore, the sub-network rsG  is a directed 

acyclic graph. This completes the proof. □ 

A.3. Proof of Proposition 3 

Proof. Under Definition D2, we have 1 2( ) ( )r s r sA i A i  for all 1 2r s r si N N  . This is because any link in 
1 ( )r sA i  takes travelers closer to destination s under this definition, and so does any link in 2 ( )r sA i . 

Therefore, we can conclude 1 ( )r sA i  (or 2 ( )r sA i ) is not affected by both origins 1r  and 2r , and hence 

1 2

1 2 1 2

( ) ( )
r s r s r s r s

r s r s

i N N i N N

A i A i
   

  . Because the two sub-networks are the same, the topological distances 

of node i in the two sub-networks are the same. This completes the proof. □ 

A.4. Proof of Proposition 4 

Proof. Since 1 2r s r sa A A  , we have 1 2r s r s
al N N   and 1 2r s r s

ah N N  . According to the proof of 

Proposition 3, we have 1 2( ) ( )r s r s
a aA l A l  and 1 2( ) ( )r s r s

a aA h A h  for all 1 2r s r sa A A  . Therefore, to 

prove 1 2( ) ( )r s r s
a ak k  , we only need to prove that 1 2( ) ( )r s r s

a aW k W k  is satisfied for all 1 2r s r sa A A  . 

According to Eq. (18), we have  
1 2 1 2( ) ( ) exp{ [ ( ) ( )]},a al s l sr s r s r s r s
a a aL k L k k k a A A        , and 1 2, , ,r r s k . (58) 

Consider the ascending passes of the sub-networks 1r sG  and 2r sG . According to Proposition 3, their 

common nodes have the same topological distance. Hence, we can set the topological order of any 

node 1 2r s r si N N   to be the same in the two ascending passes. Let 1 2{ , , , , }ms i i i  be the sequence of 
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the common nodes in the ascending passes with the superscript of node i representing the topological 

order of the node. The method of mathematical induction can then be used to prove that 
1 2( ) ( )r s r s

a aW k W k  is satisfied for all 1 2r s r sa A A  .  

We assume that 1 2( ) ( )r s r s
b bW k W k  for all 1 ( ),r sb A i    , where   is a positive integer. For a 

given link 1 ( )r sa A i , the topological order of node ah  is less than that of node al  (i.e., i ), and hence 

we have 1 2( ) ( )r s r s
b bW k W k  for all 1 ( )r s

ab A h . Equivalently, we have 1 2( ( )) ( ( ))r s r s
b a b aW k k W k k     

for all 1 ( )r s
ab A h . Substituting this and Eq. (58) into Eq. (19), we have 1 2( ) ( )r s r s

a aW k W k  for all 
1 ( )r sb A i . 

In addition, if 1( )rsb A i , then we have bh s , since the destination is the only node with a 

smaller order than node 1i . Hence, 1 1( ) ( )r s r s
b bW k L k  and 2 2( ) ( )r s r s

b bW k L k  for all 1
1( )r sb A i  (or 

2
1( )r sb A i ). According to Eq. (58), we have 1 2( ) ( )r s r s

b bW k W k  for all 1
1( )r sb A i . This completes the 

proof. □ 

A.5. Proof of Proposition 5 

Proof. The method of mathematical induction will be used to prove this proposition. We assume that 

for all k , the link inflows ( )rs
abu   can be unilaterally determined by α .  

In Eq. (35), ( )rsq k  is the traffic demand which is independent of α . Since the network traffic 

satisfies causality and 0( )a bk p k k    , ,a k   for all 0
bk    can be determined by the traffic flows 

that enter into link b not later than 0
bk  . The above assumption imply that both ,a k   and ' ( )rs

b au   

( 0
bk   ) can be unilaterally determined by α . Therefore, if the link inflows ( )rs

abu   for all k  

are unilaterally determined by α , then ( )rs
abu k  will also be unilaterally determined by α . Since the 

network is empty initially, (0)rs
bav = 0. According to Eq. (35), we have (0) (0) (0) (0)

a

rs rs rs rs r
ab ab a lu q   . 

This implies that the link inflows (0)rs
abu  is unilaterally determined by α . This completes the proof. □ 

A.6. Proof of Proposition 6 

Proof. Assume route p  of OD pair (r, s) consists of links 1 2{ , , , }ma a a , where m  is the number of 

links on that route and 1 ( )rsa A r . To simplify the notation, we add a wave line above the variable 

that is a function of time instant t. Under Assumption A1, ( ) ( )a ak t    when the interval length 

approaches to zero, where t k . The travel time of route p is summation of travel times of links on 
the route, we have ( ) ( )p pt k  . The variables ( )is

a k  and ( )s
ab k  are minimum travel times of some 

routes, and hence they also converge to the continuous travel time ( )is
a t  and ( )s

ab t , respectively. Eqs. 
(28)-(33) indicate the likelihoods, the weights, and the choice probabilities of all intersection 
movements converge to their continuous forms. 

Let ( )rs
pP k  be the route choice probability of vehicles departing r during interval k and using route 

p between origin r and destination s, and at  be the arrival time at node al . Then, we have 

1 1 1 1

1 1

2 2

( ) ( ) ( ) { ( / )} ( ) ( ) { ( )}
i i i i i i

m m
rs rs rs rs rs rs rs
p a a a a a a a a

i i

P k G k L k L t G k L t L t
 

 

 

    , (59) 

where ( )rsG k  is the proportionality constant for flows between OD pair (r, s) departing during time 

interval k and is used to ensure that the sum of the right hand side of (59) over all routes between OD 

pair (r, s) equals 1. Substituting Eqs. (28) and (29) into Eq. (59), we have 
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1 1

1 1

1

1

1

1

1

( ) ( )exp{ [ ( ) ( )]} exp{ [ ( ) ( )]}

( )exp{ [ ( ) ( )]} exp{ [ ( ) ( ( )) ( )]}

( )exp ( ) ( ) [

i i i i i

i i i i i i i i

i

m
rs rs rs s s s
p a a a a a a

i

m
rs rs s s s

a a a a a a a a a
i

rs rs s
a a

P k G k t t t t

G k t t t t t t

G k t t

     

       

   













  

    

  





   

     

   
1

1 1

1

1

1

1 1 1

1 1 1

( ) ( ( )) ( )]

( )exp ( ) ( ) ( ) ( ( )) ( )

( )exp ( ) ( ) (

i i i i i i i

i i i i i i i i

i i

m
s s

a a a a a a a
i

m m m
rs rs s s s

a a a a a a a a a
i i i

rs rs s s
a a a

t t t t

G k t t t t t t

G k t t t

  

      

   









  

  

  
    

  
  

       
  

  



  

  

     

  
1 1

1

1 1

1 1 1

1 1 1

1 1

1 2 1

2

) ( ) ( )

( )exp ( ) ( ) ( ) ( ) ( )

( )exp ( ) ( ) ( ) ( )

i i i i

i i i i i i

i i

m m m
s
a a a a

i i i

m m m
rs rs s s s

a a a a a a a
i i i

m
rs rs s s s

a a a a
i

t t

G k t t t t t

G k t t t t

 

     

    

 

  

  

 

  



  
   

  
  

      
  

   

  

  

 

    

   

1 1

1 1 1

2 1

1 1 1

2 2 1

( ) ( ) ( )

( )exp ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )exp

i i m m i i

i i i i m m i i

m m
s s
a a a a a a

i i

m m m
rs rs s s s s

a a a a a a a a a a
i i i

rs

t t t

G k t t t t t t t

G k

  

       



  

 

  

  

             
      

  
        

  



  

  

  

      



 
1

( ) ( )

( )exp ( ) ( ) .

i i

m
rs

a a
i

rs rs rs
l

t t

G k t t

 

  



  
  

  

   

 



 

Note that by definitions, ( )
m m

s
a at = ( )

m ma at and 
1

( ) ( )
i i

m
rs
p a a

i

t t 


  . Since ( ) 1rs
p

p

P k


 , summing over 

p  on both sides of equation leads to 

    ( ) ( )exp ( ) ( ) ( )exp ( ) ( ) 1rs rs rs rs rs rs rs
p p p

p p p

P k G k t t G k k k     
  

               .  

 Rearranging the preceding equation, we have  
1

( )
exp{ [ ( ) ( )]}

rs
rs rs

p
p

G k
k k   






.  

Therefore, we have 
exp{ [ ( ) ( )]} exp{ ( )}

( ) .
exp{ [ ( ) ( )]} exp{ ( )}

rs rs rs
p prs

p rs rs rs
p p

p p

k k k
P k

k k k

   
    

 

 
 

  
  

The rest of this proof is similar to that in Ran and Boyce (1996). This completes the proof. □ 

A.7. Proof of Proposition 7 

Proof. Substituting Eqs. (1) and (2) into Eq. (28), we have 
( ) exp{ [ ( ) ( )]}

exp{ [ ( ) ( ( )) ( ) ( ( ))]}

exp{ [ ( ( )) ( ( ))]}

( ( )).

a a

a a

rs s s
ab a ab

h s h s
a a a b a

h s h s
a b a

rs
b a

L k k k

k k k k k k

k k k k

L k k
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To prove ( ) ( ( )), , , , ,rs rs
ab b ak k k r s a b k     , we only need to prove that ( ) ( ( ))rs rs

ab b aW k W k k   

is satisfied for all r, s, a, b, k. If so, we have  

( ) ( )

( ) ( ( ))
( ) ( ( ))

( ) ( ( ))
rs rs

a a

rs rs
rs rsab b a
ab b ars rs

ab b a
b A h b A h

W k W k k
k k k

W k W k k


  

 
  


   

 
.  

Let 1 2{ , , , , , }ms i i i r  be the node sequence in the ascending pass of the sub-network rsG . The 

method of mathematical induction can also be used to prove that ( ) ( ( ))rs rs
ab b aW k W k k   is satisfied 

for all , , , ( ),rs rs
ar s a A b A h k  . 

We assume that ( ) ( ( ))rs rs
bc c bW k W k k   is satisfied for all , ( ), ( )rs rsb B i c A i     . For a given 

( )rsa B i  and ( )rs
ab A h  , the order of node bh  is less than that of node b al h i  , and hence we 

have  

( )

( )

( ) ( ) ( ( ))

( ( )) ( ( ) ( ( )))

( ( )).

b
rs

b

b
rs

b

rs rs s rs
ab ab h bc a

c A h

rs s rs
b a h c a b a

c A h

rs
b a

W k L k W k k

L k k W k k k k

W k k

 

    







     
  
        
  

 



   

Therefore, ( ) ( ( ))rs rs
bc c bW k W k k   is satisfied for all ( ), ( )rs rsb B i c A i   . In addition, if 1( )rsb A i , 

then we have bh s , since the destination is the only node with a smaller order than node 1i . 

Therefore, ( ) ( ( ))rs rs
ab b aW k W k k   is satisfied for all 1 1( ), ( )rs rsa B i b A i  . Hence, we have: 

( ) ( ) ( ( )) ( ( ))rs rs rs rs
ab ab b a b aW k L k L k k W k k      . This completes the proof. □ 

A.8. Proof of Proposition 8 

Proof. According to Proposition 7, we have * * *( ) ( ( )), , , , ,rs rs
ab b ak k k r s a b k     . Under Assumption 

A1, ( ) ( )a ak k     when the interval length approaches to zero . Since * * *( ) ( ( ))a a ap k k p k       , 

according to the proof of Proposition 6, we have 
* * * * * * * *( ( )) ( ( ) ( ( ))) ( ) ( )rs rs rs rs

ab a b a a a b bk p k k p k k p k k k                       .  

Substituting Eqs. (34) and (35) in Eq. (26), we have 

0

0

* * * * * * *
,

( ) ( )

* * * *
,

( )

* * * *
,

( ) ( ) ( ) ( ) ( ( )) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) (

a
rs rs

a a b

a
rs

a b

a

rs rs rs rs r rs rs
a ab a l ba a b k b

b B l b B l k

rs rs r rs rs
a l a b k b

b B l k

rs rs r rs rs
a l a b k b

u k u k k q k k p k u

k q k k u

k q k k u





     

   

   

   

  

   

 

 

  

 











  



0( )

),
rs

a bb B l k   
 





  

where 1
a

r
l   if al r  and 0

a

r
l   otherwise. This completes the proof. □ 

A.9. Proof of Proposition 9 

Proof. According to Propositions 4 and 7, we have 1 1( ) ( ( ))r s r s
ab b ak k k    , 2 2( ) ( ( ))r s r s

ab b ak k k    , 

and 1 2( ( )) ( ( ))r s r s
b a b ak k k k      . Therefore, we have 1 2( ) ( )r s r s

ab abk k  . This completes the proof. □ 
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A.10. Proof of Proposition 11 

Proof. Since s rs
rA A  , we have ( ) ( )rs sA i A i . Because link ( )sa A i  takes travelers closer to 

destination s under Definition D2, link a  also takes travelers from origin r closer to destination s. 

Hence, ( ) ( )rs sA i A i , ( )sa A i  . □ 

A.11. Proof of Proposition 13 

Proof. Let )) α h(y(α  and ) α h(α , where [ ( ), ( )]rs rs
a abk k   α  and [ ( ), ( )]rs s

a abk k   α . 

According to Definition D8, we only need to prove that ( ) ( )rs s
ab abk k    is satisfied for all 

, , , ( ),rs rs
ar s a A b A h k   and ( ) ( )rs rs

a ak k    is satisfied for all , , ( ),rsr s a A r k .  

 To simplify the notation, we add an apostrophe and a ditto to the variables corresponding to α  

and α , respectively. We consider a particular OD pair (r, s) and the corresponding destination s. 

According to Definition D1, we have ( ) ( )rs s
ab abL k L k  , , ( ), ( )rs rs rs

ai N a A i b A h     and 

( ) ( ),rs s
a aL k L k   ( )rsa A r  , since the likelihood of each intersection movement is calculated under 

the same set of link travel times.  

 To prove that ( ) ( )rs s
ab abk k    is satisfied for all , ( ),rs rs

aa A b A h k  , we only need to prove 

that ( ) ( )rs s
ab abW k W k   is satisfied for all , ( ),rs rs

aa A b A h k  . Let 1 2{ , , , , , }ms i i i r  be the node 

sequence in the ascending pass of the sub-network rsG . The method of mathematical induction can 

also be used to prove that ( ) ( )rs s
ab abW k W k   is satisfied for all , ( ),rs rs

aa A b A h k  . 

We assume that ( ) ( )rs s
ab abW k W k   is satisfied for all , ( ), ( )rs rsb B i c A i     . For a given 

( )rsa B i , and ( )rs
ab A h  , the topological order of node bh  is less than that of node b al h i  . 

According to Proposition 11, we have ( ) ( )rs s
b bA h A h  and hence we have  

( ) ( )

( ) ( ) ( ( )) ( ) ( ( )) ( ).
b b

rs s
b b

rs rs s rs s s s s
ab ab h bc a ab h bc a ab

c A h c A h

W k L k W k k L k W k k W k   
 

                    
      

    

In addition, if 1( )rsb A i , then we have bh s , since the destination is the only node with a 

smaller topological order than node 1i . Therefore, we have: ( ) ( ) ( ) ( )rs rs s rs
ab ab ab abW k L k L k W k      . 

Therefore, ( ) ( )rs s
ab abW k W k   is satisfied for all , ( ),rs rs

aa A b A h k  , and hence ( ) ( )rs s
ab abk k    is 

satisfied for all , ( ),rs rs
aa A b A h k K   . 

According to Eq. (31), we have 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
a a

rs s
a a

rs is s is s s s s
a a h ab a h ab a

b A h b A h

W k L k W k L k W k W k 
 

                  
      

  .  

Therefore, Eqs. (33) and (46) imply that ( ) ( )rs rs
a ak k    is satisfied for all , , ( ),rsr s a A r k . This 

completes the proof. □ 

A.12. Proof of Proposition 14 

Proof. Since *α  is a solution of the FP problem (49), we have * *( )α h α . According to Proposition 

13, we have * * *)) ( )) ( ) h(y(α y h(α y α . *( )y α  satisfies Eq. (36), and hence * *( )α y α  is a solution 

of the FP problem (36).□ 
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A.13. Proof of Proposition 16 

Proof. Let [ ( ), ( )]rs s
a abk k α , ( ) [ ( ), ( )]rs s

a abk k    α h α , ( ) [ ( ), ( )]rs rs
a abk k  α y α   , and 

( ( )) [ ( ), ( )]rs rs
a abk k    α h y α   . According to the definition of transfer function, we have 

( ) ( )rs rs
a ak k  , , , ( ),rsr s a A r t  and ( ) ( )rs s

ab abk k  , , , , ( ),rs rs
ar s a A b A h k   . According to 

Proposition 13, we have )) ( ))h(y(α y h(α . Therefore, ( ) ( )rs rs
a ak k   , , , ( ),rsr s a A r k  and 

( ) ( )rs s
ab abk k   , , , , ( ),rs rs

ar s a A b A h k   . Since s rs
rA A  , we have 1

a

r
lr
   for all sa A . 

i.e., any link in sA  is used at least by one OD pair. 

We have 

( )

( )

( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ,

rs rs
a

rs rs
a

a
s s

a

a
s s

a

s s
a

rs rs
ab ab

r s a A b A h

s s
ab ab

s r a A b A h

s s r
ab ab l

s r a A b A h

s s r
ab ab l

s ra A b A h

s s
ab ab

s a A b A h

k k

k k

k k

k k

k k

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

  

  

 

  

 

 

  

and hence 

1
( ) ( )

( ) ( )

1

( ( ))- ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )- .

rs rs rs
a

rs s s
a

rs rs rs rs
a a ab ab

k r s k r sa A r a A b A h

rs rs s s
a a ab ab

k r s k sa A r a A b A h

k k k k

k k k k

   

   

  

  

    

    



    

   

h y α y α

h α α

   

  

We also have: 

 
 

( ( ))- ( ) max ( ) ( ) , ( ) ( )

max ( ) ( ) , ( ) ( )

( )- .

rs rs rs rs
a a ab ab

rs rs s s
a a ab ab

k k k k

k k k k

   

   





   

   



h y α y α

h α α

   

  

This completes the proof. □ 

A.14. Proof of Proposition 18 

Proof. Under Assumption A3, the minimum travel time for travelers departing from node i to 

destination s during interval k, i.e., ( )is k , is continuous with respect to α , because ( )is k  is the 

minimum travel time of all routes connecting i and s, and all route travel times are continuous with 

respect to α  (See Proposition 17). Moreover, the link travel time ( )a k  is continuous with respect to 

α . Hence, π , which is defined by nested functions as shown in Eqs. (1) and (2), is a continuous 

function of the intersection movement choice probability vector α . This further implies that )h(α  

defined by Eqs. (28)-(33) is continuous with respect to π . Therefore, )h(α  is a continuous function of 

α .□ 
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A.15. Proof of Proposition 20 

Proof. According to definition, α  is the vector of intersection movement choice probabilities, and 

hence we have α , where   is the domain of the function )h(α  described by  

( ) ( )

{ : ( ) 1, , , , ( ) 1 , , , , }
rs rs

a

rs rs rs
a D ab

a B r b B h

k r R s S k K k r R s S a A k K 
 

              α 0 .  

Obviously,   is a compact and convex nonempty set. )h(α  is defined by Eqs. (28)-(33), and Eqs. (32) 

and (33) imply that the codomain of )h(α  is a subset of  , i.e., )h(α . According to Proposition 

18, )h(α  is a continuous function of α . By Brouwer’s FP theorem, the FP )α h(α  has at least one 

solution. This completes the proof. □ 

Appendix B: The modified link transmission model 

B.1. Notations for the modified link transmission model 

The following notations are used throughout this subsection: 

( )rsN k  cumulative number of vehicles that depart from origin r to destination s by the end of interval 

k. 

( )r
aN k  cumulative number of vehicles that depart from origin r by the end of interval k and travel 

through link ( )a A r . 

( )rs
aN k  cumulative number of vehicles that depart from origin r by the end of interval k and travel 

through link ( )a A r  to destination s. 

( )r
aM k  cumulative number of vehicles that depart from origin r and enter link ( )a A r  by the end of 

interval k. 

( )rs
aM k  cumulative number of vehicles that depart from origin r to destination s and enter link 

( )a A i  by the end of interval k. 

( )aS k  maximum possible number of vehicles leaving link a during interval k. 

( )aR k  maximum possible number of vehicles received by link a during interval k. 

( )abG k  number of vehicles that travel from link a to link ( )ab A h  during interval k. 

( )r
aG k  number of vehicles that depart from origin r and enter link ( )a A r  during interval k. 

( )abR k  maximum possible number of vehicles from link a received by link ( )ab A h  during interval 

k. 

( )r
aR k  maximum possible number of vehicles from origin r received by link ( )a A r  during 

interval k. 

( )abS k  maximum possible number of vehicles sent from link a to link ( )ab A h  during interval k. 

( )aC k  outflow capacity of link a during interval k. 

( )aQ k  inflow capacity of link a during interval k. 

 ( )rsq k  demand between (r, s) generated during interval k. 

B.2. Link model 

 We adopt the modified LTM as the traffic flow model in this paper. It is based on the LTM that 

assumes a triangular fundamental diagram (see Fig. 18). Five parameters are found in the diagram, 
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namely a free-flow speed ( v ), a backward shock-wave speed ( w ), a maximum flow or capacity ( maxq ), 

a critical density ( crit ), and a jam density ( jam ). Only v , maxq  and jam  are used to define the 

diagram and the other two parameters can be deduced from them. 

The LTM consists of two types of submodels, namely link and node models. In the link model, the 

LTM uses Newell’s (1993) cumulative flow theory to depict traffic propagation on a link and 

determine the sending and receiving flows of that link. The sending flow of a link is constrained by 

both the boundary condition at the upstream end of that link and the outflow capacity of that link; the 

receiving flow of a link is constrained by both the boundary condition at the downstream end of a link 

and the inflow capacity of that link. According to Newell's simplified theory, if a free-flow traffic state 

occurs at the downstream end of a link at the end of interval k, then this state must have been emitted 

from the upstream end /a ad v  time units earlier (i.e., the free-flow travel time 0
a ), where av  is the 

free-flow speed on link a; if a congested traffic state occurs at the upstream end of a link at the end 

time of interval k, then this state must have been emitted from the downstream end of the link (–

/a ad w ) time units earlier, where aw  is the free-flow speed on link a. The sending flow and the 

receiving flow of link a can be mathematically expressed as follows: 

( ) min{ ( 1 / ( )) ( ), ( )}a a a a a aS k U k d v V k C k    , and (60) 

( ) min{ ( 1 / ( )) ( ), ( )}a a a a a jam a aR k V k d w d U k Q k      . (61) 

B.3. Node model 

The node model in the LTM is used to determine the transition flows from upstream links to 

downstream links at an intersection, which rely on the sending and receiving flows corresponding to 

the intersection movements. For a particular link a, its sending flow can be disaggregated into sending 

sub-flows by its receiving links, we have: 
1( ) ( ( ( ) ( )) / ) ( )ab ab a a a abS k U U V k S k V k   , (62) 

where 1( ( ) ( ))a a aU V k S k   is the time instant at which ( ) ( )a aV k S k  vehicles have cumulatively 

entered link a. Because this time instant divided by the interval length   may not be an integer, linear 

interpolation is used to calculate (.)abU . The linear interpolation may also be used for other cumulative 

flows. 

Since the inflow capacity of each receiving link is limited, a priority parameter ( )abp k  is adopted 

to assign the receiving flow to link b from each upstream link a. The resulting receiving sub-flow 

( )abR k  is given as follows: 

( ) ( ) ( )ab ab bR k p k R k . (63) 

In this paper, the priority parameters are assumed to be determined by the outflow capacity of each 

link, and hence the following is used: 

( )

( )
( ) , , ( )

( )
b

a
ab b

a
a B l

C k
p k b a B l

C k


  


.  

It is assumed that the road traffic flows satisfy link FIFO, i.e., vehicles that enter a link earlier 

leave it sooner. According to this assumption, we can deduce a time instant k
a  by which vehicles 

entering link a completely leave this link before the end of interval 1k  . This time instant is 



 37

determined by the sending and receiving sub-flows associated with link a, and can be formulated as 

follows: 

max{ : 0 , ( / ) ( ) min{ ( ), ( )}, ( )}k
a ab ab ab ab ak U V k S k R k b B h            . (64) 

Then, the transition flow ( )abG k  can be formulated as follows: 

( ) ( / ) ( )k
ab ab a abG k U V k   . (65) 

B.4. Loading of demand at nodes  

We assume that vehicles from upstream links have a higher priority to enter downstream links than 

the vehicles generated at the intersection of both upstream and downstream links, and the vehicles 

generated at the intersections (i.e., origins) can enter downstream links only if the capacities of 

downstream links are not fully used. The receiving flow of the downstream link from an origin can be 

calculated by: 

( )

( ) ( ) ( )r
a a ba

b B r

R k R k G k


   . (66) 

By definition, we have: 

( 1) ( ) ( )rs rs rsN k N k q k   . (67) 

The intersection movement choice probabilities can be used to calculate the cumulative generated 

flows with respect to each downstream link, given by: 

( 1) ( ) ( ) ( )rs rs rs rs
a a aN k N k k q k   , (68) 

where the second term on the right hand side of Eq. (68) is the flow from origin r passing through link 

a during interval k to destination s. 

By definition, we also have: 
( 1) ( 1)r rs

a a
s

N k N k   . (69) 

The sending flow and the transition flow from origin i to link a can then be formulated as follows: 

( ) ( 1) ( )r r r
a a aS k N k M k   , and (70) 

( ) min{ ( ), ( )}r r r
a a aG k S k R k . (71) 

B.5. Update cumulative flows 

If Model I is adopted, then the inputs to the LTM are OD-based intersection movement choice 

probabilities, which are used to update the cumulative flows. Using the link and node models, we can 

determine the inflow and outflow of each link, and consequently update the cumulative inflows, given 

by: 

( )

( 1) ( ) ( ) ( )a

a

l
a a ba a

b B l

U k U k G k G k


    , (72) 

where the second and third terms in the right hand side of Eq. (72) are the inflows from upstream links 

and from the origin node, respectively. 

The cumulative number of vehicles that enter the network can be updated as follows: 
,

,

( 1) ( / ),

( 1) ( / ),

r r r k
a a a

rs rs r k
a a a

M k N

M k N

 

 

  


 
 (73) 
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where ,r k
a  is the time instant before which vehicles from origin r has completely entered link a by the 

end of interval k + 1, and ,r k
a  can be expressed as follows: 

, max{ : 0 ( 1) , ( / ) ( ) ( )}r k r r r
a a a ak N M k G k           .  

Similarly, the last vehicle that passes the downstream boundary of link a during interval k + 1 

enters link a at time instant k
a  (see Eq. (64)). Hence, we have: 

( 1) ( / ),

( 1) ( / ),

k
a a a

k
ab ab a

V k U

V k U

 

 

  


 
 and (74) 

( 1) ( / ),

( 1) ( / ).

rs rs k
a a a

rs rs k
ab ab a

V k U

V k U

 

 

  


 
 (75) 

The conservation law of traffic flows at intersections can be used to determine the cumulative link 

inflows with respect to OD pair (r, s) into downstream link a: 

( )

( 1) ( 1) ( 1)a

a

l srs rs r
a ba a a

b B l

U k V k M k


     , (76) 

where r
a  equals 1 if ( )rsa A r  and 0 otherwise. 

The intersection movement choice probabilities can be used to calculate the cumulative inflows on 

each approach with respect to each OD pair or each destination and downstream link as follows: 

( 1) ( ) ( )[ ( 1) ( )]rs rs rs rs rs
ab ab ab a aU k U k k U k U k     . (77) 

Then, the total cumulative flows on each approach to a downstream link can be aggregated by 

summing up the cumulative flows to all OD pairs through the downstream link, given by 
( 1) ( 1)rs

ab ab
r s

U k U k   . (78) 

Using the link and node models, we can determine the inflow and outflow of each link, and 

consequently update the cumulative inflows. 

If Model II is adopted, then the inputs of the LTM are destination-based intersection movement 

choice probabilities, and hence Eqs. (75)-(78) are, respectively, replaced by the following equations to 

update the cumulative flows: 

( 1) ( / ),

( 1) ( / ),

s s k
a a a

s s k
ab ab a

V k U

V k U

 

 

  


 
 (79) 

( )

( 1) ( 1) ( 1)a

a

l ss s
a ba a

b B l

U k V k M k


     , (80) 

( 1) ( ) ( )[ ( 1) ( )]s s s s s
ab ab ab a aU k U k k U k U k     , and (81) 

( 1) ( 1)s
ab ab

s

U k U k   . (82) 

B.6. MLTM solution algorithm 

The MLTM solution algorithm can be summarized as follows: 

Step 0: Initialization. Initialize all the cumulative inflows and outflows to be zero, and set 0k  . 

Step 1: Determining sending and receiving flows by the link model. Use Eqs. (60) and (61) to 

determine the sending flow ( )aS k  and the receiving flow ( )aR k  for all a A . 

Step 2: Determining transition flows by the node model. Compute the transition flow ( )abG k  for all 

, ( )aa A b A h   by Eq. (65).  
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Step 3: Loading origin flows into networks. Update the cumulative departure flows by Eqs. (67)-(69) 

and compute the transition flow ( )r
aG k  for all , ( )r R a A r   by Eq.(71).  

Step 4: Cumulative flow update. Compute the cumulative inflows and outflows by Eqs. (72)-(78) for 

Model I, or by Eqs. (72)-(74) and Eqs. (79)-(82) for Model II.  

Step 5: Checking the termination criterion. Terminate the algorithm if k K . Otherwise, set 1k k  , 

and return to Step 2. 

The MLTM is a physical queue model that considers the physical lengths of vehicles and the 

storage capacity of each link. Once a physical queue fills up all the vacant spaces of a link (i.e., the 

queue uses up the storage capacity of a link), the queue will pass over the upstream junction and spill 

backward to upstream links. In the physical-queue model, link inflow constraints (e.g., the receiving 

flow conditions in the MLTM) are considered and the link inflow drops to zero if a queue spills 

backward to the upstream boundary of a link. 
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Table 1 
The parameters of emission rate functions (Penic and Upchurch, 1992). 

Grade of 
roadway 

1g    1 0g    0 1g   1 2g   2 g  

( )mA s  0.0118151.7325 se  0.0118151.7325 se  0.0407321.5718 se  0.0502314.2279 se  1.26241.1096s  
( )mB s  0.0118151.7325 se  0.0407321.5718 se  0.0502314.2279 se  1.26241.1096s  1.11113.0515s  NOx 

mC    1000   

( )mA s  0.0201182.9262 se  0.0201182.9262 se  0.0150622.7843 se  0.023644307248 se  0.0334374.2789 se  
( )mB s  0.0201182.9262 se  0.0150622.7843 se  0.023644307248 se  0.0334374.2789 se  0.0407085.2305 se  VOC 

mC    10000   

( )mA s  0.00931923.0741 se  0.00931923.0741 se  0.0145613.3963 se  0.0314544.6927 se  0.0473655.5812 se  
( )mB s  0.00931923.0741 se  0.0145613.3963 se  0.0314544.6927 se  0.0473655.5812 se  0.0643926.5785 se  CO 

mC    10000   

 ( )h g  2g   1g   g  1g   2g   

 
Table 2 
The monetary valuation of each type of pollutants (Mayeres et al., 1996). 

Type of pollutant m NOx VOC CO 

m  (in Euros/kg) 13.80 2.95 0.01 

 
Table 3 
The path sets under Definitions D1 and D2 in Example 1. 
 Under Definition D1 Under Definition D2 
 OD pair (1,3) OD pair (2,3) OD pair (1,3) OD pair (2,3) 

Path set 
1-2-6-3 
1-4-5-3 

2-4-5-3 
2-6-3 
2-4-6-5-3 

1-2-4-5-3 
1-2-6-3 
1-2-6-5-3 
1-4-5-3 

2-4-5-3 
2-6-3 
2-4-6-5-3 

 
Table 4 
Intersection movement choice probabilities under the free-flow condition in Example 1. 
 Under Definition D1 Under Definition D2 
Intersection movement OD pair (1,3) OD pair (2,3) OD pair (1,3) OD pair (2,3) 
2-6-3 1 0.731 0.731 0.731 
4-6-5 0 0.269 0.269 0.269 
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Table 5 
The free-flow travel time and the number of lanes of each link in the Sioux Falls network. 

Link 
numbers 

0
a  (s) Number of

 lanes 
Link 

numbers 
0
a  (s) Number of

 lanes 
Link 

numbers 
0
a  (s) Number of

 lanes 

1 and 3 140 4 22 and 47 120 1 46 and 67 100 2 
2 and 5 100 4 25 and 26 70 2 49 and 52 50 1 

4 and 14 120 1 27 and 32 120 2 50 and 55 70 3 
6 and 8 100 3 28 and 43 140 2 53 and 58 50 1 

7 and 35 100 4 29 and 48 120 1 56 and 60 100 4 
9 and 11 50 3 30 and 51 190 1 59 and 61 100 1 

10 and 31 140 1 33 and 36 140 1 62 and 64 140 1 
12 and 15 100 1 34 and 40 100 1 63 and 68 120 1 
13 and 23 120 2 37 and 38 70 4 65 and 69 50 1 
16 and 19 50 1 39 and 74 100 1 66 and 75 70 1 
17 and 20 70 1 41 and 44 120 1 70 and 72 100 1 
18 and 54 50 4 42 and 71 100 1 73 and 76 50 1 
21 and 24 240 1 45 and 57 100 3    

 
Table 6 
The average CPU time (in s) for each component of the algorithm 

Definition Model Initialization DNL
Link travel time
determination

SNL 
Gap 

determination 
One iteration

D1 I 0.3819 0.4058 0.0048 0.2811 0.0641 0.7558 
D2 I 0.7606 0.5269 0.0043 0.3466 0.0816 0.9595 
D2 II 0.1594 0.1134 0.0039 0.0922 0.0491 0.2586 

 
 

( )rs
au k

( )rs
ab A h

( )rs
abu k

ahal a 

bh
 

Fig. 1. A sketch of intersection movements. 
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Generate sub-networks for all OD pairs 
or destinations

Implement dynamic network loading

Update link travel times

Implement stochastic network loading

Update intersection movement choice 
probabilities

Stop

Convergence?

Initialize intersection movement choice 
probabilities

No

Yes

 
Fig. 2. The general scheme of the whole procedure for solving the intersection-movement-based 

SDUO problem. 

max
rsq

 
Fig. 3. The profile of OD demand. 
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Fig. 4. An illustration network for Example 1. 
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Fig. 5. The Sioux Falls network. 
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Fig. 6. The sub-network of OD pair (11, 22) under the two definitions. 
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Fig. 7. The sub-network with respect to destination 22. 

 
 

 
Fig. 8. The MPE of route choice probability. 
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Fig. 9. The convergence of the solution algorithm for the SDUO problem ( 1.0  ). 

 

Fig. 10. The influence of the value of the dispersion parameter θ on algorithmic convergence. 

 

Fig. 11. The influence of the value of the dispersion parameter θ on network performance for various 
models in Example 2. 
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1 2

(2, 0.5, 4, 20)

(4, 1.0, 2, 40)
 

Fig. 12. The test network for Examples 3 and 4. 

 

Fig. 13. The influence of the value of the dispersion parameter θ on network performance in Example 
3. 

 

 

Fig. 14. The influence of outflow capacity improvement of a link on network performance in Example 
4. 
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Fig. 15. Test networks for Examples 5 and 6. 

 

 

Fig. 16. The increase in (a) TSTT and (b) CTVE after the addition of link 2-3. 
 

 

Fig. 17. CTVE against the traffic demand of OD pair (1,2). 



 53

q

maxq

jamcrit

v
w

 
Fig. 18. A triangular fundamental diagram (Yperman, 2007). 

 


