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Abstract 
 
This paper proposes reliability-based system-optimal traffic assignment under supply 
uncertainty based on the concept of the total system travel time budget, and defines the price 
of anarchy for the corresponding user equilibrium traffic assignment. An analytical formula 
for a set of the upper bounds of the price of anarchy for the equilibrium assignment to the 
networks with polynomial link travel time functions is derived. These bounds are proven to 
be independent of the network topology and demands. The formula for the minimum upper 
bound is also derived and can be reduced to the upper bound formula for traditional user 
equilibrium traffic assignment as a special case. The price of anarchy for the traditional user 
equilibrium network design problem with polynomial link travel time functions is also proven 
to be bounded by the upper bound of that for traditional user equilibrium traffic assignment 
of the same instance, before any link expansion. The price of anarchy for the reliability-based 
user equilibrium network design problem with polynomial link travel time functions is also 
proven to be bounded by the set of upper bounds of that for reliability-based user equilibrium 
traffic assignment of the same instance, before any link expansion 
 
Keywords: reliability-based traffic assignment; network design problem; price of anarchy 

1. Introduction 

In a transportation network, road users always selfishly choose their own shortest paths to 
their individual destinations. This is captured by user equilibrium (UE) traffic assignment, in 
which every road user traveling from the same origin to the same destination bears an exactly 
identical travel time. In contrast to UE traffic assignment, system-optimal (SO) traffic 
assignment aims to minimize the total system travel time (TSTT). 

Many studies have quantified the worst-case ratio of TSTT at UE to that at SO, which was 
first termed the “price of anarchy” (PoA) by Koutsoupias and Papadimitriou (1999). 
Roughgarden and Tardos (2002) mainly studied the PoA for traditional UE traffic assignment 
with fixed demand, in which the link travel time function is separable and link capacity 
constraints are not considered. Since then, four major lines of research have arisen: 

• arc capacity constraints; 
• demand and link travel time/cost functions; 
• other equilibrium principles and multiple user classes; and 
• road pricing considerations. 

Correa et al. (2004) provided one example of a study belonging to the first line of research. 
They extended the study of Roughgarden and Tardos (2002) and examined the PoA in 
traditional UE traffic assignment with capacity constraints. The first line of research has 
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received little attention because the results do not differ significantly from those found by 
Roughgarden and Tardos (2002). 

The second line of research focuses on relaxing the assumption related to the time/cost 
functions used and considers elastic instead of fixed demand. For instance, Chau and Sim 
(2003) extended the study of Roughgarden and Tardos (2002) to consider the case in which 
link travel cost functions are non-separable but symmetric (a case that can include separable 
functions), and the demand of each origin-destination (O-D) pair is elastic. Perakis (2004) 
further considered the case in which the cost functions are both asymmetric and 
non-separable but the demand is fixed. Han et al. (2008a) extended their studies by 
considering elastic demand. 

Apart from the investigation of the PoA for traditional UE traffic assignment, the third 
line of research considers other traffic assignment problems and more user classes. For 
example, Guo et al. (2010) proposed a PoA for stochastic UE traffic assignment, and Han and 
Yang (2008) studied the PoA for the multi-class, multi-criterion traffic equilibrium problem. 
In both of these studies, the travel time of a road user was usually assumed to be deterministic, 
which might not have reflected the actual travel time of the road user given the neglect of 
supply or demand stochasticity. Travelers may be risk averse and select a safer route to arrive 
at their individual destinations on time. It is important to extend the PoA analysis to 
reliability-based UE (RUE) traffic assignment to explore this issue. In addition, most RUE 
traffic assignment studies (e.g., Liu et al., 2009; Chen and Zhou, 2010; Sumalee and Xu, 
2010) have made assumptions related to the functional form of the distribution of link travel 
time or capacity, such as normal distribution and log-normal distribution. However, in 
practice, it is not only resource consuming and expensive to obtain the data necessary to form 
a probability distribution function for link travel time, but it is also difficult to verify its 
validity in some cases because the data (such as data related to earthquake or hazardous 
material incidents) collected during a short period may be insufficient. This raises the need to 
relax these assumptions to examine the PoA for RUE traffic assignment. 

The fourth line of research related to the PoA focuses on situations involving tolls (e.g., 
Xiao et al., 2007; Han and Yang, 2008; Han et al., 2008b). Various PoA definitions have been 
proposed. However, the PoA should have potential applications to many other transportation 
engineering problems, such as the road network design problem (NDP) (e.g., Abdulaal and 
Leblanc, 1979; Boyce, 1984; Yang and Bell, 1998; Meng et al., 2001; Meng and Yang, 2002; 
Ng and Waller, 2009b), because the road tolling or pricing problem can be considered a 
special case of the road NDP. In a road NDP, the optimal link expansion must be considered, 
which makes it difficult to derive the upper bound of the PoA for the NDP directly from the 
theoretical result of the PoA with a pricing consideration. Establishing an analytical formula 
for the upper bound of the PoA remains a big challenge. Furthermore, because 
reliability-based road network design has received much attention from many scholars (e.g., 
Sumalee et al., 2006, 2009; Ng and Waller, 2009a), it is worthwhile to examine the 
applications of the PoA to the reliability-based NDP. 

Distribution-free reliability-based system-optimal (RSO) and RUE traffic assignment 
problems, analogous to SO and UE traffic assignment, are proposed and examined in this 
paper to define a PoA for the RUE assignment problem, where “distribution-free” means that 
the results are independent of the functional form of the probability distribution. In the RSO 
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traffic assignment problem, users are assumed to minimize the total system travel time budget 
(TSTTB) (i.e., the sum of the mean TSTT plus a safety margin). In the RUE traffic 
assignment problem, users are assumed to select the route with the lowest users’ travel time 
budget (TTB) involved. Both problems are assumed to have fixed demand but travel time is 
uncertain due to supply uncertainty. Unlike the study by Liu et al. (2009), this study considers 
the risk-averse behavior of travelers and the system manager. Unlike Ordoñez and 
Stier-Moses (2010), who focused on analyzing different formulations for reliability-based 
traffic assignment, this study derives an analytical form of the minimum upper bound of the 
PoA for the RUE traffic assignment problem that involves polynomial link travel time 
functions and examines the properties of the minimum upper bound. The loss of tightness of 
the bound is also discussed. 

To mathematically analyze the PoA for NDPs, a PoA is defined in this paper for the 
traditional user equilibrium network design problem (UE-NDP), i.e., the continuous NDP that 
considers link expansion under budgetary and capacity constraints, with link additions 
included as a special case. The analysis is further extended to distribution-free 
reliability-based NDPs where the objective is to minimize the TSTTB. The two versions, i.e., 
the reliability-based user equilibrium network design problem (RUE-NDP) and the 
reliability-based system-optimal network design problem (RSO-NDP) are also defined, which 
correspond to the traditional UE-NDP and system-optimal network design problem 
(SO-NDP), respectively. RUE assignment is used to depict users’ route choices in the 
RUE-NDP. A definition of the PoA is proposed for an RUE-NDP, and the relation between its 
upper bound(s) and that for the RUE traffic assignment is examined. 

This paper makes the following contributions. 
• It proposes distribution-free RSO and RUE traffic assignment problems that 

consider risk aversion and supply uncertainty, and analyzes the properties of the 
related problems, along with the existence and uniqueness of related solutions. 

• It introduces the concept of a TSTTB. 
• It proposes a definition of the PoA for RUE traffic assignment with polynomial link 

travel time functions and derives a set of upper bounds of the PoA. 
• It proves that the set of upper bounds is independent of the demand pattern and 

network topology. 
• It mathematically examines the properties of the minimum upper bound in terms of 

the problem parameters and proves that the minimum upper bound can be reduced 
to the bound given in the study by Roughgarden and Tardos (2002) as a special 
case. 

• It proposes a definition of the PoA for the traditional UE-NDP with polynomial link 
travel time functions and proves that it is bounded by the upper bound of the PoA 
for traditional UE traffic assignment of the same instance, before any link 
expansion. 

• It proposes distribution-free RSO- and RUE-NDPs using the concepts of TSTTB 
and TTB. 

• It proposes a definition of the PoA for the RUE-NDP with polynomial link travel 
time functions and proves that it is bounded by a set of upper bounds of the PoA for 
RUE traffic assignment of the same instance, before any link expansion. 
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The remainder of the paper is organized as follows. Section 2 provides a brief review of 
the PoA for traditional traffic assignment. Section 3 examines reliability-based traffic 
assignment and derives its set of upper bounds, including the upper bound of the PoA 
mentioned in Section 2 as a special case. Section 4 extends consideration of the PoA to the 
traditional NDP. It shows that the upper bound of the PoA in Section 2 is also an upper bound 
of the PoA for the traditional UE-NDP. Section 5 further extends the analysis of the PoA in 
Section 4 to reliability-based NDPs and proves that the PoA is bounded by the set of upper 
bounds derived in Section 3. Finally, Section 6 concludes the paper. 
 

2. Review of the price of anarchy for traffic assignment without uncertainty 

Consider a transportation network G(N, A) with multiple O-D pairs, where N denotes the 
set of nodes and A denotes the set of links in the network. The demands between the O-D 
pairs are fixed. The following notations (Table 1) are defined for ease of discussion. 
 

Table 1 Notations 

+¢   Set of positive integers 

RS   Set of O-D pairs  

rsP   Set of paths between O-D pair rs∈RS 

rsd   Travel demand between O-D pair rs∈RS 

av   Flow on link a∈A 

()at  or at  Travel time function of link a∈A 

0
at   Free-flow travel time for link a∈A 

ac   (Initial) capacity of link a∈A 

,
a
p rsδ   Indicator variable that equals 1 if link a∈A is on path p∈Prs 

between O-D pair rs∈RS, and 0 otherwise 

,p rst
 

Travel time on path p∈Prs between O-D pair rs∈RS 

,p rsb
 

TTB on path p∈Prs between O-D pair rs∈RS 

,p rsf
 

Flow on path p∈Prs between O-D pair rs∈RS 

rsπ   Minimum travel time between O-D pair rs∈RS 

rsπ  Minimum TTB between O-D pair rs∈RS 
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( )σ ⋅   
Standard deviation of  

f Path flow vector, ( ), ,rs
p rs p P rs RS

f
∈ ∈

=f  

v Link flow vector, ( )a a A
v

∈
=v  

UEv  UE link flow vector ( )UE UE
a a A

v
∈

=v  

SOv  SO link flow vector ( )SO SO
a a A

v
∈

=v  

D  Demand vector ( )rs rs RS
d

Î
=D  

t  Vector of polynomial link travel time functions ( )a a A
t

Î
=t  

σ  Covariance matrix of link travel times ( )( ) ,
,a b a b A

Cov T T
∈

σ =  

fΩ  

Set of feasible path flow vectors 

, ,0,  ,  , 
rs

f p rs p rs rs rs
p P

f f d p P rs RS
∈

  Ω = ≥ = ∀ ∈ ∀ ∈ 
  

∑f  

vΩ  

Set of feasible link flow vectors 

, ,, ,   
rs

a
v f a p rs p rs

rs RS p P
v f a Aδ

∈ ∈

  Ω = ∈Ω = ∀ ∈ 
  

∑ ∑v f  

 

According to the preceding setting, two traditional traffic assignment problems have been 
proposed in the literature: SO and UE. The SO traffic assignment problem assigns traffic 
based on the second principle of Wardrop (1952), which states that the average journey time 
is minimal. This problem determines a link flow pattern to minimize the TSTT and can be 
mathematically expressed as 
 SO :  min ( ) ( )

v
a a a

a A
TSTT t v v

∈Ω
∈

=∑v
v ,  (1) 

where ( )TSTT v  denotes the TSTT at the link flow solution v. 
The UE problem assigns traffic according to Wardrop’s first principle, which implies that 

the travel times on used routes are not greater than the travel times on unused routes between 
the same O-D pair. The UE conditions for route flows can be written as follows:  

 ( ) ( ), , ,UE  0,  0,  ,p rs p rs rs p rs rs rsf t t p P rs RSπ π− = − ≥ ∀ ∈ ∀ ∈ ： ,  (2) 

where ( ), ,
a

p rs a a p rs
a A

t t v δ
∈

=∑ . The UE problem can be formulated into the following 

variational inequality: to determine UEv  such that 
 ( ) ( ) 0,  UE UE

a a a a v
a A

v v t v
∈

− ≥ ∀ ∈Ω∑ v .  (3) 

The TSTT at UE is generally higher than that at SO. To measure the relative increase in 
the TSTT at UE to that at SO, the PoA of an instance ( , , )G D t  is introduced and defined as  

⋅



6 
 

  ( )( , , )
( )

UE

SO

TSTTG
TSTT

ρ =
vD t
v

. (4) 

If nI  is the set of all instances with polynomial travel time functions with the highest 
degree n +Î ¢ , then the PoA of nI  defined as 

( , , )
( ) sup  ( , , )

n
n

G I
I Gρ ρ

∈
=

D t
D t . Roughgarden 

(2003) proved that the following is true: ( )nIρ ρ′≤ , where 

 ( )
11

1 1
n
nn nρ

−+
− ′ = − + 

 
.  (5) 

However, Roughgarden’s study was based on the assumption of no uncertainty in the network, 
which is not the case in reality. 

3. Price of anarchy for reliability-based traffic assignment 

3.1. Supply and travel time uncertainty 

Network supply uncertainty refers to the variations in link capacities or free-flow travel 
times caused by disruptions to the network such as accidents, road maintenance, weather, and 
traffic management and control (Lo et al., 2006; Chen and Zhou, 2010). The classical 
approach to capturing supply uncertainty in a network model is to assume that each link 
capacity or free-flow travel time follows a certain distribution and that the link travel time 
distribution can be derived. Because a link capacity or free-flow travel time variation leads to 
a variation in the link travel time, an alternative approach is to focus directly on modeling 
travel time variations due to supply uncertainty (e.g., Ng and Waller, 2009; Chen and Zhou, 
2010). 

Denote the random variable aT  as the actual travel time on link a . It is defined as 
follows: 

 ( ) , ,a a a aT t v a Ax= + " ?  (6) 
where ( )a at v  is a deterministic travel time on link a predicted by its link performance 
function, and aξ  is the random error between the actual and predicted link travel times. The 
expectation of the error term is null, i.e., ( ) 0aE ξ =  (e.g., Ng and Waller, 2009a), implying 
that ( )a aE T t= , a A∀ ∈ . The random error aξ  captures the effect of supply uncertainty on 
the travel time on link a. The error may correlate to errors on other links, but it is independent 
of the predicted travel times of any of the other links. To avoid loss of generality, no specific 
functional form of the distribution of aξ  is assumed. For a network without supply 
uncertainty, aξ  is simply zero.  
 
To facilitate the examination, the following assumptions are introduced. 
 

A1. The standard deviation of the error term, ( )aσ ξ , is finite. Thus, ( )aTσ  is also finite 

and equals ( )aσ ξ . The random errors of two links iξ  and jξ , ,i j A∈  (and also the 
two travel times) may be correlated. Their correlation is expressed as ( , )i jCov ξ ξ  and 
equals ( , )i jCov T T .  
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A2. The predicted link travel time function ( )a at v  takes the following polynomial form: 

       0
0

( ) ,   0,  0,1..., ,  0,  0
a

a

n
m

a a am a am a a an
m

t v k v k m n k k
=

= ≥ = > >∑ , (7) 

where amk  denotes the coefficient associated with m
av , and an  is the highest degree of 

the polynomial function.  
 
 

Remark 1: The polynomial function (7) includes BPR-type functions as a special case, with 
the form 0 a

a

n
a a an at t k v= + , where the constant term 0

at  is the minimum free-flow travel time 
on link a under supply uncertainty and free-flow travel time when there is no uncertainty. 

an +Î ¢  and 0 a

a

n
an a a ak t cβ −= . The constant ac  is the (maximum) capacity and 0aβ >  is a 

coefficient associated with the link flow in the BPR function. 
 
Remark 2: The coefficient 0ak  is larger than zero because it represents free flow travel 
time.  
 
Remark 3: Yang et al. (2008) examined the PoA of selfish routing with atomic 
Cournot-Nash players, each controlling a strictly positive splittable amount of flow. They 
used the link travel time function with the form 0 0( ) ,   0, 0,a

a a

n
a a a an a a ant v k k v k k= + > >

an +Î ¢ , a special case of (7). 
 
Remark 4: The travel time function (7) is positive, continuous, separable, differentiable, 
monotone, and convex. If the degree of the function is larger than one, it is strictly convex.  

 
Under assumption A1, ( )aTσ  and ( , )i jCov T T  are both bounded, as stated in 

Propositions 1 and 2. 
 

Proposition 1. Denote a non-negative multiplier aε , a A∈ . Let aε  be 0( )a aT kσ . Then, 
the following must be true:  

 ( ) ,  a a aT t a Aσ ε≤ ∀ ∈ .  (8) 
 

Proof. Substituting aε  = 0( )a aT kσ  into a atε , the following is obtained: 
0

( ) a
a a a

a

tt T
k

ε σ= . 

The term 
0

( ) a
a

a

tT
k

σ  is not less than ( )aTσ  because the mean travel time at  must not be 

less than the free-flow travel time 0ak  based on assumption A2. This completes the proof. ■ 
 
Proposition 2. aε  is the multiplier defined in Proposition 1. Then, the travel time 
covariance between any two links i  and j  is bounded by i i j jt tε ε , ,i j A∀ ∈ , i j≠ : 

 ( , ) ,  , ,i j i i j jCov T T t t i j A i jε ε≤ ∀ ∈ ≠ .  (9) 
 
Proof. According to the Cauchy-Schwarz Inequality, the following can be obtained: 
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 ( , ) ( ) ( ),  , ,i j i jCov T T T T i j A i jσ σ≤ ∀ ∈ ≠ . (10) 

According to Proposition 1, ( )i i iT tσ ε≤  and ( )j j jT tσ ε≤ . Hence, the right side of (10) is 
not greater than a non-negative number i i j jt tε ε , which is also true when the absolute value 
sign is removed. This completes the proof. ■ 

 
Example 1: Illustration for Propositions 1 and 2 
 
The example network has one O-D pair: (A, C). The demand level is 1. The travel time 
functions for the three links and their standard deviations are listed in Table 2. The travel time 
covariances are 1 2( , ) 0Cov T T = ; 1 3( , ) 0.00035Cov T T = ; and 2 3( , ) 0Cov T T = . 

 
Figure 1 Example network                
 
 
According to Proposition 1, aε  equals 0( )a aT kσ . Hence, 1 0.07ε = , 2 0ε = , and 

3 0.05ε = . 
Furthermore, the covariances are bounded under any feasible flow patterns according to 

Proposition 2.  
Clearly, 1 2 1 1 2 2( , )Cov T T t tε ε≤  and 2 3 2 2 3 3( , )Cov T T t tε ε≤  hold when 2 0ε = . By 

definition, 3v = 1 as this is the only link connected to C. Hence, 3 0.1 0.1(1) 0.2t = + = . The 
minimum travel time on link 1 occurs when 1v  = 0. Under this worst case, 1 1t =  and 

1 1 3 3 0.0007t tε ε = ≥ 1 3( , ) 0.00035Cov T T = . More flow on link 1 leads to a larger left side. 
Therefore, condition (9) is satisfied for any feasible flow pattern.■ 

 
 
3.2. The mean and standard deviation of path and total system travel times 

Denote the random variable ,p rsT  as the actual travel time on path rsp P∈  between O-D 
pair rs RS∈ , whose expression is 

 
 , , ,  ,a

p rs a p rs rs
a A

T T p P rs RSδ
∈

= ∀ ∈ ∀ ∈∑ .  (11) 

Because the link flows are deterministic, the expectation and standard deviation of ,p rsT  can, 
respectively, be obtained by  

 , , ,( ) ( ) ,  ,a a
p rs a p rs a p rs rs

a A a A
E T E T t p P rs RSδ δ

∈ ∈

= = ∀ ∈ ∀ ∈∑ ∑ , and (12) 

 2
, , , ,

, ,
( ) ( ) ( , ) ,  ,a i j

p rs a p rs i j p rs p rs rs
a A i j A i j

T T Cov T T p P rs RSσ σ δ δ δ
∈ ∈ ≠

= + ∀ ∈ ∀ ∈∑ ∑ .  (13) 

The total system travel time, which is a compound random variable, can be expressed as 

Table 2 Link performance 
functions and standard deviations 
Link  ( )a at v  ( )aTσ  
1 1+5 1v  0.07 
2 6.07 0 
3 0.1+0.1 3v  0.005 

A B C 

1 

2 

3 
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 
a a

a A
TSTT T v

∈

=∑ .   (14) 

Because the link flows are deterministic, the expectation and standard deviation of the TSTT 
can, respectively, be written as 

 ( ) ( )a a a a
a A a A

E TSTT E T v t v
∈ ∈

= =∑ ∑ and (15) 

   2 2

, ,
( ) ( ) ( , )a a i j i j

a A i j A i j
TSTT T v v v Cov T Tσ σ

∈ ∈ ≠

= +∑ ∑ . (16) 

 
3.3. Path travel time budget and reliability-based user equilibrium assignment 

When faced with travel time uncertainties, travelers often depart early and reserve extra 
time for their trips to avoid late arrival. The concept of TTB was proposed to capture this 
behavior in traffic assignment (see Lo et al., 2006; Siu and Lo, 2008; Ordoñez and 
Stier-Moses, 2010).  

A TTB is defined as the mean trip travel time plus the safety margin. The safety margin 
represents the extra time reserved by travelers. It is often defined as the standard deviation of 
the trip travel time multiplied by a parameter that represents their degree of risk aversion and 
relates to their probability of being late. For instance, if a traveler’s path travel time follows a 
normal distribution and the value of the parameter equals 1.65, then the probability of the 
traveler arriving at his/her destination on time is 95%. However, if the value equals zero 
instead, then the probability is only 50%. This concept can be used in traffic assignment that 
considers supply uncertainty (e.g., Lo et al., 2006) or demand uncertainty (e.g., Shao et al., 
2006; Lam et al., 2008). 

Regardless of the functional form of the distribution of uncertainty, the larger is the TTB 
compared with the mean travel time, the larger is the safety margin, the more extra time is 
reserved by travelers to avoid being late, and the more risk averse are the travelers. 

The concept and behavioral principle used by Lo et al. (2006) for traffic assignment is 
adopted in this study. The path TTB ,p rsb  is formulated as follows: 

 

, , ,

2
, , , ,

, ,

( ) ( )

( ) ( , ) ,

, ,

p rs p rs p rs

a a i j
a p rs a p rs i j p rs p rs

a A a A i j A i j

rs

b E T T

t T Cov T T

p P rs RS

σ

δ λ σ δ δ δ
∈ ∈ ∈ ≠

= +

= + +

∀ ∈ ∀ ∈

∑ ∑ ∑   (17) 

where λ  is a non-negative parameter called the traveler’s risk aversion factor. It measures 
the extent to which a traveler is risk averse and how he/she makes tradeoffs between the 
mean and standard deviation of trip travel time. A large λ  value implies that the traveler 
places more weight on the effect of uncertainty, as reflected by the standard deviation. The 
λ  value should be calibrated from transportation survey data (see Lo et al., 2006; Szeto et al., 
2011) and depends on the purpose of the trip, as demonstrated by Lo et al. (2006) using their 
survey data. In this paper, it is assumed that travelers are homogeneous, and as such, the λ  
values for all users are identical. However, unlike other studies, this paper does not require 
any assumption related to the functional form of link travel time distribution. 

Similar to Lo et al. (2006), this paper postulates that travelers acquire the expectations 
and variabilities of path travel times based on their past experiences and factor these 
variabilities into their route choice considerations in the form of a TTB. Moreover, all 
travelers want to minimize their TTBs. An equilibrium is reached only if the TTBs of all used 
routes are not higher than those of unused routes. This equilibrium is referred to as RUE, and 
the flow pattern at RUE satisfies the following: 
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 ( ) ( ), , , 0,  0,   , RUE RUE RUE
p rs p rs rs p rs rs rsf b b p P rs RSπ π− = − ≥ ∀ ∈ ∀ ∈ .  (18) 

The constraints of RUE assignment are the same as those of traditional UE assignment except 
that the (minimum) path travel time is replaced by a (minimum) path TTB. Note that the 
travel time budget is expressed in terms of means, standard deviations, and covariances of 
link travel times for the purpose of the deviation of upper bounds of the PoA later. From the 
travelers’ perspective, the information of the covariances of link travel times are not needed 
in making route choice decisions when the means and standard deviations of path travel times 
are known. 

 
Example 2: Reliability-based user equilibrium example 
 

The network setting in Example 1 is used here. In Figure 1, the upper and lower paths 
between O-D pair (A, C) are referred to as paths 1 and 2, respectively. Assume  equals 1. 

Based on (12), (13), and (17), the two path TTBs in terms of link flows are:  

( ) ( ) ( )2 2
1, 1 3 1 31 5 0.1 0.1 1 0.07 0.005 2 0.00035 1.175 5 0.1ACb v v v v= + + + + ⋅ + + ⋅ = + + , and 

2, 36.175 0.1ACb v= + .  
According to the flow conservation and the relation between link and path flows, 

1 1,ACv f=  and 3 1, 2, 1AC AC ACv f f d= + = = . Hence, 1, 1,1.275 5AC ACb f= +  and 2, 6.275ACb = . 
When all users choose path 1 (i.e., 1, 1ACf =  and 2, 0ACf = ), 1,ACb  = 6.275 2,ACb≤  and 

the RUE condition (18) is satisfied. Hence, this flow pattern is at RUE and the minimum TTB 
is 6.275.■ 

  
To solve for a route flow solution that satisfies condition (18) for general cases using 

existing projection methods (e.g., Han and Lo, 2002) and to analyze the existence and 
uniqueness of solutions, the following variational inequality (VI) problem is proposed. 
 
Proposition 3. The RUE assignment problem of an instance ( , , , )G D t σ  can be expressed as 
the following VI problem: to determine ( ), ,rs

RUE RUE
p rs fp P rs RS

f
∈ ∈

= ∈Ωf  such that 

 ( ) ( ), , , , ,
0,  

rs
rs

RUE RUE
p rs p rs p rs p rs fp P rs RSrs RS p P

f f b f
∈ ∈

∈ ∈

− ≥ = ∈Ω∑ ∑ f  ,  (19) 

where ,
RUE
p rsb  is the TTB at RUE. 

 
Proof. This proof follows that provided in a study by Smith (1979) by replacing the path 
travel time with a path TTB. ■ 

 
The solution set of VI (19) is convex because the intersection of the nonnegative orthant 

and linear constraint is a convex set. The solution set is bounded because the route flows 
cannot be larger than the corresponding demand. The set is also closed because it includes the 
feasible solutions on the boundary. Hence, the set is compact. Because the link travel time 
functions are continuous with respect to path flows, the mapping function  is also 
continuous with respect to path flows. Based on Theorem 1.4 provided in a study by 
Nagurney (1993), there exists an optimal path flow solution to VI (19).  

In terms of solution uniqueness, it is well known that even the traditional UE assignment 
problem may have multiple path flow solutions. Hence, it is expected that an optimal solution 

λ

,p rsb
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to VI (19) may not be unique unless the mapping function is strictly monotone1 with respect 
to path flows. 

If ( )a a A
t

Î is strictly monotone with respect to v , then both the optimal link flow solution 
and ( ), ,rs

RUE
p rs p P rs RS

b
恄

 are unique (see Appendix A). If ( )a a A
t

Î  is only monotone with respect to 

v , then ( ), ,rs

RUE
p rs p P rs RS

b
恄

 is unique (see also Appendix A). 

Similar to robust optimization-based traffic assignment (e.g., Sun et al., 2014), 
reliability-based traffic assignment is distribution free in the sense that knowledge of the 
distribution of each link travel time is not required. Instead, only partial information related to 
the distribution is required for the RUE assignment problem: the mean, standard deviation, 
and covariance of the random variables, i.e., the link travel times. This requirement contrasts 
with that of robust optimization-based traffic assignment, which requires the modeler to 
explicitly define an uncertainty set to be, for example, the box or ellipsoidal uncertainty set, 
for each random variable.  

The VI problem (19) is path based (i.e., using path flows as decision variables) and cannot 
be reformulated as link based (i.e., using link flows as decision variables) as in a classical UE 
assignment in general because  

• there are correlations among link travel times, and  
• even if there are no correlations among link travel times, path TTBs are not link 

separable. 
These properties make derivation of the upper bounds of the PoA for RUE assignment 
difficult, and we are unable to follow the derivation for the classical UE assignment directly. 
The two exceptions are that when there is no supply uncertainty (i.e., link travel time 
variances and covariances are null) or when λ  equals zero, the VI problem (19) can be 
reduced to a classical UE assignment, which can be expressed as a link-based VI problem.  

 
3.4. Total system travel time budget and reliability-based system optimum assignment 

Without considering uncertainty in traffic assignment, the classical system performance 
measure is the TSTT. The TSTT under SO traffic assignment has the best system 
performance because the TSTT has been minimized. For a network with supply uncertainty, it 
is essential for the system manager to be risk averse to account for the TSTT variation and 
make an appropriate tradeoff between the mean performance and performance variation. The 
TSTT variation may be large such that the mean TSTT is much smaller than the actual TSTT 
and is unsuitable for reflecting the actual, very bad performance. To address this issue, the 
concept of the TSTTB is introduced and defined as: 

  

 

2 2

, ,

( ) ( )

( ) ( , ),
R

a a a a i j i j
a A a A i j A i j

TSTTB E TSTT R TSTT

t v R T v v v Cov T T

σ

σ
∈ ∈ ∈ ≠

= + ⋅

= + +∑ ∑ ∑  (20) 

where R is a non-negative parameter that represents the degree of the system manager’s risk 
aversion, and the TSTTB is the manager’s largest acceptable TSTT. Similar to the travelers’ 
risk aversion factor, a larger R value means that the system manager is more risk averse, the 
safety margin is larger, and the probability of the actual TSTT being greater than the TSTTB 
is smaller. In the special case where R = 1, the performance measure TSTTB is simply the 
                                                             
1 A vector function : mC →F   is strictly monotone on a non-empty set C if for all vectors 

, ,C∈ ≠x y x y , ( ) ( )( )( ) 0T >y - x F y - F x . 
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sum of the mean and standard deviation of the TSTT (e.g., Ng and Waller, 2009a), and the 
safety margin exactly equals the standard deviation. When R = 0, the manager ignores the 
variation of the TSTT, and only the mean TSTT is used as a system performance measure. 
This concept is different from the current TTB concept in the sense that whereas the TSTTB 
is a system measure considered by system managers, the path TTB is a route measure 
considered by travelers. 

The definition of the TSTTB is consistent with the definition of the total TTB proposed 
by Chen et al. (2007). It is simply formulated using a different approach. Chen et al. (2007) 
defined the total TTB using the chance constraint approach without explicitly using the mean 
and variance of the TSTT, both of which are used to define the TSTTB in this paper. The 
formulation approach taken in this paper has the following advantages. First, the concept of 
the TSTTB is easy to understand as its mathematical structure is similar to that of the TTB. 
Second, this paper lends new insights into the TSTTB, including an interpretation of the R 
value, the concept of the system manager’s safety margin, and the concept of the largest 
acceptable TSTT. 

Analogous to SO assignment, the TSTTB is used to define RSO assignment. It can be 
mathematically expressed as the following minimization program: 

 min ( )
v

RTSTTB
∈Ωv

v ,  (21) 

where ( )RTSTTB v  is the TSTTB at v  given R. Unlike Uchida and Iida (1993), the 
objective function further captures the standard deviation of the TSTT to model the risk 
aversion of system managers. This program can be solved by existing optimization software 
packages. 
 
Example 3: Reliability-based system-optimal example 
 

The network setting in Examples 1 and 2 are used here. Assume R equals 2. 
By flow conservation, we have 1, 2, 1AC ACf f+ = . This together with 1 1,ACv f= , 2 2,ACv f= , 

3 1, 2,AC ACv f f= + , (15), and (16) lead to: 
 ( ) ( )

( ) ( )
1 1 2 3 3

2
1 1 1

( ) 1 5 6.07 0.1 0.1

5 6.07 1 0.2,  and

E TSTT v v v v v

v v v

= + + + +

= + + − +
 

( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 2
1 2 3 1 3

2
1 1

0.07 0 0.005 0 0 2 0.00035

0.0049 0.000025 2 0.00035 .

TSTT v v v v v

v v

σ = + + + + +

= + +
 

Because  ( )( ) 2E TSTT TSTTσ+  is strictly convex, the minimum flow on link 1 can be 

obtained by setting the derivative to zero, resulting in 1 0.49v = , 2 0.51v = , and the 
minimum TSTTB of 5.037. ■ 
 

Clearly, the solution set vΩ of problem (21) is non-empty. Moreover, the set is bounded 
by linear constraints. It is also closed because it includes the feasible solutions on the 
boundary. Therefore, it is compact. Based on A2, all the terms in the TSTTB are continuous 
functions of link flows and hence the objective function of problem (21) is continuous with 
respect to link flows. According to Weierstrass’ Theorem, there exists a solution to the 
optimization problem (21). 

The solution set of problem (21) is convex because the set is formed by linear constraints. 
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If the objective function of problem (21) is also strictly convex over vΩ , then problem (21) 
is a convex programming problem with a unique global minimum. 

 
3.5. Properties of reliability-based traffic assignment 

This section states three properties of flow patterns, which will be used to derive the upper 
bounds of the PoA for RUE.  

 
Lemma 1. Given a feasible link flow pattern v∈Ωv , the corresponding ( )RTSTTB v  is 
bounded by 

 ( )( ) 1a a R a a a
a A a A

t v TSTTB R t vε
∈ ∈

≤ ≤ +∑ ∑v . (22) 

 
Proof. Based on Propositions 1 and 2,  

 ( ) ( )( )2

, ,
( )R a a a a a i j i i j j

a A a A i j A i j
TSTTB t v R t v v v t tε ε ε

∈ ∈ ∈ ≠

≤ + +∑ ∑ ∑v .  (23) 

Because the condition ( )22 2 2
1 2 1 2

, ,
... ...M i j M

i j i j
g g g g g g g g

≠

+ + + + = + + +∑  holds for any 

given 1 2, ..., 0Mg g g ≥ , applying this condition to the square root term in inequality (23) 
gives 

 ( ) ( )( )
2

2

, ,
a a a i i i j j j a a a a a a

a A i j A i j a A a A
t v t v t v t v t vε ε ε ε ε

∈ ∈ ≠ ∈ ∈

 + = = 
 

∑ ∑ ∑ ∑ .  (24) 

Substituting (24) into (23) gives the second inequality of (22). The lower bound of 
( )RTSTTB v  in (22) can easily be obtained by setting 0R = . This completes the proof. ■ 

 
Remark: There are no square root terms in the lower and upper bounds of the TSTTB in (22), 
which is favorable because they become linkwise additive functions. This property simplifies 
the derivation of a set of upper bounds of the PoA in Section 3.7. 
 
Lemma 2. Given v∈Ωv , ,p rsb  is bounded by 

 ( ), , ,1 ,  ,a a
a p rs p rs a a p rs rs

a A a A
t b t p P rs RSδ λε δ

∈ ∈

≤ ≤ + ∀ ∈ ∀ ∈∑ ∑ .   (25) 

 
Proof. The proof is similar to that for Lemma 1 except that (17) is used in the derivation 
instead of (20).■ 
 
Remark: Lemma 2 gives the upper and lower bounds for the path TTB and is used to prove 
Lemma 3. 
 

Let RSO
av  and RUE

av  be an optimal flow on link a A∈  obtained by RSO and RUE 

assignments, respectively; ( )RSO RSO
a a A

v
∈

=v ; and ( )RUE RUE
a a A

v
∈

=v . Using these notations, 

Lemma 3 can be stated as follows. 
 
Lemma 3. In reliability-based traffic assignment, given RSOv  and RUEv , the following 
condition always holds: 
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 ( )1 ( ) ( ) 0RUE RSO RUE RUE
a a a a a a a

a A
t v v t v vλε

∈

 + − ≥ ∑ .   (26) 

 
Proof. Denote ,

ˆRUE
p rsb  and ,

RUE
p rsb  as the upper and lower bounds of ,p rsb  in Lemma 2, i.e., 

( ), ,
ˆ 1 ( )RUE a RUE

p rs p rs a a a
a A

b t vδ λε
∈

= +∑  and , , ( ),  ,RUE a RUE
p rs p rs a a rs

a A
b t v p P rs RSδ

∈

= ∀ ∈ ∀ ∈∑ . Then, 

 , ,
ˆ ,  ,RUE RUE

p rs p rs rsb b p P rs RS≥ ∀ ∈ ∀ ∈ , and  (27) 

 , , ,  ,RUE RUE
p rs p rs rsb b p P rs RS≥ ∀ ∈ ∀ ∈ .  (28) 

For a feasible flow pattern ( ), ,rs
p rs p P rs RS

f
∈ ∈

=f   , the path flows are non-negative. Hence, 

(27) can be modified to obtain  
 , , , ,

ˆ
rs rs

RUE RUE
p rs p rs p rs p rs

rs RS p P rs RS p P
f b f b

∈ ∈ ∈ ∈

≥∑ ∑ ∑ ∑  .  (29) 

By subtracting , ,
rs

RUE RUE
p rs p rs

rs RS p P
f b

∈ ∈
∑ ∑  from both sides of (29), 

 ( ), , , , , , ,
ˆ

rs rs rs

RUE RUE RUE RUE RUE
p rs p rs p rs p rs p rs p rs p rs

rs RS p P rs RS p P rs RS p P
f b f b f f b

∈ ∈ ∈ ∈ ∈ ∈

− ≥ −∑ ∑ ∑ ∑ ∑ ∑  .  (30) 

The right side of (30) is non-negative according to (19). Hence, the left side of (30) is 
non-negative, which implies that 

 , , , ,
ˆ

rs rs

RUE RUE RUE
p rs p rs p rs p rs

rs RS p P rs RS p P
f b f b

∈ ∈ ∈ ∈

≥∑ ∑ ∑ ∑ .  (31) 

Based on inequality (28) and , 0RUE
p rsf ≥ , it can be similarly deduced that  

 , , , ,
rs rs

RUE RUE RUE RUE
p rs p rs p rs p rs

rs RS p P rs RS p P
f b f b

∈ ∈ ∈ ∈

≥∑ ∑ ∑ ∑ .  (32) 

Based on inequalities (31) and (32), 
 , , , ,

ˆ
rs rs

RUE RUE RUE
p rs p rs p rs p rs

rs RS p P rs RS p P
f b f b

∈ ∈ ∈ ∈

≥∑ ∑ ∑ ∑ .  (33) 

By definition, ,
ˆRUE

p rsb  and ,
RUE

p rsb  are linkwise additive. Hence, the left and right sides of (33) 
can both be expressed in terms of link flows. The left side can be expressed as 

 
( ) ( )

( ) ( )

, , , ,

, ,

ˆ 1

1 .

rs rs

rs

RUE a RUE
p rs p rs p rs p rs a a a

rs RS p P rs RS p P a A

a RUE
p rs p rs a a a

a A rs RS p P

f b f t v

f t v

δ λε

δ λε

∈ ∈ ∈ ∈ ∈

∈ ∈ ∈

 = +  

 
= + 

 

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

 



  (34) 

The square-bracket term in the last equality condition of (34) equals the feasible flow on link 
a, av , associated with f . Hence, 

 ( ), ,
ˆ 1 ( )

rs

RUE RUE
p rs p rs a a a a

rs RS p P a A
f b v t vλε

∈ ∈ ∈

≥ +∑ ∑ ∑  .  (35) 

It can similarly be deduced that 
 , , ( )

rs

RUE RUE RUE
p rs p rs a a a

rs RS p P a A
f b v t v

∈ ∈ ∈

≥∑ ∑ ∑ .  (36) 

Based on (35) and (36), the path-based inequality (33) can be expressed as a link-based 
inequality: 

 ( )1 ( ) ( )RUE RUE RUE
a a a a a a a

a A a A
v t v v t vλε

∈ ∈

+ ≥∑ ∑ .  (37) 

f∈Ω
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Because av  is any feasible link flow, it can be replaced by RSO
av  to obtain (26) after 

rearranging the resulting expression. This completes the proof. ■ 
 
3.6. Price of anarchy for reliability-based user equilibrium 

Similar to the PoA for UE, a PoA is proposed below to measure the relative increase in the 
TSTTB at RUE to that at RSO. 

 
 

Definition 1. Given an RUE traffic assignment instance ( , , , )G D t σ  and the values of R and 
λ  representing the levels of risk aversion of the system manager and travelers, respectively, 
the PoA is defined as 

 ,
( )( , , , )
( )

RUE
R

R RSO
R

TSTTBG
TSTTBλρ =

vD t
v

σ . (38) 

 
Definition 2. Let 

max,nI ε  be the set of all instances that satisfy the following conditions: 
1) The travel time functions are polynomial functions whose highest degree is not larger 

than a positive integer n , and; 
2) The multiplier aε  of each link a A∈  (defined in Proposition 1) does not exceed a 

non-negative number maxε .    
The PoA of 

max,nI ε  is  

( )max
, max

, , ,
( , , , )

sup  ( , , , )
n

R n R
G I

I G
ε

λ ε λρ ρ
∈

=
D t

D t
σ

σ .               (39) 

 

Example 4: The PoA for reliability-based user equilibrium 
 
Using the information in Examples 1-3, we can determine the PoA. 
In Example 2, at RUE, 1, 1ACf = . Substituting it to the expression for ( )E TSTT  and 
( )TSTTσ , ( )E TSTT = 6.200 and ( )TSTTσ = 0.075. Hence, ( )RUE

RTSTTB v  =
 ( ) 2 ( )E TSTT TSTTσ+ = 6.350. In Example 3, the TSTTB at RSO is 5.037. Thus, 
, 6.350 5.037 1.261R λρ = = .■ 

 
 The non-uniqueness of RSO and RUE solutions does not affect the PoA because all 
multiple RSO solutions of the same instance give the same TSTTB and all multiple RUE 
solutions of the same instance give the same TSTTB. 
 
3.7. Derivation of a set of upper bounds of the price of anarchy 

Consider an RUE traffic assignment instance 
max,( , , , ) nG I ε∈D t σ , whose RUE and RSO 

link flows are RUEv  and RSOv , respectively. Let ( )RUE RUE
a a at t v=  and ( )RSO RSO

a a at t v= , 
a A∀ ∈ . In the following, we derive a set of upper bounds of the PoA for this instance, given 

the parameter values of the risk aversion of system manager and travelers. i.e., a set of upper 
bounds of , ( , , , )R Gλρ D t σ . To simplify the notation, the notation ,R λρ  is used to represent 
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, ( , , , )R Gλρ D t σ  in this section. 
The numerator and denominator in , ( , , , )R Gλρ D t σ  (see (38)) are both not link-separable. 

The PoA is enlarged so that both they become link-separable and some of the techniques used 
to derive the upper bound of the PoA of UE can be applied to that for RUE.  
 Define  

 ′ ′′Φ Φ ΦΩ = Ω ∩Ω ,  (40) 
where  

 
max

10 ,
1

k k
λε′Φ

  ′ ′Ω = < ≤ +  
  (41) 

 
1

max

1 10
1

nn nk k
n λε

+

′′Φ

  +  ′′ ′′Ω = < ≤   + ∆ +     
,       (42) 

and D  is a small positive number less than one. The above conditions lead to  

 
1

max max

1 1 10 min ,
1 1

nn nk k
nλε λε

+

Φ

   +   Ω = < ≤    + + ∆ +      
.         (43) 

Remark 1: Both ′ΦΩ  and ′′ΦΩ  are non-empty sets with the common lower bound of zero. 
Thus, ΦΩ  is non-empty.  
 
Remark 2: ΦΩ  depends on the parameter values n , λ , and maxε  and the small positive 
number D .  
 
Lemma 4. Given a non-negative link flow ar  (e.g., an RUE link flow), a A∈ , for any 
feasible flow on that link, i.e., 0ax ≥ , the following is true: 

 ( ){ }1 ( , , , ) , ,m m m m
am a a a am a a am a a a am a ak x x k r x k r r m k r r a Aλε θ λ ε−Φ + − ≥ Φ ∀ ∈  (44) 

where m +Î ¢  is a power to ax ; aε  equals 0( )a aT kσ ; amk  is a positive coefficient 
associated with m

ax , ΦΦ∈Ω , and ( , , , )amθ λ εΦ  is defined as 

 ( )
1

1
( , , , )

1

m
m

a
am m

m
λε

θ λ ε

+

Φ + 
Φ = Φ −  + 

.  (45) 

 
Proof. See Appendix B. 
 
Remark 1: Lemma 4 can also be evoked by any non-negative numbers ar  and ax .  
 
Remark 2: The power m  cannot be zero because ( , , , )amθ λ εΦ  is not defined at 0m = . 
However, 0m =  is still considered in the derivation of the PoA. See the proof of Lemma 6 
in Appendix D.   
 
Remark 3: Lemma 4 still holds if Φ  is positive. 
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Lemma 5. The function ( , , , )amθ λ εΦ  defined in (45) is strictly decreasing in terms of 
m +Î ¢  and positive for any fixed value of Φ  taking from the set ΦΩ  defined by Eq. (43) 
(i.e., for any ΦΦ∈Ω ), where aε  equals 0( )a aT kσ  and m +Î ¢ . 
 
Proof. See Appendix C. 
 
Lemma 6. For each individual link a A∈ , the following is true: 

 ( ){ }1 ( , , , ) ,RSO RSO RUE RSO RUE RUE RUE RUE
a a a a a a a a a at v t v t v n t v a Aλε θ λ ε−Φ + − ≥ Φ ∀ ∈    (46) 

and for any fixed value of Φ  taking from the set ΦΩ , in which n +Î ¢  is the largest 
degree in all of the polynomial link performance functions, aε  equals 0( )a aT kσ , and 

( ), , , anθ λ εΦ  follows the definition in (45). 
 
Proof. See Appendix D. 
 
Proposition 4. For each individual link a A∈ , the following is true: 

 ( )
( ){ }
1 1 ,  

( , , , )1

RUE RUE
a a a a

RSO RSO RUE RSO RUE RUE
aa a a a a a a

R t v R a A
nt v t v t v

ε ε
θ λ ελε

+ +
≤ ∀ ∈

Φ−Φ + −
  (47) 

for any ΦΦ∈Ω , where n +Î ¢ ; aε  = 0( )a aT kσ , and ( , , , )anθ λ εΦ  follows the 
definition in (45). 
 

Proof. Because ΦΦ∈Ω , according to Lemma 5, ( ), , , anθ λ εΦ  is positive. Hence, both the 

left and right sides of (46) in Lemma 6 are non-negative. If 0RUE
av > , both sides of (46) are 

positive. Dividing ( )1 RUE RUE
a a aR t vε+  by the left and right sides of (46) respectively, we have 

 

( )
( ){ }

( )1 1
( , , , )1

1 .
( , , , )

RUE RUE RUE RUE
a a a a a a

RUE RUERSO RSO RUE RSO RUE RUE
a a aa a a a a a a

a

a

R t v R t v
n t vt v t v t v

R
n

ε ε
θ λ ελε

ε
θ λ ε

+ +
≤

Φ−Φ + −

+
≤

Φ

   

When 0RUE
av = , there are two cases. If 0RSO

av = , the denominator of the left side of (47) 
equals zero. However, this case is exclusive from our consideration because the link is 
exclusive from the network if it is unused in all circumstances. If 0RSO

av > , the denominator 

is always larger than zero because ( )1 1aλεΦ + ≤  and 

 ( ){ } ( )( )01 (0) (0) 0 1

0.

RSO RSO RUE RSO RUE RSO RSO
a a a a a a a a a at v t v t t t vλε λε−Φ + − ⋅ ≥ −Φ +

>
  (48) 

However, the left side of (47) still equals zero (because the numerator is zero), which is 
obviously not greater than the right side of (47). This completes the proof. ■ 

 
Proposition 5. Define ,ˆ ( )R λρ Φ  as follows: 
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( )

( )( )
,

1
ˆ ( )

1

RUE RUE
a a a

a A
R

RSO RSO RUE RSO RUE RUE
a a a a a a a

a A a A

R t v

t v t v t v
λ

ε
ρ

λε

∈

∈ ∈

+
Φ =

 −Φ + − 
 

∑

∑ ∑
,  (49)  

where ΦΦ∈Ω . Then,  

 , ,ˆ ( )R Rλ λρ ρ≤ Φ .  (50) 
 

Proof. Substituting RUEv  and RSOv  into the equalities in Lemma 1, respectively, we obtain 
 ( )( ) 1RUE RUE RUE

R a a a
a A

TSTTB R t vε
∈

≤ +∑v , and (51) 

 ( )RSO RSO RSO
a a R

a A
t v TSTTB

∈

≤∑ v .  (52) 

Both the left and right sides of (51) and (52) are positive due to A2. Therefore, both sides of 
(51) can be divided by RSO RSO

a a
a A

t v
∈
∑ , to obtain 

 
( )1 ( )

( ) .
( ) ( )

RUE RUE
RUE a a a a

a AR
RSO RSO RSO RSO

a a a a a a
a A a A

R t v v
TSTTB

t v v t v v

ε
∈

∈ ∈

+
≤
∑

∑ ∑
v   (53) 

According to condition (52), the left side of (53) is bounded by ,R λρ , leading to 

 
( )

,

1 ( )

( )

RUE RUE
a a a a

a A
R RSO RSO

a a a
a A

R t v v

t v vλ

ε
ρ ∈

∈

+
≤
∑

∑
.  (54) 

Because ( )( )1 RUE RSO RUE RUE
a a a a a

a A
t v t vλε

∈

 + − 
 
∑  is non-negative (see Lemma 3) and Φ  is 

positive, the denominator on the right side of (54) has this property: 

 ( )( )1RSO RSO RSO RSO RUE RSO RUE RUE
a a a a a a a a a

a A a A a A
t v t v t v t vλε

∈ ∈ ∈

 ≥ −Φ + − 
 

∑ ∑ ∑ .  (55) 

Furthermore, based on Lemmas 5 and 6 and the non-negativity of link flow and travel time, 
we have  

 ( ){ }1 ( , , , ) 0,   ,RSO RSO RUE RSO RUE RUE RUE RUE
a a a a a a a a a at v t v t v n t v a Aλε θ λ ε−Φ + − ≥ Φ ≥ ∀ ∈   (56) 

where the second inequality becomes strict when 0RUE
av >  holds and becomes equality when 

0RUE
av =  holds. Because demand is positive by definition, not all RUE link flows ( RUE

av ) are 
zero. Hence, taking summation on both sides of (56) over all links, we get 

 ( )( )1 0RSO RSO RUE RSO RUE RUE
a a a a a a a

a A a A
t v t v t vλε

∈ ∈

 −Φ + − > 
 

∑ ∑ .  (57) 

Dividing the numerator on the right side of (54) by both the left and right sides of (55) 
respectively, we have  
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( )

,

1 ( )
ˆ ( )

( )

RUE RUE
a a a a

a A
RRSO RSO

a a a
a A

R t v v

t v v λ

ε
ρ∈

∈

+
≤ Φ

∑
∑

.  (58) 

Based on (54) and (58), we obtain (50). This completes the proof. ■ 
 
Proposition 6. The following is true: 

 max
,

max

1ˆ ( )
( , , , )R

R
nλ
ερ

θ λ ε
+

Φ ≤
Φ

 (59) 

for any ΦΦ∈Ω , where ( )max, , ,nθ λ εΦ  follows the definition in (45). 
 
Proof.  Based on the proof of Proposition 4, if ΦΦ∈Ω , the denominator of the left side of 

(47) is positive. Because 1

1,2...

1

max

M

m
m m

M m M
m

m
m

p
p
qq

′′
′′ ′′=

′′=
′′

′′
′′=

 
≤  

 

∑

∑
 for any given 0mp ′′ ≥ , 0mq ′′ > ,  

1, 2...,m M′′ = , M +Î ¢ , apply this condition to (47) to obtain 
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( ){ }
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1max
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.  (60) 

The value of ( )1 aRε+  is non-decreasing with an increase in the value of aε  because R is 
non-negative. Moreover, given ΦΦ∈Ω , n , and λ , the value of ( , , , )anθ λ εΦ  is 
decreasing with an increase in the value of aε  (for max0 aε ε≤ ≤ ) because 

( )
1

1
( , , , )

1

n
n

a
an n

n
λε

θ λ ε

+

Φ + 
Φ = Φ −  + 

 and the second term must be negative and the power 

of ( )1 aλε+  in the second term, i.e., 1n
n
+ , must be larger than one. Thus,  

 max

max

1 1max
( , , , ) ( , , , )

a

a A
a

R R
n n
ε ε

θ λ ε θ λ ε∈

+ +
≤

Φ Φ
. (61) 

From conditions (60) and (61), the same statement in Proposition 6 can be concluded. This 
completes the proof. ■ 
 
Theorem 1. The PoA of an RUE traffic assignment instance ( , , , )G D t σ  that belongs to the 
set 

max,nI ε  is bounded above as follows:  

 
max

max
, ,

max

1( , , , ) ,  ( , , , )
( , , , )R n

RG G I
nλ ε
ερ

θ λ ε
+

≤ ∀ ∈
Φ

D t D tσ σ , (62) 

where   

 
1

max max

1 1 10 min ,
1 1

nn nk k
nλ ε λε

+

Φ

   +   Φ∈Ω = < ≤    + ⋅ + ∆ +      
,  (63) 
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 ( )( )
( 1)1

max max( , , , ) 1 1
n n

n n nθ λ ε λε
+− Φ = Φ − Φ + +  , and (64) 

∆  is a small positive number less than one. 
 
Proof. It follows directly from Propositions 5 and 6 that are true for any given instance 
( , , , )G D t σ

max,nI ε∈ . ■ 
 
Remark 1: The results in Theorem 1 implies that ( )max, ,R nIλ ερ  is also bounded by the right 

side of (62). 
 
Remark 2: Note that the right side of (62) indeed defines a set of upper bounds of the PoA 
because Φ  can take any values within ΦΩ . In practice, the minimum upper bound is the 
most preferable. Denote it as min

, ( , , , )R Gλρ D t σ , or simply min
,R λρ , which is attained at a 

particular value *
ΦΦ ∈Ω  as discussed below. 

 
Theorem 2. The minimum upper bound min

,R λρ  occurs at  

 * min ,s ′ Φ = Φ Φ  ,  (65) 

where 

 ( )
1

max

11
1

n
s n

λε

+
 

Φ = +  + 
, and  (66) 

 
max

1
1 λε

′Φ =
+

.  (67) 

Moreover, 
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max,
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max max
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1 1 if  = '.
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n s
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λερ

ε λε
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  
   + − Φ Φ < Φ   + +=    

 + + Φ Φ ≤ Φ

  (68) 

Proof. The factor Φ  only appears in the denominator on the right side of (62), i.e., 
max( , , , )nθ λ εΦ , and the maximum denominator value gives min

,R λρ . Hence, the proof can be 
reduced to determine a global maximum *Φ  of max( , , , )nθ λ εΦ . 

The first and second derivatives of max( , , , )nθ λ εΦ  in terms of Φ  are 

 
1

1
max max( , , , ) 11 ( 1)

1

n
n

nd n n
d n

θ λ ε λε
+

Φ + = − + Φ Φ + 
 and  (69) 

 ( )
1

12 1
max

max2

( , , , ) 1 1 1
1

nnn
nn

d n
d n n

θ λ ε λε
−+Φ  = − + Φ Φ + 

,  (70) 
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respectively. The second derivative (70) is always negative because n  is positive and the 
other inputs are non-negative. This implies that max( , , , )nθ λ εΦ  is a strictly concave function 
of Φ , and a global maximum can only occur at either  

1) the stationary point 
1

max

1( 1)
1

n
s n

λε

+
 

Φ = +  + 
, where the first derivative (69) equals 

zero, or  
2) a boundary of the feasible range of Φ .  

The first case occurs when the feasible range contains sΦ  because the boundaries are 
always not binding at optimality. Otherwise, the second case occurs. Moreover,  

max( , , , )nθ λ εΦ  is a strictly increasing function of Φ  when Φ  < sΦ . Therefore, the 
global maximum occurs at the upper boundary of the feasible range for the second case when 
Φ  < sΦ . 

Let ′′Φ  be 
1

max

1 1
1

nn n
n λε

+
 + 
  + ∆ +   

. Consider two cases: ′ ′′Φ < Φ  and ′ ′′Φ ≥ Φ .  

First, when ′ ′′Φ < Φ , the feasible range becomes 0 ′< Φ ≤ Φ  according to (43). There 
are two scenarios in this case, i.e., s ′Φ ≤ Φ  and s′Φ < Φ . In the former, sΦ  exists within 
the feasible range of Φ  and hence *Φ  = s ′Φ ≤ Φ . In the latter, max( , , , )nθ λ εΦ  is a 
strictly increasing function in the feasible range considered whose maximum is reached at the 
upper boundary ′Φ . Therefore, *Φ  = s′Φ < Φ . In summary, ( )* min , s′Φ = Φ Φ .  

Second, when ′ ′′Φ ≥ Φ , the feasible range becomes 0 ′′< Φ ≤ Φ  according to (43). The 
upper boundary ′′Φ  must be greater than sΦ  because for any positive integer of n, 

 
( )

( )

1

max

1

max

11
1

1 11 .
1

n
s

nn

n

n n
n

λε

λε

+

+

 
Φ = +  + 

 +  ′′< + = Φ  + ∆ +   

 (71) 

This means that sΦ  must exist within the feasible range of Φ . Thus, * sΦ = Φ ′′ ′< Φ ≤ Φ .  
Summarizing two cases, ( )* min , s′Φ = Φ Φ , which is identical to (65).  

Substituting (65)-(67) to the right side of the inequality in Theorem 1, we can obtain  
min

,R λρ  as shown in (68). This completes the proof. ■ 

 
Example 5. Minimum upper bound of the PoA  

Using the results in Theorem 2, we can determine min
,R λρ  for the instance described in 

Examples 1-4. 

The RUE traffic assignment instance in Example 1 belongs to the set 
max,nI ε , in which 

1n =  and max 0.07ε = . 

Based on (66) and (67), ( )( ) 1
max1 1 1.7469ns n λε − −Φ = + + =  and 
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( ) 1
max1 0.9346λε −′Φ = + = . Thus, sΦ > ′Φ . As a result, 

( ) ( )

11

min
, max

max

1 11 1.665
1 1

n
n

R R n
nλρ ε

λε

−+ 
  = + − =  + + 

 

 (see (68)).■  

Remark: The PoA in Example 4 is 1.261, which is bounded by min
,R λρ . It does not equal min

,R λρ  
because the PoA for the instance considered is not the worst case, and there is a loss in the 
tightness in deriving min

,R λρ . 
 
Theorem 3. The set of upper bounds of the PoA for reliability-based traffic assignment is 
independent of the network topology G  and demand D . 
 
Proof. The right side of (62) does not depend on G  and D . Thus, the statement follows. 
 

3.8. Analyses of the minimum upper bound of the price of anarchy 

This section examines how the value of the minimum bound is independently affected by 
its inputs: R, n, λ , and maxε . For the purpose of analysis, min

,R λρ  is rewritten as follows: 

  
( ) ( )
( ) ( )

1
max maxmin

, 1

max max

1 , , ,  for 

1 , , ,  for 

s

R s s
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R n
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−

−

 ′ ′+ Φ Φ < Φ= 
′+ Φ Φ ≤ Φ
 (72) 

in which 

 ( )
1

max
max

1 1, , ,
1 1

n
n

n n
n

θ λ ε
λε

+

 ′Φ = −  + + 
, and  (73) 

 ( )
1

max
max

1, , ,
1

n
s nθ λ ε

λε

+
 

Φ =  + 
.  (74) 

 
Proposition 8. The minimum upper bound min

,R λρ  is linearly increasing in terms of R. 
 
Proof. According to (72), the denominator is independent of R in each of the two cases. 
Moreover, the optimal value of *Φ  is also independent of R. Therefore, when examining the 
relation between min

,R λρ  and R in each case, the denominator can be treated as a constant, 

which is positive according to Lemma 5 under *
ΦΦ ∈Ω . Moreover, in each case, the factor R 

is only involved in the numerator of min
,R λρ . Its coefficient is positive, and the power is one. 

Thus, min
,R λρ  is linearly increasing in terms of R when other parameter values are fixed. 

Furthermore, when they are fixed, only one of the two cases occurs. As such, the statement 
follows. This completes the proof. ■ 
 
Proposition 9. The minimum upper bound min

,R λρ  is strictly increasing in terms of n. 
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Proof. The parameter n affects the value of *Φ , and both n and *Φ  are only involved in the 
denominator of (72). Hence, the properties of the denominator can be made a focus. Two 
mutually exclusive cases are considered.  

First, when ( )
1

max1 1nn λε+ > +  for n +Î ¢ , s′Φ < Φ , and according to (72), the 

denominator is ( )max, , ,nθ λ ε′Φ  shown in (73). The first derivative of ( )max, , ,nθ λ ε′Φ  in 
terms of n  is 

 ( )
1

max
1 1 1, , , ln

1 1

n
nd n

dn n n n
θ λ ε

+

   ′Φ =    + +   
.   (75) 

Because 1
1n +

 is smaller than 1, the first derivative (75) is always negative. Thus, 

( )max, , ,nθ λ ε′Φ  must be a strictly decreasing function of n .  

Second, when ( )
1

max1 1nn λε+ ≤ +  for n +Î ¢ , s ′Φ ≤ Φ , and the denominator equals 

( )max, , ,s nθ λ εΦ  shown in (74). Because 
max

1
1 λε+

 is smaller than one, the function 

( )max, , ,s nθ λ εΦ  must be a strictly decreasing function of n .  
In summary, the denominator must be a strictly decreasing function of n , and hence 

min
,R λρ  must be strictly increasing in terms of n . This completes the proof. ■ 

 
Remark: The minimum upper bound is only an estimate to the PoA. It cannot be concluded 
whether the PoA (strictly) increases with the maximum degree. This is left for future 
research. 
 
Proposition 10. The minimum upper bound min

,R λρ  is strictly increasing in terms of λ .  
 

Proof. The proof is similar to that for Proposition 9. When ( )
1

max0 1 1nnλ ε ≤ < + −  
 , 

s′Φ < Φ , and the denominator equals ( )max, , ,nθ λ ε′Φ , which is clearly a strictly decreasing 

function of λ . However, when ( )
1

max1 1nnλ ε ≥ + −  
, the denominator equals 

( )max, , ,s nθ λ εΦ , which is also a decreasing function of λ . Hence, the statement follows. 
This completes the proof. ■ 
 
Remark 1: When s ′Φ ≤ Φ , the second derivative of min

,R λρ  in terms of λ  is 

( ) ( )( ) 1
max max1 1 1 nn n Rε λε −+ + + . Because the second derivative must be positive, min

,R λρ  is a 

convex function of λ  when s ′Φ ≤ Φ . However, when s′Φ < Φ , the second derivative is 

( ) ( ) ( ){ }
( ) ( )

1 1
max max max

2
max max

1 1 , , , 2

1 , , ,

R n

n

ε λε θ λ ε

λε θ λ ε

− −′+ + Φ −

′+ Φ
, which may not always be positive. Hence, it 

cannot be concluded that min
,R λρ  is a convex function of λ  when s′Φ < Φ . 
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Remark 2: According to Propositions 8 and 10, the minimum upper bound of the PoA 
increases either with an increasing level of risk aversion of the system manager or of the 
travelers. However, the effects of their risk aversions on the bound may be different because 
it may increase nonlinearly with λ  but increases linearly with R. 
 
Proposition 11. The minimum upper bound min

,R λρ  is strictly increasing in terms of maxε .  
 
Proof. The numerator in (72) in both cases increases with maxε . Following the proof for 
Proposition 10, it can be concluded that the denominator is strictly decreasing in terms of 

maxε . Hence, the statement follows. This completes the proof. ■ 
 

Remark: The convexity of min
,R λρ  in terms of maxε  can similarly not be concluded. 

 
Similar to Yang et al. (2008), min

,R λρ  includes the upper bound of Roughgarden (2005) as a 
special case as stated below: 
 
Corollary 1. If either 1) maxε = 0 or 2) 0R λ= =  holds, then min

,R λρ  is reduced to ρ′ , the 
upper bound obtained by Roughgarden (2005). 
 
Proof. If either sufficient condition 1) or 2) holds, 1s nΦ = + , and 1 s′Φ = < Φ . Substituting 

max 0ε =  or 0R λ= =  into the upper equation in (73), min
,R λρ ρ′= . This completes the proof. 

■ 
 

When max 0ε = , there is no network uncertainty. When 0R λ= = , both the users and 
system manager are risk neutral and do not consider safety margins. In both cases, the 
TSTTB and RUE traffic assignment are reduced to the TSTT and UE traffic assignment, 
respectively. Hence, it is reasonable that min

,R λρ  is reduced to the upper bound of Roughgarden 
(2005) if either sufficient condition is satisfied. 

 
Example 6: The effects of R, λ , and maxε  

To illustrate the effects of R, λ , and the standard deviation of link travel time (or maxε ) 
on the minimum upper bound, Figures 2a, b, and c are plotted based on the settings in 
Examples 1-3 that except the standard deviation 1( )Tσ  is 0.01. In each of these figures, only 
one of the three values is varied, and the minimum upper bound and the corresponding lower 
bound of the PoA of the instance in interest are also shown.  
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(a) the effect of standard deviation 

   
(b) the effect of λ                   (c) the effect of R 

Figure 2 Lower bound and minimum upper bounds subject to the variation of σ(T1), λ 
and R 

Because the free flow travel time of Link 1 equals one and Link 1 determines the value of 
maxε  in the current setting, 1( )Tσ  and maxε  are numerically equal to each other. Hence, 

varying 1( )Tσ  is equivalent to varying maxε . The minimum upper bound plotted in Figure 
2(a) is strictly increasing in terms of 1( )Tσ  (or maxε ), and consistent with the result in 
Proposition 11. Moreover, it is convex in the range considered. Similarly, in Figure 2(b), the 
minimum upper bound is strictly increasing in terms of λ  and consistent with the result in 
Proposition 10. Furthermore, the curve seems to be straight.  The curve in Figure 2(c) does 
accurately reflect the result in Proposition 8 that the minimum upper bound is linearly 
increasing in terms of R . The lower bound, on the other hand, is very close to each other, 
and is slowly decreasing in Figures 2a and b but is slowly increasing in Figure 2c. The gap 
between the lower bound and the corresponding minimum upper bound increases as the 
parameters get larger. Note that the figures only give the PoA of given instances (or the lower 
bounds), not the PoA of 

max,nI ε . Hence, the loss of tightness of the minimum upper bound 
cannot be concluded by having a large gap observed.■     

The loss of tightness of min
,R λρ  is caused by the enlargement of the PoA in the derivation 

process. The detailed explanations are summarized in the following:    
1) The numerator of the PoA, which is the TSTTB at RUE, is replaced by the upper 

bound of the TSTTB in Lemma 1. When the equality sign in (8) does not hold for 
every link and the equality sign in (9) does not hold for each pair of links, a larger 
value of R  leads to a larger difference in the two terms, a larger enlargement of the 
numerator, and eventually a looser minimum lower bound min

,R λρ . 
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2) The denominator of the PoA, which is the TSTTB at RSO, is replaced by the lower 
bound of the TSTTB in Lemma 1 in the derivation process. The lower bound of the 
TSTTB at RSO is obtained by removing the safety margin in the TSTTB at RSO. If 
R  is larger, the reduction in the denominator of the PoA is larger, the enlargement on 
the PoA is larger, and min

,R λρ  is looser.    

4. Price of anarchy for the traditional user equilibrium network design problem 

The PoA has also been examined in tolling problems (e.g., Xiao et al., 2007; Han and 
Yang, 2008; Han et al., 2008b), a special case of NDPs according to the definition of 
Magnanti and Wong (1984). However, the PoA for traditional NDPs has not been studied. 
The optimal selection of link expansions in or link additions to an existing transportation 
network presents a traditional transportation NDP (e.g., Adbulaal and Leblanc, 1979; Yang 
and Bell, 1998; Szeto et al., 2014). There are other NDPs, such as turn restriction network 
design problems (Long et al., 2010; 2014), transit network design problems (e.g., Szeto and 
Wu, 2011; Szeto and Jiang, 2012, 2014), multimodal network design problems (e.g., 
Miandoabchi et al., 2012a,b), time-dependent network design problems (e.g., Szeto and Lo, 
2008; Lo and Szeto, 2009; Szeto et al., 2010, 2015; Jiang and Szeto, 2015; Miandoabchi et al., 
2015), and dynamic network design problems (Sun et al., 2014). A recent review is given by 
Farahani et al. (2013). 

Both SO (e.g., Dantzig et al., 1979) and UE-NDPs (e.g., Abdulaal and Leblanc, 1979) 
have been addressed in the literature. Their main difference is that whereas the UE-NDP 
considers the selfish route choice behavior of travelers, the SO-NDP assumes that users are 
cooperative and choose paths to optimize the TSTT. In terms of model structure, compared 
with the SO-NDP, the UE-NDP includes UE constraints as extra constraints, which tightens 
the feasible solution set in general. Hence, the optimal TSTT obtained from the SO-NDP is 
always better than that obtained from the UE-NDP. To bound the proportion of TSTT 
increase due to the additional consideration of UE constraints in the NDP, a PoA for the 
UE-NDP is proposed in this section, one that is analogous to that found in UE traffic 
assignment. 

Consider the link expansions in a traditional NDP. The capacity of a candidate link 
increases if the link is selected for improvement and remains unchanged if it is not selected. 
Note that this NDP can also consider link additions if the initial capacity of a candidate link is 
very close to zero. If the capacity of that link increases, then a link is effectively added to the 
network. 

Recall that the capacity of a link a, i.e., ac , can be captured by some of the coefficients as 
stated in Remark 1 after (7). Denote the link capacity increment or link capacity 
improvements as ( )a a A

y
∈

=y . The total capacity of a link a after design implementation 

becomes ( )a ac y+  and alters some of the coefficients in the polynomial link travel time 
function. Denote the polynomial link travel time function after design implementation as 
( ),a a at v y . The feasible set of link expansions is denoted as 

 | ( ) ,0 , ,a a a a
a A

F y B y u a A
∈

 Ω = ≤ ≤ ≤ ∈ 
 
∑y y   (76) 

in which B  is the total road construction budget (and is nonnegative). ( )a aF y  is the 
construction cost for link a, and au  represents the maximum allowable expansion.  

Based on the preceding notations, the SO-NDP can be formulated as follows: 
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,

SO-NDP: min ( , ) ( , )
v y

a a a a
a A

TSTT t v y v
∈Ω ∈Ω

∈

=∑v y
v y ,  (77) 

where ( , )TSTT v y  denotes the TSTT at the link flow solution v and the link capacity 
increment y . The solution set of program (77) is formed by linear constraints and hence is 
convex. It is also closed and non-empty. The objective function is continuous in terms of 
decision variables. Hence, a solution exists to the problem. Because the link travel time 
function and the solution set are convex in terms of link flows, the objective function is 
strictly convex in terms of link flows. If the function is also strictly convex in terms of link 
capacity improvements, then the solution is unique and also the corresponding TSTT. If not, 
the TSTT at all global minima must still be the same by definition.  

The UE-NDP can be written as follows: 
 

,
UE-NDP: min ( , )

v y

TSTT
∈Ω ∈Ωv y

v y , (78) 

 subject to (2).  
Following the discussion of the SO-NDP, it is clear that a solution exists to the problem. It is 
well known that the UE-NDP can be formulated into a bi-level non-convex minimization 
program (Yang and Bell, 1998) that may not have a unique solution.  

Denote an optimal solution to the SO-NDP as a vector ( *v , *y ), in which ( )* *
a a A

y
∈

=y  is 

an optimal link expansion vector and ( )* *
a a A

v
∈

=v  is an optimal link flow vector and a 

function of *y . The optimal TSTT to the SO-NDP can be represented as 

( )* * * * * *( ), ( , )a a a a
a A

TSTT t v y v
∈

=∑v y y . Moreover, denote ( )( ),RUE RUE RUEv y y  and 

( )( ),RUE RUE RUETSTT v y y  as an optimal solution to the UE-NDP and the corresponding TSTT, 
respectively. The PoA for a traditional UE-NDP can be defined as follows.  

 
Definition 3. The PoA of a UE-NDP design instance ( , , , )G BD t   is defined as  

 
( )
( )* * *

( ),
( , , , )

( ),

UE UE UETSTT
G B

TSTT
ρ =

v y y
D t

v y y
. (79) 

 
This PoA indicates how well the resources (e.g., the budget) have been allocated to 

improve system performance (i.e., the TSTT). An upper bound of ( , , , )G Bρ D t  is presented 
in the following theorem. Denote nI  as the set of all instances of the UE-NDP with 
polynomial travel time functions whose highest degree does not exceed n. Then, the PoA of 

nI  is ( )
( , , )

sup  ( , , , )
n

n
G B I

I G Bρ ρ
∈

=
D t, 

D t . 

 
Theorem 3. The PoA of an instance ( , , , )G BD t   for a traditional UE-NDP is bounded by 

 ( , , , ) ,  ( , , , ) nG B G B Iρ ρ′≤ ∀ ∈D t D t ,  (80) 

in which ρ′  is the upper bound of the PoA derived by Roughgarden (2005) for a traditional 
UE traffic assignment instance ( , , )G D t  that belongs to nI .  
 
Proof. Consider a network with the link capacity expansion set according to *y . * *( )v y  
and *( )UEv y  are the respective SO and UE link flow vectors obtained under this link 
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expansion strategy. The theorem introduced by Roughgarden (2005) (see (5)) can be used to 
obtain 

 
( )
( )

* *

* * *

( ),

( ),

UETSTT

TSTT
ρ′≤

v y y

v y y
.  (81) 

Moreover, ( )* *( ),UEv y y  is a feasible solution to the UE-NDP. Thus, the numerator of the 
left side of (81) is not less than the optimal objective value of the UE-NDP. Therefore, 
inequality (81) can be revised by replacing the numerator with ( )( ),UE UE UETSTT v y y   to 
obtain 

 
( )
( )* * *

( ),

( ),

UE UE UETSTT

TSTT
ρ′≤

v y y

v y y
. (82) 

The left side of (82) is ( , , , )G Bρ D t , and condition (82) holds for any network topology and 
demand pattern. Hence, the result follows. This completes the proof. ■ 
 
Remark 1: Theorem 3 is equivalent to ( )nIρ ρ′≤ . This theorem is applicable at any budget 
level. It is also applicable even when the travel time functions are not polynomial. In such 
case, ρ′  should be replaced by the upper bound of the PoA for UE assignment with the 
travel time functions considered. 
 
Remark 2: Theorem 3 is quite intuitive. Consider an unlimited budget. Then, the improved 
network has almost no congestion regardless of whether the improvement is based on the SO 
or UE design principle. (The travel time on each link almost equals its free flow travel time.)  
Consequently, the ratio ( , , , )G Bρ D t  is very close to one and must be smaller than an upper 
bound of the PoA of the instance ( , , )G D t  for a traditional UE traffic assignment problem, 
which is always larger than one. The latter is always bounded by the upper bound of the PoA 
of nI  by definition. Consider another extreme case where the budget is zero. The SO- and 
UE-NDPs become SO and UE assignments, respectively. ( , , , )G Bρ D t  is bounded by the 
upper bound of the PoA for a traditional UE traffic assignment problem of the instance 
( , , )G D t    
 
Remark 3: In general, when the budget is larger, the resultant network is less congested (or 
the TSTT is lower) regardless of whether it is improved under the SO or UE design principle, 
but the two resultant TSTTs are closer than those before improvement. Hence, the PoA is 
smaller than that before the improvement and is closer to one. 
 

5. Price of anarchy for the reliability-based network design problem 

When confronted with network supply uncertainty, the system manager should consider 
the TSTT variation in the network design objective. When the TSTT variation is larger, a 
design that minimizes only the mean TSTT is not necessarily better than a design that 
minimizes both the mean TSTT and its variation. The mean TSTT may greatly underestimate 
the actual TSTT due to a large uncertainty. Therefore, the system manager should be risk 
averse and take extreme system performance into account. The current distribution-free 
reliability-based design model (e.g., Ng and Waller, 2009a) only considers the mean and 
standard deviation of the TSTT. In this paper, this consideration is relaxed via the addition of 
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a multiplier to the standard deviation. This relaxation allows a more conservative design via a 
larger multiplier value. Thus, this section proposes using the TSTTB mentioned in Section 
3.4 as the design objective.  

Two types of NDPs are proposed: the RSO-NDP and the RUE-NDP. The RSO-NDP is 
analogous to the SO-NDP. It only has a different design objective and can be formulated into 
a single-level optimization program as follows: 

 
,

RSO-NDP: min ( , )
v y

RTSTTB
∈Ω ∈Ωv y

v y .  (83) 

where ( , )RTSTTB v y  is the TSTTB at ( , )v y  given R. Note that ( , )RTSTTB v y  is not only 
a function of v  but also a function of y  because the travel time after improvement 

( , )a a at v y  is a function of both av  and ay . If the selfish routing behavior of users is also 
considered, the RUE constraints mentioned in Section 3.3 must be incorporated into the 
design problem, resulting in the RUE-NDP, which can be formulated into a bi-level, 
non-linear, non-convex optimization program as follows: 

 
,

RUE-NDP: min ( , )
v y

RTSTTB
∈Ω ∈Ωv y

v y , (84) 

 subject to (18).  
Following the discussion in Sections 3.4, and 4, it is clear that a solution exists to the two 
problems, but multiple solutions are also possible.  

Denote ( )( ),RSO RSO RSOv y y and ( )( ),RUE RUE RUEv y y  as an optimal solution to the 
RSO-NDP and RUE-NDP, respectively. The PoA for the reliability-based NDP can be 
defined similar to that for the RUE and network design mentioned in Sections 3 and 4 as 
follows. 

 
Definition 4. Given an RUE-NDP instance ( , , , , )G BD t σ , and levels of risk aversion of 
system manager and travelers R  and λ , respectively, the PoA of this instance is defined as  

 
( )
( ),

( ),
( , , , , )

( ),

RUE RUE RUE
R

R RSO RSO RSO
R

TSTTB
G B

TSTTBλρ =
v y y

D t
v y y

σ . (85) 

 
Definition 5. Let 

max,nI ε  be the set of all RUE-NDP instances that satisfy the following 
conditions: 

1) The link travel time functions are polynomial functions whose powers do not exceed 
the positive integer n ; 

2) The coefficients aε , a A∀ ∈  (defined in Proposition 1) do not exceed the 

non-negative number maxε .    

The PoA of 
max,nI ε  is  

( )max
, max

, , ,
( , , , , )

sup  ( , , , , )
n

R n R
G B I

I G B
ε

λ ε λρ ρ
∈

=
D t

D t
σ

σ . 

 
Following the derivation process in Theorem 3, a set of upper bounds of ( , , , , )R G Bρ D t σ  

can be obtained, which is stated below. 
 
Theorem 4. The PoA of the RUE-NDP instance ( , , , , )G BD t σ  that belongs to 

max,nI ε  is 
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bounded by the set of upper bounds of the PoA of the RUE traffic assignment instance 
( , , , )G D t σ  that belongs to 

max,nI ε . That is, 

 
( )

max

max
, ,1

max

1( , , , , ) ,  ( , , , , )
1

1

R nn
n

RG B G B I

n
n

λ ε
ερ
λε

+

+
≤ ∀ ∈

Φ + 
Φ −  + 

D t D tσ σ ,  (86) 

where 
1

max max

1 1 10 min ,
1 1

nn nk k
nλε λε

+

Φ

   +   Φ∈Ω = < ≤    + + ∆ +      
. 

 
Similarly, ( )max, ,R nIλ ερ  is bounded by the right side of (86). Following the results of 

Theorems 3 and 4, the following theorem can be concluded. 
 
Theorem 5. The set of upper bounds of the PoA for the traditional UE-NDP and RUE-NDP 
are independent of the network topology G , demand D , and budget B . 
 

6. Conclusion 

In this paper, an RSO assignment problem under supply uncertainty is proposed based on 
the concept of the TSTTB, and the existence and uniqueness of a solution to the problem are 
analyzed. The PoA of RUE traffic assignment with supply uncertainty is also defined. Based 
on the properties of the two reliability-based assignment problems, a set of upper bounds of 
the PoA is derived using polynomial link travel time functions and is proven to be 
independent of any network topology and demand pattern. The minimum upper bound is 
proven to be consistent with the upper bound of the PoA of traditional UE traffic assignment 
when network uncertainty is ignored by both the users and system manager or when no 
network uncertainty exists. The properties of the minimum upper bound in terms of the 
parameters of the RUE assignment problem are examined. The loss of tightness of the bound 
is also discussed. 

A PoA is defined for the traditional UE-NDP with polynomial link travel time functions in 
which link expansion and addition are considered and the objective is to minimize the TSTT 
under budgetary and link expansion constraints. The PoA is proven not to exceed the upper 
bound of the PoA for traditional UE traffic assignment of the same instance, before any link 
expansion. This analysis is extended to the reliability-based NDPs. RUE- and RSO-NDPs are 
proposed with the objective of minimizing the TSTTB, and a PoA for the RUE-NDP is 
defined. The PoA is also proven not to exceed the set of upper bounds of the PoA for RUE 
traffic assignment of the same instance, before any link expansion. 

 The TSTTB is only one of the reasonable measures to define the RSO objective function, 
the PoA for RUE traffic assignment and network design. This measure considers the system 
manager’s risk aversion perspective. An alternative measure is the sum of all individual 
travel-time-budget (TTB) that reflects users’ perceived costs related to system 
uncertainty.  This measure is from an economic perspective and is a counterpart of the 
stochastic-SO (SSO) concept under stochastic-UE (SUE). Similar to SSO, this “sum of 
individual TTB” would make the RSO objective function a path-based formulation, which 
may requires a totally different proof to derive the corresponding PoA. This proof is lengthy 
and hence is put in another paper.  
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Appendix A: Uniqueness of RUE link flows and minimum travel time budgets  
Denote ′f  and ′′f  as two different RUE path flow solutions. ,p rsb′  and ,p rsb′′  are the travel 
time budgets associated with path p and O-D pair rs corresponding to ′f  and ′′f , 
respectively. av′  and av′′  are the RUE flows on link a corresponding to ′f  and ′′f , 
respectively. Based on Proposition 3, the followings are true: 

( ), , , 0
rs

p rs p rs p rs
rs RS p P

f f b
∈ ∈

′′ ′ ′− ≥∑ ∑ , and 

( ), , , 0
rs

p rs p rs p rs
rs RS p P

f f b
∈ ∈

′ ′′ ′′− ≥∑ ∑ . 

Adding the above inequalities gives 
( )( ), , , , 0

rs

p rs p rs p rs p rs
rs RS p P

f f b b
∈ ∈

′ ′′ ′′ ′− − ≥∑ ∑ , 

which can be rewritten as 

( )

( )( )

, , , ,

, , , ,( ) ( ) 0,
rs

rs

a a
p rs p rs a p rs a p rs

rs RS p P a A a A

p rs p rs p rs p rs
rs RS p P

f f t t

f f T T

δ δ

λσ λσ

∈ ∈ ∈ ∈

∈ ∈

 ′ ′′ ′′ ′− − + 
 

′ ′′ ′′ ′− − ≥

∑ ∑ ∑ ∑

∑ ∑
 or 

 
( )

( )( )

, , , ,

, , , ,( ) ( ) 0.
rs

rs

a a
p rs p rs p rs p rs a a

rs RS p P a A a A

p rs p rs p rs p rs
rs RS p P

f f t t

f f T T

δ δ

λσ λσ

∈ ∈ ∈ ∈

∈ ∈

 ′ ′′ ′′ ′− − 
 

′ ′′ ′′ ′+ − − ≥

∑ ∑ ∑ ∑

∑ ∑
 (87) 

Because of , ,( ) ( )p rs p rsT Tσ σ′ ′′= , the second summation term on the left side of (87) is zero. 
The first summation term can be expressed in terms of link flows due to 

( ), ,
rs

a
p rs p rs a

rs RS p P
f vδ

∈ ∈

′ ′=∑ ∑  and ( ), ,
rs

a
p rs p rs a

rs RS p P
f vδ

∈ ∈

′′ ′′=∑ ∑ . Hence, (87) can be reduced to  

 ( )( ) 0a a a a
a A

v v t t
∈

′′ ′ ′ ′′− − ≥∑  or  

     ( )( ) 0a a a a
a A

v v t t
∈

′′ ′ ′′ ′− − ≤∑ .  (88) 

According to the monotone and separable properties, 

     ( )( ) 0,  a a a av v t t a A′′ ′ ′′ ′− − ≥ ∀ ∈ .   (89) 

Conditions (88) and (89) lead to  

      ( )( ) 0,  a a a av v t t a A′′ ′ ′′ ′− − = ∀ ∈ .  (90) 

 If the link performance function is strictly monotone with respect to its link flow, (90) 
implies av′ = ,av a A′′ ∀ ∈ , which further implies that the mean travel time on each link at 
RUE is unique and the minimum travel time budget for each OD pair is unique.  
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If the link performance function is only monotone with respect to its link flow, (90) 
implies ,a at t a A′′ ′= ∀ ∈ , and hence the minimum travel time budget for each OD pair is 
unique. 
 
Appendix B: The proof of Lemma 4  
Denote the left side of (44) as a function ( )a axγ :  

 ( ){ }( ) 1 ,   m m m
a a am a a a am a a am a ax k x x k r x k r r a Aγ λε= −Φ + − ∀ ∈ ,  (91)  

which is continuous. The highest degree of ax  in ( )a axγ  is 1m + , which is always larger 
than or equal to two because m +Î ¢ . Thus, the second derivative of ( )a axγ  in terms of ax  
is 

 ( )2
1

2 ( 1) , ,a a m
am a

a

d x
m mk x a A

dx
γ −= + ∀ ∈   (92) 

which is positive in (0, )+∞  for all m +Î ¢ . Thus, the function ( )a axγ  is a strictly convex 
function in terms of  in the region of (0, )+∞ . The minimum value of ( )a axγ  in the 
region of (0, )+∞  is attained at the stationary point *

ax  where the first-order derivative of 
the objective function ( )a axγ  equals zero: 

( )*

0, .a a

a

d x
a A

dx
γ

= ∀ ∈                       (93) 

Therefore, 

( )( ) ( )( )*1 1 0,  
m m

am a am a ak m x k r a Aλε+ − Φ + = ∀ ∈ .           (94) 
The stationary point in the region of (0, )+∞  is 

 ( )
1

* 1
,  

1

m
a

a ax r a A
m

λεΦ + 
= ∀ ∈ + 

. (95) 

*
ax  is always greater than zero if 0ar >  because both the numerator and denominator of the 

squared bracket term in (95) are positive. Thus, it can be concluded that the stationary point 
*
ax  always exists in the region of (0, )ax ∈ +∞  if 0ar > . The minimum function value is 

( )
1

* 1
( ) ,  

1

m
m

a m
a a am a ax m k r r a A

m
λε

γ

+ 
Φ +  = Φ − ∀ ∈  +   

.         (96) 

By definition, *( ) ( ),  a a a ax x a Aγ γ≥ ∀ ∈ , which is equivalent to (44) in Lemma 4.  
If 0ar = , then ( ) 0m

a a am a ax k x xγ = ≥ , which is a special case of (44). This completes the 
proof. ■ 
 
Appendix C: The proof of Lemma 5 
Consider a relaxed function of ( , , , )amθ λ εΦ , denoted as ( , , , )amθ λ ε′ ′Φ , where m¢Î +¡  
(i.e., m¢ is a positive real number). Because ( , , , )amθ λ ε′ ′Φ  is a continuous function of 
m¢, the derivative of ( , , , )amθ λ ε′ ′Φ  can be taken in terms of m¢ to obtain  

ax
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( , , , )a
d m

dm
θ λ ε′ ′Φ
′

= ( ) ( )
1

1 11 ln ,   .
1 1

m
m

a a a A
m m m

λε λε
′+
′Φ + Φ +   

∀ ∈   ′ ′ ′+ +   
     (97) 

The sign of ( , , , )a
d m

dm
θ λ ε′ ′Φ
′

 depends solely on the sign of ( )1
ln

1
a

m
λεΦ + 

 ′+ 
 in the 

above expression because of 
( )

1

11 0
1

m
m

a

m m
λε

′+
′Φ + 
> ′ ′+ 

. Because 
max

1
1 λε

Φ ≤
+

 (see (43)), 

the right side of the above is not greater than 1
1 aλε+

 due to the definition of maxε . Hence, 

 
1 ,  

1 a

a A
λε

Φ ≤ ∀ ∈
+

.                          (98) 

Based on the above condition, 

 
( )1 1 1  
1 1

a

m m
λεΦ +

≤ <
′ ′+ +

and ( )1
ln 0

1
a

m
λεΦ + 

< ′+ 
, a A∈ .   

Therefore, the sign of ( , , , )a
d m

dm
θ λ ε′ ′Φ
′

 is negative, and ( , , , )amθ λ ε′ ′Φ  is strictly 

decreasing in terms of m¢. The power m¢ can take a positive integer value, and hence 
( , , , )amθ λ εΦ  is also decreasing in terms of m +Î ¢ .  

Furthermore, because 

1

max

1 1
1

m
mm

m λε

+

 + Φ ≤   + ∆ +  
(see (43)),  

 

1
1 1 1

1

m
m

m

a

m
m λε

+

 + Φ ≤   + ∆ +  
.  (99)  

Due to 1 1
m m

  < + ∆ 
, the right side of the above inequality is less than 

1

1 1
1

m
m

a

m
m λε

+

 + 
   +  

, 

leading to: 

 

1
1 1 1

1

m
m

m

a

m
m λε

+

 + Φ <    +  
.  (100) 

By multiplying both sides of the above inequality by a positive number 
1

1
1

m
m

am
m
λε

+

+ 
 + 

,  

 

11 1
1 1 11 1 1

1 1 1

mm m
mm m

a am

a

mm m
m m m
λε λε

λε

++ +

 + + +    Φ < =     + + +      
.  (101) 

It can then be concluded that 
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1 1

1 1 (1 )1 ( , , , ) 0
1 1

m m
m m

a am
am m m

m m
λε λε θ λ ε

+ + + Φ +    Φ −Φ = Φ − = Φ >    + +   
 

.  (102)  

According to the above, ( , , , )amθ λ εΦ  is both strictly decreasing in terms of m  and 
positive. This completes the proof. ■ 

 
Appendix D: The proof of Lemma 6  
According to Lemma 5,  ( , , , )amθ λ εΦ  is a decreasing function in terms of m  when 

ΦΦ∈Ω . Thus,  
( ,1, , ) ... ( , 1, , ) ( , , , ),  a a an n a Aθ λ ε θ λ ε θ λ εΦ ≥ ≥ Φ − ≥ Φ ∀ ∈ .      (103) 

Based on the above relationship and condition (44) in Lemma 4, for any integer [ ]1,m n∈  ,  

 ( ){ } ( )1 , , , ,   .m m m m
am a a a am a a am a a a am a ak x x k r x k r r n k r r a Aλε θ λ ε−Φ + − ≥ Φ ∀ ∈  (104) 

When 0m = , the left side of (104) equals 
( ){ } ( )( )0 0 0 0 01 1 1 ,   .a a a a a a a a a a a ak x k x k r k x k r a Aλε λε−Φ + − = −Φ + +Φ ∀ ∈   (105) 

The term ( )( )1 1 aλε−Φ +  in the right side of (105) is always non-negative because 

( ) 11 aλε −Φ ≤ +   (i.e., ΦΦ∈Ω ). The term 0a ak x  is also non-negative. Thus, the first term 
on the right side of (105) is non-negative. Hence, the right side of (105) is larger than or equal 
to the second term in the right side, leading to 

( ){ }0 0 0 01 ,   .a a a a a a a a ak x k x k r k r a Aλε−Φ + − ≥ Φ ∀ ∈        (106) 
Clearly, from definition (45), Φ  is not less than ( , , , )anθ λ εΦ  for any n +Î ¢ . Hence, 

(104) also holds for m = 0. Taking summation from m = 0 to n, and replacing 
0

n
m

am a
m

k x
=
∑  

with ( )a at x , (104) becomes 
 ( ){ }( ) 1 ( ) ( ) ( , , , ) ( ) ,  .a a a a a a a a a a a a a at x x t r x t r r n t r r a Aλε θ λ ε−Φ + − = Φ ∀ ∈     (107) 

After replacing ax  with RSO
av  and ar  with RUE

av , the inequality in Lemma 6 can be 
obtained. This completes the proof. ■ 
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