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Abstract

This paper presents a dynamic traffic modelling framework based upon the varia-
tional formulation of kinematic waves. We compare the effectiveness of this rela-
tively recent numerical method with the traditional Godunov-based cell transmis-
sion method on various aspects including modelling shocks, dispersion of vehicle
platoons, moving bottlenecks, and traffic characteristics with respect to real-world
observations made in Central London, UK. The results suggest that the variational
method is able to produce high quality estimates both theoretically and empirically.
This study opens up a new research direction in the area of urban traffic modelling
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1 Introduction

Understanding the characteristics of urban congestion is a prerequisite for deriving effec-
tive transport policies and management plans. A previous study reveals that 25%-30%
of congestion observed in Central London (UK) could be reduced by effective traffic
management (Chow et al., 2014). Compared with motorways, there has not been much
research conducted on urban streets due to the complexity of urban traffic dynamics
and lack of relevant data. Recently, the increasing availability of data from different
sources has enabled us to carry out more comprehensive research on urban network traf-
fic modelling. Among all traffic models proposed in the literature, kinematic wave model
remains the most widely accepted one due to its ability to capture realistic traffic be-
haviour such as spillover and propagation of shockwaves with parsimonious mathematical
structure. The kinematic wave model is proposed by Lighthill and Whitham (1955) and
Richards (1956), and hence it is also known as the LWR (Lighthill-Whitham-Richards)
model. In the LWR model, traffic flow f(x, t) at location x and time t is related to the
associated density value ρ(x, t) through a flow-density mapping Φ which is known as the
fundamental diagram:

f(x, t) = Φ[ρ(x, t)]. (1)

The evolution of density is governed by the following conservation law (LeVeque, 1992):

∂ρ(x, t)

∂t
+
∂f(x, t)

∂x
= 0. (2)

The partial differential equation (PDE) depicted in Equation (2) is usually solved by
some first-order Godunov (1959) discretization schemes which include the popular cell
transmission method (CTM) (Daganzo, 1994). Since Daganzo (1994), CTM has been
applied in a number of studies ranging from freeways (e.g. Gomes and Horowitz (2006),
Chow et al. (2008)) to urban networks (e.g. Ziliaskopoulos (2000), Lo and Szeto (2002),
Chow et al. (2010)). Despite its popularity, CTM could produce error at discontinuity
(i.e. shock) in its solution (Daganzo (2006), Mazare et al. (2011)). Moreover, it is also
known that CTM is ineffective in modelling moving bottlenecks induced by slow-moving
vehicles such as trucks and buses in the urban area (Lebacque et al. (1998), Mazare et al.
(2011)).

Daganzo (2005a) and Daganzo (2005b) propose an alternative solution method to LWR
model which is known as the variational method. The variational method integrates
Equations (1) and (2) into one single Hamilton-Jacobi-Bellman (HJB) equation (see
Equation (15)). Following this, the LWR model can be solved by dynamic programming
(see Equation (18)) with any concave fundamental diagram Φ under this variational
formulation. The variational method shows significant improvement in terms of solution
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accuracy with respect to the analytical solution over the Godunov scheme (Daganzo and
Menendez, 2005). Daganzo and Menendez (2005) and later Mazare et al. (2011) also
present an analysis of moving bottleneck on freeways using the variational method that
is not easy to capture on a Godunov platform (see Lebacque et al. (1998)). Daganzo
(2006) and Laval and Leclercq (2013) discuss the duality of the variational formulation
in which the solution of the HJB can be expressed in Lagrangian and ’time’ (’T-model’)
coordinates in addition to the traditional Eulerian coordinate. Mehran et al. (2012)
present a data fusion algorithm based upon the variational formulation of kinematic
waves with triangular fundamental diagram.

Most previous studies on the variational formation of kinematic waves are either theo-
retical analysis or applications on freeways, there have not been many studies on urban
street networks. This study contributes to the literature by presenting a variational-
based network modelling framework which considers various aspects in urban area in-
cluding traffic signals, slow-moving buses, and dispersion of platoons. We also compare
the performance of this variational method with the established CTM over a range
of scenarios and a case study in Central London, UK. This paper is organised as fol-
lows: Section 2 presents a modelling framework for dynamic network traffic including
a discussion on CTM and variational method. Section 3 presents a range of numerical
experiments that aim to compare the characteristics of CTM and the variational method
over different applications. Section 4 presents the case study with traffic data collected
from Tottenham Court Road in Central London, UK. Finally, Section 5 presents some
concluding remarks.

2 Dynamic network model

A dynamic network model consists of a node component and a link component as shown
in the following sections.

2.1 Node model

Consider a specific node m with Im incoming links and Jm outgoing links. Following
Nie et al. (2008), Chow et al. (2010), and others, we define a split matrix βk = [βij(k)],
which has a dimension of (Im × Jm), for the node. The split ratio is updated regularly
(say, every 15-min) over a sampling period k based on field observations. The element
βij(k) in the split matrix βk specifies the proportion of traffic on each incoming link
i, where i = 1, 2, ..., Im, that is heading to each outgoing link j, where j = 1, 2, ..., Jm,
through node m during time interval k. The principle of conservation requires that

Jm∑
j=1

βij(k) = 1, (3)
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for all i = 1, 2, ..., Im. The split ratios βk may also be determined endogenously by
traffic conditions in the network through a dynamic traffic assignment model (see Lo
and Szeto (2002), Heydecker and Addison (2005), Chow (2009)). However, detailed
discussion of dynamic traffic assignment model is beyond the scope of the present paper.
Without consideration of excessive blocking (i.e. traffic can be freely flowing through
node without restraint due to downstream queue), the traffic volume fij(k) during time
k flowing from incoming link i to outgoing link j is determined as:

fij(k) = βij(k)λi(k), (4)

where λi(k) is total traffic volume on link i wanting to get through node m during time k.

If the node is controlled by a traffic signal, the signalling effect can be captured by
associating a binary variable γij(t) with the term on the right-hand-side in Equation (4)
(Chow et al., 2010), i.e.

fij(k) = βij(k)λi(k)γij(t), (5)

in which:

γij(t) =

{
1, if movement from i to j is given a green signal

0, if movement from i to j is given a red signal
(6)

The formulation (6) works for both fixed-time plans (which operate according to a pre-
defined timing plan) and responsive controllers which operate based on real-time vehicle
actuations (Chow et al., 2010). Moreover, the corresponding total outflow µj(k) through
node m to link j will be

µj(k) =

Im∑
i=1

fij(k). (7)

The formulations (4) and (7) can be extended to capture excessive blockage through
considering the available space at the downstream (Nie et al. (2008), Kurzhanskiy et al.
(2009), Zhang et al. (2013)). Let Qj(k) be the maximum flow that can be accommodated
by link j at time k. This Qj(k) can be estimated by various link traffic models (see Sec-
tion 2.2) while for now we assume that it is known. Nie et al. (2008) and Kurzhanskiy
et al. (2009) propose to adjust the flow fij(k) in Equation (4) as

f̂ij(k) =
min(µj(k), Qj(k))

µj(k)
fij(k), (8)
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It is noted that if µj(k) ≤ Qj(k), which implies there is enough capacity on link j to
accommodate the incoming traffic, then Equation (8) will produce an identical estimate
of fij(k) as Equation (4). If µj(k) > Qj(k) (i.e. excessive blockage occurs), Equation
(8) states that contributions fij(k) from all links i should be reduced by a common

factor
Qj(k)

µj(k)
. This guarantees the predefined split ratio matrix β remains unchanged.

Following the adjustment by Equation (8), we also need to adjust λi(k) accordingly as

λ̂i(k) =

Jm∑
j=1

f̂ij(k), (9)

where λ̂i(k) ≤ λi(k).

2.2 Link model

The link model describes the dynamic propagation of traffic along the link. The point
queue model (Zhang et al., 2013), which is also known as the bottleneck model (Vickrey,
1969) or deterministic queueing model (Chow, 2009), is one of the simplest represen-
tations of link traffic propagation. The point queue model considers each link to be
consisting of two parts: a freely flowing part with a flow-invariant travel time combined
with a queue of traffic at its downstream end being discharged with a maximum rate.
The traffic queue is considered to be stacking up vertically and hence takes no physical
space of the road. Recent studies (Han et al. (2013a), Han et al. (2013b)) show that
this point-queue model can be implemented under the variational method that we are
going to discuss in the later sections. Nevertheless, ignoring the spatial effect of traffic
can lead to ill-representation of physical behaviour as shown by a number of previous
studies including Szeto and Lo (2006) and Zhang et al. (2013). Considering plausibility,
this study will use the LWR model and the following sections will present two of the
solution schemes: cell transmission and variational methods.

2.2.1 Cell transmission method

Cell transmission method (CTM) is proposed by Daganzo (1994) and Daganzo (1995)
as a Godunov based discretization scheme of the LWR model. Under CTM, the entire
road network is discretized into a collection of sections or ’cells’ as shown in Figure 1
in which the cells are numbered from downstream 0, to upstream N − 1. Given the
outflow fi(t) from each cell i in time interval t, we can derive the state equation on the
corresponding density ρi from conservation law as
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ρi(t+ 1) = ρi(t) +
∆t

∆xi
[fi+1(t)− fi(t)] , (10)

where ∆t and ∆xi are respectively the lengths of the simulation time step and cell i.
Equation (10) can indeed be regarded as a discrete version of Equation (2). The flow
fi(t) between each pair of cells (i, i − 1) is related to the associated densities (ρi, ρi−1)
through a triangular fundamental diagram (Figure 2) at each cell. Each cell i is associ-
ated with a capacity Qi which specifies the maximum flow that can be discharged from
that cell, and a jam density ρ̄i which is the maximum traffic density that can be stored
in the cell. When there is no congestion, traffic moves through cell i at a free flow speed,
vi. The quantity wi specifies the backward propagation speed of congestion along cell i.
The density associated with the capacity flow is known as the critical density ρci.

With this piecewise linear specification, the outflow fi(t) from cell i is determined from
the traffic densities ρi and ρi−1 as

fi(t) = min {vρi(t), Qi, Qi−1, w [ρ̄i−1 − ρi−1(t)]} , (11)

which can be viewed as a mathematical expression of the triangular flow-density rela-
tionship depicted in Figure 2. The outflow function (11) is due to the assumption of the
triangular fundamental diagram shown in Figure 2. As shown in Laval (2004), Szeto
(2008), Jin et al. (2009), Jabari and Liu (2012), and others, the outflow function can be
generalized as

fi(t) = min {Si(t), Ri−1(t)} , (12)

where Si(t) and Ri−1(t) are regarded as the sending and receiving functions respec-
tively. The sending and receiving functions represent respectively the traffic demand for
advancing from upstream i to downstream i−1, and the supply at the downstream i−1
for receiving incoming traffic from the upstream i. The general form shown in (12) al-
lows the use of different forms of fundamental diagrams in addition to the triangular ones.

The cell transmission method has been applied to a number of studies on urban traf-
fic modelling and optimisation (see: Ziliaskopoulos (2000), Szeto and Lo (2006), Chow
et al. (2010), Zhu et al. (2013)). Nevertheless, a weakness of CTM for traffic modelling
is that numerical errors arise at discontinuities (i.e. ’shocks’) of its solutions. The flow
and density profiles are smeared in regions around the shocks and this feature is termed
as ’viscosity’ by LeVeque (1992). Moreover, the space-time discretization under CTM is
limited by the CFL (Courant-Friedrichs-Lewy) condition (Courant et al., 1928) which

requires the time step size ∆t is set such that ∆t ≤ min
i

∆xi
vi

, where min
i

∆xi
vi

refers to the

smallest ratio of cell length to the associated free–flow speed along the section. This is
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to ensure the numerical stability and non-negativity of traffic quantities by constraining
traffic not travel further than the length of the cell in one simulation time step. It is also
revealed that CTM, as a Godunov scheme, is ineffective in modelling moving bottleneck,
say congestion caused by slow moving buses in urban network (Lebacque et al., 1998).

2.2.2 Variational method

The variational method can be dated back to the seminal work by Newell (1993) which
proposes a simplified version of kinematic wave model and expresses the solutions in
terms of cumulative count of traffic N(x, t) at x and t, where by definition

∂N

∂t

∣∣∣
(x,t)

= q(x, t), (13)

−∂N
∂x

∣∣∣
(x,t)

= ρ(x, t). (14)

It is shown in Newell (1993) that cumulative traffic that passes by a location at a par-
ticular time can be determined by its upstream and downstream boundary conditions
by simple translations of cumulative curves. This simplified kinematic wave theory has
been applied to development of efficient network loading models (Yperman (2007), Bal-
ijepallia et al. (2013)), sensitivity analysis of traffic control (Chow and Lo, 2007), and
urban traffic optimisation (Han et al., 2014). Daganzo (2005a) and Daganzo (2005b) pro-
pose an numerical scheme using dynamic programming for solving LWR model based
upon Newell (1993) and which is now known as the variational method. Following speci-
fications in Equations (13) and (14), the LWR equations (1) and (2) can be integrated as:

∂N

∂t

∣∣∣
(x,t)

= Φ

[
−∂N
∂x

∣∣∣
(x,t)

]
, (15)

Equation (15) is recognised as a Hamilton-Jacobi equation where the fundamental dia-
gram Φ is regarded as the Hamiltonian function. Given the initial and boundary con-
ditions, it is shown that this Hamilton-Jacobi equation (15) can be solved by dynamic
programming with unprecedented accuracy and efficiency if the underlying fundamental
diagram is concave (Daganzo, 2005b). To solve this variational formulation, Daganzo

(2005a) introduces the following cost function in wave speed u(x, t) =
∂q

∂ρ

∣∣∣
(x,t)

over (x, t):

R(u, x, t) = sup
ρ

(Φ(ρ, x, t)− u(x, t)ρ). (16)

This cost function R is recognised as a Legendre-Fenchel transformation of the funda-
mental diagram Φ (Daganzo (2006), Mazare et al. (2011)). As explained in Daganzo
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(2005a), physically the function R can be interpreted as the maximum rate at which
traffic can pass an observer moving with speed u at (x, t). To illustrate this variational
method, we now consider a link which starts at location x0 and ends at x1. We also
define B be the set of initial condition N(x, 0) at time t = 0 for all locations x; boundary
condition N(x0, t) at upstream end x0; boundary condition N(x1, t) at downstream end
x1. Given this set of boundary values B, the HJB Equation (15) can be solved with the
cost function (16) as (Daganzo (2005b), Laval and Leclercq (2013)) :

N(x, t) = min
B

{
NB(xB, tB) + (t− tB)R

(
x− xB
t− tB

)}
, (17)

where NB is the set of known values of N given at (xB, tB) on boundary B. Equation
(17) is known as the Lax-Hopf formula (Mazare et al., 2011), and it can be solved by a
number of effective and high quality solution algorithms including the event-based grid-
free algorithm proposed by Mazare et al. (2011) that does not require predefinition of a
computational space-time grid. A disadvantage of the event-based algorithm by Mazare
et al. (2011) is that it cannot incorporate space-time dependent fundamental diagrams
and hence it is inconvenient for modelling local and temporary events such as traffic
lights and incidents. Applying the principle of optimality in dynamic programming
(DP), Daganzo (2005b) presents a forward DP-based method for solving Equation (17).
The DP-formulation can be written for a general concave fundamental diagram over a
discrete space-time grid as:

N(x, t) = min
u∈U
{N(x− u∆t, t−∆t) + ∆tR(u)}, (18)

where U is the set of all possible wave speeds in the fundamental diagram Φ. Unlike
Godunov schemes and CTM, the spatial interval ∆x is endogenously determined from
the time step ∆t through the term ’u∆t’ with the set of shockwave speeds u ∈ U.

Consider a simple case where Φ is triangular as the one depicted in Figure 2 in which the

wave speed u =
x− xB
t− tB

can only take two possible values: v (forward) and w (backward),

the cost function R becomes:

R(u, x, t) =

{
0, if u = v

wρ̄, if u = w
(19)

for all (x, t). Equation (18) can then be reduced to:

N(x, t) = min{N(x− v∆t, t−∆t), N(x− w∆t, t−∆t) + ρ̄w∆t}, (20)

which is consistent with the theory presented in Newell (1993). It is shown that, unlike
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CTM, solution derived from (20) with triangular Φ is exact.

Effect of traffic lights at a specific location x∗ or moving bottlenecks (e.g. slowing buses)
can be captured in Equation (18) through introducing ’shortcuts’ (Daganzo, 2005b). A
traffic light at x∗ can be modelled by introducing the following revised cost function
R∗(0, x∗, t) associated with wave speed u = 0 at x∗:

R∗(0, x∗, t) =

{
qmax, t ∈ G
0, t ∈ R

(21)

The idea of cost function (21) is indeed the same as (6) which regulates the capacity
flow at x∗ according to a predefined timing plan. To simulate the effect of a moving
bottleneck C, which can be a slow moving bus or truck on the road, with a trajectory
x = C(t) over time t, one can introduce the following shortcut:

R∗(u, x, t) =

{
RC(t), if x = C(t), u = dC

dt ,

R(u, x, t), otherwise,
(22)

where 0 ≤ RC(t) ≤ R(dCdt ), and RC(t) physically represents the maximum passing rate
of traffic that can pass through the moving bottleneck C.

3 Numerical examples

This section presents some numerical experiments comparing traffic characteristics pro-
duced by the two numerical methods.

3.1 Viscosity at shocks

Figures 3 and 4 show the density maps generated respectively by CTM and variational
method over time t along a link which is 0.5-mile with a traffic light located in the middle
of it. For the variational method, the density maps are derived from the cumulative flow

N(x, t) as ρ(x, t) = −∆N

∆x

∣∣∣
(x,t)

over (x, t). The simulation time step ∆t for both methods

is set to be one second. Under CTM, the road section is discretized into 28 cells which
gives a spatial discretization ∆x to be 0.01786 (mile). The space-time discretization is
set such that the CFL condition is satisfied for all fundamental diagrams (see Section
3.2 for details) adopted in the study. To maintain consistency, the density map under
variational method are generated with the same spatial granularity. It is also worthy to
note that the computational complexity of both methods are the same with the same
space-time discretisation and fundamental diagrams adopted. The computational time
of both methods are both linear in the number of time steps and number of locations
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considered. For each time and location point, both methods solve a minimisation prob-
lem (Equation (12) for CTM; Equation (18) for variational method). The only difference
is that CTM solves for flows and densities while variational method solves for cumulative
flows.

In the example, traffic is loaded into the link at saturation flow, qmax, which is 1800
(veh/hr). The reason of using such high loading rate is to magnify the features of the
numerical methods. The jam density ρ̄ is set to be 240 (veh/mile). We first adopt a tri-
angular fundamental diagram (Figure 5a) with which the speed of traffic under free-flow,
v, is 30 (mph) for all densities ρ < ρc. The critical density ρc is 1800

30 = 60 (veh/mile).
The parameter w, which is the speed of the backward-propagating congestion, is taken
as 10 (mph) for all ρ > ρc. The red and green durations of the traffic light is set to be
30 (sec) and 30 (sec) respectively. During the green period, traffic is discharged at qmax
and 0 (vph) during the red period. Consequently a queue is developed and propagates
backward to the upstream end during red phase. As shown in Figure 3a, it is clear that
numerical error (known as viscosity) arises along the density discontinuities under CTM,
while the variational method (Figure 4a) is able to produce an exact solution.

We have to emphasize that the space-time discretizations used for both methods in the
numerical examples are the same. The differences observed in Figures 3 and 4 are due to
the solution methods themselves rather than the underlying discretization scheme. One
may argue that the numerical error observed in CTM due to viscosity can be reduced
by using finer space-time resolution, which is correct as discussed in LeVeque (1992). Of
course, we should also know that improving numerical accuracy through refining resolu-
tion will have to come at the expense of computational effort. However, it is shown that
the variational method with a triangular fundamental is indeed error-free (Daganzo and
Menendez (2005); Daganzo (2006)) regardless of the space-time discretization used. Er-
ror will only arise in variational method when a more complicated fundamental diagram
instead of a triangular one is used (Daganzo and Menendez, 2005).

3.2 Platoon dispersion

Figure 5 shows a set of fundamental diagrams with multi-segmented free-flow portions.
An application of such construction is to generate different degree of dispersion of vehicle
platoons or rarefaction waves (Geroliminis and Skabardonis, 2005). All fundamental di-
agrams shown in the figure have the same capacity (qmax = 1800 veh/hr), critical density
(ρc = 30 veh/mile), and jam density (ρ̄ = 240 veh/mile). The difference between the
fundamental diagrams lies on the free-flow portion: the two-segment (triangular) funda-
mental diagram (Figure 5a) has a free-flow portion with constant free-flow speed (v =
30 mph) for all densities ρ ∈ [0, 60] (veh/mile); the three-segment fundamental diagram
(Figure 5b) has a higher free-flow speed (v1 = 40 mph) for densities ρ ∈ [0, 30] (veh/mile)
and a lower free-flow speed (v2 = 20 mph) for densities ρ ∈ [30, 60] (veh/mile) to reflect
a reduction in speed when traffic state gets close to the capacity; the four-segment fun-
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damental diagram (Figure 5c) has three free-flow speeds v1 = 40 mph, v2 = 20 mph, and
v3 = 10 mph for densities ρ ∈ [0, 35] (veh/mile), ρ ∈ [35, 50] (veh/mile), and ρ ∈ [50, 60]
(veh/mile) respectively; the five-segment fundamental diagram (Figure 5d) has four free-
flow speeds v1 = 40 mph, v2 = 20 mph, v3 = 10 mph, and v4 = 5 mph for densities
ρ ∈ [0, 40] (veh/mile), ρ ∈ [40, 45] (veh/mile), ρ ∈ [45, 50] (veh/mile), and ρ ∈ [50, 60]
(veh/mile) respectively. The shockwave speed w is -10 mph in all cases.

It is noted these fundamental diagrams are all concave and hence they are all imple-
mentable under the variational framework. Figures 3 and 4 show the resulting density
maps generated by CTM and variational method with different fundamental diagrams.
Exact solutions are obtained for all these piecewise fundamental diagrams from the vari-
ational method which supports the findings in previous studies (Daganzo and Menendez
(2005), Mazare et al. (2011)). With the multi-segmented free-flow part, portions of
discharging traffic with different proceeding speeds and densities are generated. In ad-
dition to being used as a representation of the platoon dispersion phenomenon, this
also gives further flexibility to the model for capturing traffic characteristics in the real
world. Compared with the variational method, the density maps generated by CTM is
distorted due to the errors arisen along the discontinuity between traffic states. Hence,
we suggest that the variational formulation is a better numerical method for computing
traffic dynamics with non-triangular fundamental diagrams.

To gain further insight, Figure 6 shows the discharging flow profiles estimated by the
four fundamental diagrams in Figure 5 under the variational framework. The flow pro-
files are taken at a location x1 = 0.1-mile downstream of the stopline. It is noted that
the total traffic volumes under the flow profiles are all equal to 15 (veh) and hence
traffic is conserved. The traffic signal turns green at time t = 0 in the figure. With
the triangular (two-segment) fundamental diagram, the discharged traffic takes 12 (sec)
(=0.1/(30/3600)) to reach x1 where all traffic are considered to be proceeding with a
common forward speed 30 mph. For the three-segmented fundamental diagram with
two portion free-flow parts, the discharged traffic will reach x1 in two packets. The first
packet reaches x1 at time t = 9 (sec) (=0.1/(40/3600)) at speed 40 (mph) and flow 1200
(vph) (=40 (mph) × 30 (vpm)) as specified in the fundamental diagram. The second
packet reaches x1 at t = 18 (sec) (=0.1/(20/3600)) at speed 20 (mph) and flow 1800
(vph). Flow profiles can be derived for other fundamental diagrams in Figure 5 with
similar method following the corresponding specifications of the fundamental diagrams.
With the variational formulation, high quality solutions are obtainable even with the
multi-segmented fundamental diagrams as shown in Figure 4. This enables us to eas-
ily capture the sophisticated but important feature of platoon dispersion phenomenon
that cannot be modelled by triangular fundamental diagrams. A final note is that the
wave-front tracking algorithms (e.g. Wong and Wong (2002); Henn (2005)) can also
cope with platoon dispersion in a similar way as we use in the variational method. In
fact, the wave-front tracking and the variational methods will come up with an iden-
tical solution if the same fundamental diagram is used. Nevertheless, as also noted by
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Mazare et al. (2011), the wave-front tracking algorithm is an event-based method which
makes its computational complexity difficult to analyse. The algorithm becomes espe-
cially complicated when dealing with fundamental diagrams that have many pieces or
even continuous. The variational method herein does not have such problem as it is
implemented through a time-based approach.

3.3 Moving bottlenecks (buses)

Finally, we compare the performance of CTM and variational method on modelling mov-
ing bottlenecks. Here we consider a 1-unit long 4-lane arterial with saturation flow 7200
vph, jam density 480 vpm, free-flow speed 30 mph, and backward congestion propa-
gation speed -30 mph. The fundamental diagram here is considered to be triangular.
Traffic is being loaded into the arterial at saturation flow 7200 vph. Suppose now a bus
enters the arterial at location x = 0.3 unit and time t = 0.01 (hr). The bus proceeds
with a speed 15 mph and it stops at a bus stop at x = 0.6 and t = 0.03 (hr). The bus
dwells at the stop for 2 minutes (0.033 hr), then move on at previous speed and leaves
the arterial at x = 0.9 at t = 0.08 (hr). The maximum passing rate (relative to the
bus) of traffic around the bus is considered to be 5400 vph (3 lanes out of 4) when the
bus dwells at the bus stop and 2700 vph when the bus moves at a slower speed relative
to the surrounding traffic. Analytical solution can be derived for this simple example
as described in Newell (1998). Numerically, the effect of this slow-moving bus can be
captured in the variational framework through the cost formulation (22). For CTM, we
adopt the method presented in Lebacque et al. (1998). To the best of our knowledge,
Lebacque et al. (1998) still remains one of the very few documentation of modelling
slow-moving buses on a kinematic wave platform. Following Lebacque et al. (1998), the
movement of a bus over time and space is represented by a first-order kinematic law (i.e.
distance travelled equals to integration of speed over time) and hence the simulator can
track which cell the bus is in at each time step. The effect of the moving bottleneck
induced by the bus is captured as follows: whenever the bus is proceeding more slowly
than its surrounding traffic in the cell, the speed of ’all’ traffic (no matter they are in
front of or behind the bus) in the cell will be reduced to the speed of the bus.

Figures 7 and 8 respectively show the numerical result generated by variational method
and CTM in which the arrowed solid line represents the trajectory of the bus on the
space-time plane. We also include Figure 9 which shows the associated transition of
traffic states along the fundamental diagram. Points A, B, C, and D in the figures
respectively represent the events of the bus entering the arterial, arriving at the bus
stop, leaving the bus stop, and leaving the arterial. Regions ’1’ refer to the traffic state
(ρ = 240 (vpm); q = 7200 (vph)) before the bus enters the arterial. Region ’2’ is the traf-
fic passing the slow-moving bus which is (ρ = 180 (vpm); q = 5400 (vph)) as specified.
Regions ’3’ are the traffic queued behind the bus while it is moving. The slope of the dot-
ted line joining ’2’ and ’3’ in Figure 9 is the speed of the moving bus which is 15 (mph).
Hence we can derive the flow and density at ’3’ from geometry as 6300 (vph) and 270
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(vpm) respectively. Region ’4’ is traffic state behind the bus when it is stopped. Region
’4’ has a flow value 5400 vph and density 300 (vpm). Similar results can be derived from
CTM as shown in Figure 8 while the dotted line pattern formed in Region ’3’ in Figure
8 is recognised as erroneous due to the uniform assumption (i.e. all traffic in the cell
affected by the presence of the bus in the same way) adopted under CTM as discussed
in Lebacque et al. (1998). Here we show that variational method provides a more accu-
rate solution with respect to analytical one when dealing with moving bottleneck (buses).

4 Real world application

We now apply the solution methods to a real world scenario where we are looking at a
0.9-mile long section of Tottenham Court Road (TCR) in Central London, UK (Figure
10). The road section consists of two lanes and seven signal-controlled intersections. The
traffic signals are operated under the SCOOT Urban Traffic Control system in which
the cycle time, offsets, and green splits are adjustable according to real time traffic
detection. Five of them: Bayley Street (N02/056), Goodge Street (N02/058), Torring-
ton Place (N02/062), University Street (N02/060), and Grafton Way (N02/059), are
equipped with loop detectors at which we have information of volumes and signal tim-
ings. The indices in the bracket are IDs of the junctions used under the SCOOT system.
There are another two signal-controlled intersections: Howland Street and Store Street
(marked by two triangles in the figure) at which there is no detection.

4.1 Traffic data

Traffic data used in this study include journey time estimates derived from the ANPR
(Automatic Number Plate Recognition) system, which is an application of automatic
vehicle identification (AVI) technique. We also have traffic flow and concentration mea-
sures collected from loop detectors in the city of London which are operated under the
SCOOT urban traffic control (UTC) system. The data were collected on 5 June 2013
(Wednesday). With the journey times and loop detector data, we have the input infor-
mation and benchmark for calibrating and validating our traffic models.

4.1.1 Automatic vehicle identification

A number of transport policies in London, including congestion charge and low emission
zone schemes, are enforced by using the ANPR technology. The plate numbers of vehicles
passing the ANPR cameras are recognized and recorded along with the corresponding
times, which are used to decide whether the vehicles detected have paid the charge. The
journey times of vehicles between two ANPR camera sites are then estimated by match-
ing the license plate numbers. The journey times are processed and stored in 5-min
averages. The journey time data can be used to derive various performance metrics such
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as such as speeds, journey time reliability, and impacts of major events including strikes
(Tsapakis et al., 2012) and Olympics (Chow et al., 2014). This enables the road operator
to calculate the benefits and costs associated with different policies or control plans to
improve the day-to-day operation of the network. Nevertheless, it is noted that various
errors may arise in matching the license plate numbers due to various reasons such as
misreading of license plates, vehicles stopping en-route, and vehicles taking unusual long
route between the two camera locations (Robinson and Polak, 2006). Consequently, a set
of data filtering and processing rules is adopted to improve the journey time estimation.
For example, the overtaking rules described in Robinson and Polak (2006) are used to
eliminate the data noise caused by camera errors and delivery vehicles stopping along
the route. Information from the Driver and Vehicle Licensing Agency (DVLA) is used to
eliminate the data related to unauthorized vehicles on the bus lanes. In some occasions,
data may be missing over some time intervals due to no sample (e.g. no vehicles can be
matched during the time interval) or failure of hardware system. A range of patching
algorithms will be used to impute the missing data in those circumstances.

4.1.2 Urban loop detectors

There are about 3,000 intersections in the city of London operating under the SCOOT
Urban Traffic Control (UTC) system (Siemens, 2012). The intersections are equipped
with loop detectors which measure the incoming flow and occupancy of traffic and hence
derive optimal timing strategies in real-time. For performance measure purpose, mea-
sured traffic quantities including flows and occupancies are stored and processed in
archived SCOOT dataset. The dataset also records signal timings used, excessive queues
detected, and journey times estimated. These information are stored in different ’mes-
sages’ in the SCOOT dataset and different messages record different traffic characteristics
and estimates (Siemens, 2012). The SCOOT dateset provides the following information
of demand and signal timings through its ’M13’ and ’M29’ messages (Siemens, 2012):

1. Flow counts - flow counts are recorded once a signal cycle at each SCOOT de-
tector station in the M29 messages. The cycle time in the TCR area is 88-sec and
hence the unit of these flow counts will be [veh/88-sec].

2. Signal timings (green durations) - SCOOT M13 messages provide the dura-
tions of green phases. The green durations are time-varying and derived from the
SCOOT optimiser in real time.

4.2 Building traffic models

In addition to demands, signal timings, and split ratios as stated in previous section,
we need to determine the fundamental diagram of each link in order to complete the
specification of the traffic models. The key parameters here are wave speeds, saturation
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flows, critical and jam densities. First, the SCOOT detector data are processed and
stored in averages over a signal cycle with which we cannot identify the true values of
saturation flow with these cyclic averages. Our way to estimate the saturation flow is to
assume the maximum cyclic flow value observed on an approach will be equal to ( g

g+rs),
where g and r are respectively the effective green and red durations allocated to that
approach over a cycle, and s is the saturation flow which is an unknown. In traffic
engineering, this ( g

g+rs) is regarded as the signal-controlled capacity of the approach.
It is noted that both g and r are records of real-time operations. However, both g and
r are not constant due to the adaptive nature of SCOOT controller and hence we are
taking the average values of them when calibrating the traffic model. The sum of them
(g + r) gives the total cycle time c which is 88-sec in the TCR network. Consequently,
the saturation flow s on each approach can be derived accordingly.

Table 1 summarises the measured maximum flows (in [vph per lane]) in one cycle and
average ( g

g+r ) ratios allocated to TCR during the study period at the four intermediate
detector stations (N02/058, N02/062, N02/060, and N02/059). The table also shows
the corresponding estimated saturation flows s. To further investigate the reliability of
the saturation flow estimation, we conduct a sensitivity analysis on the corresponding
overall journey time and flow estimates produced by the model with respect to different
choices of s values. As an example, Figure 11 shows the sensitivity of journey time and
flow estimation error with respect to the saturation flow s at Junction Goodge Street
(N02/058) over a range of values from 1400 vph/lane - 1800 vph/lane. The errors are
measured in terms of Mean-Absolute-Percentage-Error (see Equation 23). It is shown
that a saturation flow of around 1550 vph/lane will give the lowest error for journey
time and flow estimations. This 1550 vph/lane indeed is consistent with the number we
obtain in Table 1. Similar results are observed at the other three junctions and hence it
suggests using the controlled capacity ’( g

g+rs)’ is a reasonably reliable way to estimate
saturation flows with coarse data. Finally, we note that the estimated values in Table
1 appear to be less than the nominal value 1800 vph per lane. We reckon this is due
to the narrow streets, high volumes of turning traffic, and pedestrian crossing in the area.

Moreover, SCOOT dataset does not provide a reliable estimate of jam density. To fa-
cilitate the calibration process, here we adopt a nominal value: 225 veh/mile per lane.
Given the saturation flows and jam densities, the main objective of calibration now is
to determine the wave speeds U with which we can specify the fundamental diagrams
accordingly. The wave speeds are determined such that the discrepancies between the
journey times along TCR derived from the traffic models and those measured from the
on-site ANPR system are minimised. For CTM, the journey times are derived by using
the frozen field method (Chow et al., 2010). After running a CTM simulation, one can

obtain the traffic speed matrix vi(t) =
qi(t)

ρi(t)
over all cells i and times t. We can then

’release’ a virtual infinitesimal probe at the upstream end of the route over a set of
departure times σ. Using basic principle of kinematics, the distance travelled of each of
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these probes over time can be obtained from integrating the speed vi(t) over time and
space. The probe is said to be exiting the current cell i and entering the subsequent cell
i+ 1 at time σ1 when the distance travelled is greater than or equal to ∆xi. The travel
time of the probe through cell i is then determined as τi = (σ1− σ). Applying the same
methodology to other cells and departure times, a travel time profile through the entire
route can be derived accordingly. For variational method, the trajectory of vehicles can
be derived as the iso-contours of the N -values (Daganzo and Menendez, 2005), which
can give the corresponding journey time of each vehicle.

After specifying the general form of the fundamental diagrams (i.e. the number of seg-
ments and where the fundamental diagrams are segmented), we use iterative line searches
to estimate the corresponding wave speeds in the fundamental diagrams aiming to min-
imise the discrepancies between modelled and measured journey times. The results are
shown in Figure 12. All data are collected on 5 June 2013 (Wednesday) from 12:00
- 15:00. Figure 12a are estimates produced by models with two-segment fundamental
diagrams while Figure 12b are estimates produced with three-segment fundamental di-
agrams. In both figures, the dotted lines as ’ANPR’ are measured journey times from
ANPR system and they are regarded as ’ground truth’ here. ’CTM’ are journey times
estimated by CTM and ’VM’ are journey times derived from the variational method.
With the two-segment fundamental diagrams, both CTM and the variational method
have a tendency of underestimating the journey times through neglecting the reduc-
tion in speed when traffic approaching high values of density. With the three-segment
fundamental diagrams, the feature of platoon dispersion can be captured (see Figure
6) which enables traffic proceeding under free-flow at different density to be associated
with different speed. Consequently, traffic will slow down when the associated density
grows toward the critical value under the three-segment fundamental diagram specifi-
cation. The resultant model fits better with reality and also gives additional flexibility
in parameter specification. Hence the model can produce more accurate estimates of
journey times with respect to the observed values. Nevertheless, one should note that
there can be other factors contributing to the underestimation of journey times. This
includes oversimplification of the junction dynamics, presence of pedestrians, and het-
erogeneity of traffic (e.g. presence of slow moving vehicles such as buses, bikes, etc).
Incorporating these factors require more advanced modelling techniques such as detailed
node modelling that captures the discrete movements of vehicles at junctions, and multi-
class modelling that considers explicitly the heterogeneity of traffic flow. These will be
beyond the scope of the present paper however and we will leave these to future study.

To gain a quantitative picture, we calculate the Mean-Absolute-Percentage-Error (MAPE)
of journey times ετ estimates with respect to the observed values as:

ετ =
1

T

T∑
t=0

∣∣∣∣ τ̂(t)− τ(t)

τ(t)

∣∣∣∣ , (23)
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where τ̂(t) and τ(t) are respectively the estimated and measured journey times at time
interval t within the time horizon T . The MAPEs of estimates produced by CTM (2-
segment), CTM (3-segment), the variational method (2-segment), and the variational
method (3-segment) are 15.3%, 15.2%, 15.6%, and 14.6% respectively. The differences
between the estimates of CTM and the variational method are rather insignificant. Nev-
ertheless, it is interesting to note that the variational method gives a slightly better
improvement compared with CTM when a three-segmented fundamental diagram is
adopted. We believe it is because of the numerical errors in CTM at the density discon-
tinuities are accumulated with the increased overlapping different traffic states when a
multi-segment fundamental diagram is adopted. We also explore the use of more refined
fundamental diagrams, where we obtain error rates of around 14% for four- and five-
segmented fundamental diagrams. The error rates are lower than that obtained with
three-segment fundamental diagram while they are not significantly better despite the
additional computational effort. Hence, we conclude that the three-segment fundamen-
tal diagrams will be a good enough representation of traffic characteristics in this context.

To gain further insight on the performance of the models, Figures 13 and 14 respectively
show the corresponding cyclic flows estimated by CTM and the variational method with
three-segment fundamental diagrams at the four detector stations (N02/058, N02/062,
N02/060, and N02/059). We compare these estimated flow values against the actual
observed values by the detectors. The error rates (in terms of MAPEs) at each station
are summarised is Table 2 which shows that the flow estimates by CTM and variational
method are close. The average MAPE of the flow estimates of the variational method is
14.3% while that of CTM is 14.8%. This should not be surprising as the main different
between variational method and CTM is the viscosity in traffic estimates. Nevertheless,
when the traffic quantities are aggregated to reasonably long time scale (say, one signal
cycle here), the discrepancy due to such viscosity effect will be averaged out and hence
the two methods will produce similar results. Further improvement in flow estimation
will require detector data with higher quality and spatio-temporal granularity which
are unfortunately not available for the present study. Hence, we will leave them here
for future exploration. Finally, it is noted that we do not include ’moving bottleneck’
herein due to the lack of appropriate data such as bus trajectories and surrounding traffic
states. Meanwhile we are contacting different authorities around the world in order to
get required data. We wish to report further developments in the future.

5 Concluding remarks

This paper presents a variational based modelling framework of urban traffic dynam-
ics. We compare this variational method with the traditionally used CTM over a set
of hypothetical experiments and a real case in Central London. The numerical exper-
iments suggest that the variational method is easy to implement and able to produce
high quality solution, in particular for modelling platoon dispersions and moving bottle-
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necks. The case study with Central London data supports the validity of the variational
method for real world applications. A note to emphasize is that this paper is not aiming
to claim variational method is a better ’model’ than CTM, as theoretically they are both
belong to same model - LWR model. The results are only showing variational method is
a more accurate solution method to LWR model than CTM or Godunov which echoes
the findings in Daganzo (2005b) and Daganzo and Menendez (2005). It also suggests
variational method can be a better implementation than CTM when dealing with pla-
toon dispersions and moving bottlenecks. One may argue that the smeared solution (i.e.
solution with viscosity) produced by CTM and other Godunov schemes may indeed be a
better representation of actual traffic. We also agree that the sharp jump discontinuity
is only a feature of LWR model and is not a real world feature. However, we think that
the viscosity is indeed an unexpected characteristics due to the property of the under-
lying solution method. Indeed the LWR model itself does not explicitly specify such
viscosity in its formulation. We believe a good solution method should simply produce a
numerical solution as close to the exact or theoretical solution as possible. Whether the
numerical solution is a good representation of reality should be a separated question. If
one is interested in producing a solution that captures the viscosity, perhaps one should
consider revising the model formulation or using a different model rather than LWR.

It is known that as first order model the LWR framework cannot capture traffic dynam-
ics associated with acceleration and deceleration. Nevertheless, modelling acceleration
and deceleration is an important issue for evaluating a number of performance metrics
including fuel consumption and emission. Extension of the current modelling frame-
work, including consideration of spatial and temporal resolutions, for capturing these
higher order traffic dynamics will be an important future study. Moreover, there have
been studies (e.g. Mehran et al. (2012), Han et al. (2014)) exploring the development
of practical estimation and optimisation algorithms based upon the variational method.
Considering the benefits of the variational method revealed herein, we believe the vari-
ational method will be an useful and computationally effective tool for estimating and
managing urban traffic and hence should receive more attention in the research com-
munity. As an extension of Chow and Lo (2007), we are currently investigating the
sensitivity of traffic state estimates with respect to various perturbations including con-
trol schemes, incidents, and measurement errors based upon the variational formulation.
Following Chow and Li (2014), we are also developing a variational based stochastic
modelling framework with applications of a recently proposed set-valued fundamental
diagrams (Kurzhanskiy and Varaiya, 2012). With the sensitivity analysis and stochastic
formulation, efficient and robust control can be derived which not just minimises the
travel delay, but also minimises the associated variability.
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Table 1: Estimation of saturation flows on Tottenham Court Road (TCR)

N02/058 N02/062 N02/060 N02/059

Max. flow

(vph per lane)
655 675 634 695

g/(g+r) 0.42 0.43 0.41 0.43

Saturation flow

(vph per lane)
1554 1572 1555 1620

Table 2: Flow errors of different solution schemes

N02/058 N02/062 N02/060 N02/059 Average

CTM 10.14% 16.54% 15.70% 16.80% 14.80%

VM 9.53% 17.05% 14.83% 15.81% 14.30%
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Figure 1: Cell representation of a signal-controlled link
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Figure 2: Triangular fundamental diagram in CTM (Daganzo, 1994)
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Figure 3: Density maps (in: [veh/mile]) generated by CTM with different fundamental
diagram specifications
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Figure 4: Density maps (in: [veh/mile]) generated by variational method with different
fundamental diagram specifications
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Figure 5: Fundamental diagrams with different numbers of segments
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Figure 7: Simulation of impact of a slow-moving bus under variational representation

Figure 8: Simulation of impact of a slow-moving bus under CTM representation

28



7200
‘1’

5400

Q (vph)

r (vpm)
180 240

‘2’

300

‘4’

‘3’

260

6300

2700
(passing rate with

moving bus)

Figure 9: Transition of traffic states associated with the slow-moving bus
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Figure 10: Tottenham Court Road (TCR), London, UK
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Figure 11: Sensitivity analysis of estimation errors with respect to choice of saturation
flow (at Goodge Street)
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Figure 12: Comparison of TCR journey times (5 June 2013)
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Figure 13: Flow estimates by CTM with three-segment fundamentals
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Figure 14: Flow estimates by variational method with three-segment fundamentals
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