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ORIGINAL ARTICLE

An H5N1-based matrix protein 2 ectodomain tetrameric
peptide vaccine provides cross-protection against lethal
infection with H7N9 influenza virus

Ho-Chuen Leung, Chris Chung-Sing Chan, Vincent Kwok-Man Poon, Han-Jun Zhao, Chung-Yan Cheung,
Fai Ng, Jian-Dong Huang and Bo-Jian Zheng

In March 2013, a patient infected with a novel avian influenza A H7N9 virus was reported in China. Since then, there have been 458

confirmed infection cases and 177 deaths. The virus contains several human-adapted markers, indicating that H7N9 has pandemic

potential. The outbreak of this new influenza virus highlighted the need for the development of universal influenza vaccines. Previously,

we demonstrated that a tetrameric peptide vaccine based on the matrix protein 2 ectodomain (M2e) of the H5N1 virus (H5N1-M2e)

could protect mice from lethal infection with different clades of H5N1 and 2009 pandemic H1N1 influenza viruses. In this study, we

investigated the cross-protection of H5N1-M2e against lethal infection with the new H7N9 virus. Although five amino acid differences

existed at positions 13, 14, 18, 20, and 21 between M2e of H5N1 and H7N9, H5N1-M2e vaccination with either Freund’s adjuvant or

the Sigma adjuvant system (SAS) induced a high level of anti-M2e antibody, which cross-reacted with H7N9-M2e peptide. A

mouse-adapted H7N9 strain, A/Anhui/01/2013m, was used for lethal challenge in animal experiments. H5N1-M2e vaccination

provided potent cross-protection against lethal challenge of the H7N9 virus. Reduced viral replication and histopathological damage of

mouse lungs were also observed in the vaccinated mice. Our results suggest that the tetrameric H5N1-M2e peptide vaccine could

protect against different subtypes of influenza virus infections. Therefore, this vaccine may be an ideal candidate for developing a

universal vaccine to prevent the reemergence of avian influenza A H7N9 virus and the emergence of potential novel reassortants of

influenza virus.
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INTRODUCTION

Since the first human infection by a novel avian influenza A H7N9

virus was reported in March 2013, a total of 458 confirmed cases with

177 deaths in China had been reported by December 2014.1 After a

relatively silent period from July to October 2013, in which only four

cases with one death were reported, the virus has reemerged since

November 2013, resulting in the second outbreak in China.2 This

novel influenza virus can bind to both avian (alpha 2,3-linked sialic

acid) and human (alpha 2,6-linked sialic acid) receptors.3 It also con-

tains human-adapted amino acid markers.4,5 These adaptations may

explain why the virus can cause outbreaks in the human population.6

Patients infected with the H7N9 virus typically show symptoms such

as fever, cough, opacities, and consolidation on chest radiography, and

some severe cases can progress to acute respiratory distress syndrome

(ARDS) and multiorgan failure.4 Although the lethality of H7N9

influenza is comparatively lower than that of highly pathogenic

H5N1 viral infection, it is much higher than that of 2009 pandemic

H1N1 influenza, reaching approximately 30%.7 Furthermore, high-

pathogenicity markers for human-adapted influenza virus, such as an

E637K amino acid substitution in the PB2 gene and Q226L in the

haemagglutinin (HA) gene, have been identified in recent isolates of

the H7N9 virus,4 suggesting that the virus might become more viru-

lent in humans. Thus, the pandemic potential of lethal H7N9 influ-

enza has raised public concern.

Although early treatments with oseltamivir and peramivir were effec-

tive,3,8,9 drug-resistant mutants of the virus were found soon after the

patients received the anti-influenza therapy.10 Candidates of inactivated

virus vaccines and virus-like particle (VLP) vaccines of H7N9 virus have

been reported.11 However, the use of inactivated virus vaccines or VLP

may not provide protection against mutated or reassorted influenza

virus. In fact, a surveillance study has suggested that the novel influenza

A H7N9 virus is a new reassortant of several influenza viruses, including

H7, N9, and H9N2.6 Therefore, development of universal influenza

vaccines is an attractive goal for scientists around the world. In this

regard, the ectodomain of matrix protein 2 (M2e) of influenza viruses

may be a promising target for the development of a universal influenza

vaccine. This is because M2e is relatively conserved in different subtypes

of influenza virus,12,13 and animal experiments have demonstrated that

M2e vaccination can provide cross-protection against infection with

different subtypes of influenza virus. H5N1-M2e-specific antibodies

could react with different subtypes of influenza virus, such as H5N2,

H9N2, H7N7, and H11N6.14 Various M2e-based vaccines have
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been developed, such as recombinant protein vaccines,15–18 plasmid

DNA vaccines,19 and peptide vaccines.20,21 In our previous studies,

we constructed a tetrameric H5N1-M2e vaccine candidate and demon-

strated that it could provide cross-protection against lethal infections

with different clades of H5N1 and 2009 pandemic H1N1 viruses.20,21 In

this study, we extend our investigation to evaluate cross-protection of

H5N1-M2e against lethal infection by the novel avian influenza A H7N9

virus in mice.

MATERIALS AND METHODS

Mice

Six- to eight-week-old female BALB/c mice were provided by the

Laboratory Animal Unit of the University of Hong Kong. Mice were

maintained in cages and provided with sterilized food and water in the

animal facility. The animal study was approved by the Committee on

the Use of Live Animals in Teaching and Research (CULATR) of the

University of Hong Kong.

Peptide

Tetra-branched peptides encoding the M2e of A/Vietnam/1194/04

(H5N1), A/Anhui/01(H7N9) and A/Hong Kong/156/97 (Figure 1)

were synthesized by GL Biochem Ltd. (Shanghai, China).

Virus

Mouse-adapted A/H7N9/Anhui/01 virus was inoculated in 10-day-

old specific pathogen-free (SPF) eggs and the allantoic fluid was col-

lected after three-day incubation at 35 6C. The allantoic fluid was

aliquoted and stored at 280 6C before use. The virus titer was detected

by 50% tissue culture infective dose (TCID50) assay, while the 50%

lethal dose (LD50) was determined by challenging BALB/c mice with

serial dilutions of the virus as described previously.20 All experiments

involving H7N9 virus were performed in biosafety level 3 (BSL-3)

facilities as described previously.22

Animal experiment

Two groups of BALB/c mice (15 mice/group) were subcutaneously

(s.c.) vaccinated with H5N1-M2e tetramer peptide pre-mixed,

respectively, with Freund’s adjuvant (FA, Sigma, St. Louis, SO,

USA) and the Sigma adjuvant system (SAS) (Sigma, St. Louis, SO,

USA) as described previously.23 Three other groups of mice (15 mice/

group) were s.c. injected with FA, SAS or phosphate-buffered saline

(PBS) alone as negative controls. Briefly, the mice were primary-

immunized with 10 mg of H5N1-M2e pre-mixed with complete FA

or SAS, and then boosted with 10 mg of the peptide with incomplete

FA or SAS twice in a three-week interval. Mice sera were collected 1 day

prior to each vaccination and 10 days after the second booster vac-

cination for detection of specific antibodies. Ten days after the last

vaccination, the mice were intranasally (i.n.) inoculated with 10 LD50

of the mouse-adapted strain of A/Anhui/01 (H7N9) after anesthetiza-

tion with ketamine and xylazine. The challenged mice were observed

for 21 days or till death. Lung tissues were collected from 5 mice/group

at day 6 post-challenge for virological and pathological investigation.

Enzyme-linked immunosorbant assay (ELISA)

The titers of M2e-specific antibodies were detected by ELISA as

described previously.24 Briefly, a 96-well micro-titer plate (Sigma,

St. Louis, SO, USA) was coated with either H5N1–, H7N9–, or HK/

156-M2e (GL Biochem Ltd, Shanghai, China) at a concentration of

1 mg/well and incubated overnight at 4 6C. After the coated plate was

blocked with 3% bovine serum albumin in PBS for 2 h at room

temperature (RT), serially diluted sera were added to the plate and

incubated at RT for 2 h. Horseradish peroxide-conjugated goat anti-

mouse immunoglobulin G antibody (Dako, Glostrup, Denmark)

was added to the plate and incubated at RT for 1 h. Substrate

3,39,5,59-tetramethylbenzidine (Life Technologies, Carlsbad, CA,

USA) was added to the plate and incubated at RT for 0.5 h. The

reaction was stopped by adding 1 M H2SO4, and the results were

measured at absorbance of 450 nm using an ELISA reader

(Beckman Coulter, Brea, CA, USA).

Virological tests

Virus titers were detected by TCID50 assay as described previously.20

Briefly, the infected allantoic fluid and mouse lung homogenates were

serially diluted 10-fold in minimum essential medium (Invitrogen,

Waltham, MA, USA) containing a cocktail of antibiotics. The diluted

samples were added to PBS-prewashed Madin–Darby canine kidney

cell monolayer in a 96-well plate. The cell cultures were incubated at

37 6C for 1 h, and the supernatants were replaced with fresh minimum

essential medium containing a cocktail of antibiotics. The cytopathic

effect that appeared in the infected Madin–Darby canine kidney cells

was observed daily and recorded on the third-day post-infection.

Viral RNA copies in mouse lung homogenates were measured by

quantitative reverse-transcription polymerase chain reaction (QRT-

PCR) as described previously.23 Briefly, viral RNA of mouse lung

homogenate was extracted using the RNeasy Mini Kit (Qiagen,

Valencia, CA, USA). The extracted viral RNA was reverse-transcribed

to cDNA using Superscript II (Invitrogen, Waltham, MA, USA) and

primer Flu12 (AGC AAA AGC). The viral RNA copy numbers in the

samples were determined using a Lightcycler 96 (Roche Applied sci-

ence, Penzberg, Germany) with SYBR green I master (Roche Applied

science, Penzberg, Germany). Primers specific for influenza viral M

gene (forward primer: 5-CTT CTA ACC GAG GTC GAA ACG-3;

reverse primer: 5-GGC ATT TTG GAC AAA KCG TCT A-3) were

used in the QRT-PCR assay.

Histopathological analysis

The lung tissues collected from infected mice were fixed with 10%

formalin. The fixed tissues were embedded in paraffin wax, and the
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Figure 1 Structure of the tetrameric M2e peptide vaccine. The peptide vaccine

was synthesized on [Fmoc-Lys(Fmoc)]2-Lys-Cys(Acm)-bAla-Wang Resin in a

tetrameric form carrying four copies of H5N1-M2e or H7N9-M2e. Each rectangle

represents a copy of M2e. The amino acid sequences of M2e were determined

according to two virus strains, A/Vietnam/1194/04 (H5N1), A/Anhui/01/13

(H7N9), and A/Hong Kong/156/97 (H5N1), which are shown at the bottom.
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samples were cut to 6-mm-thick sections. The sections were mounted

on the slide and examined by H&E staining as described previously.25

M2e 3D structure prediction

The 3D structures of the A/Vietnam/1194/04 (H5N1), A/Hong Kong/

156/97 (H5N1), A/Anhui/01/13 (H7N9), and A/Beijing/501/09

(H1N1) M2e were predicted using the online software PEP-FOLD

(http://bioserv.rpbs.univ-paris-diderot.fr/PEP-FOLD/) as described

previously.26–28 The predicted model with the highest score was cho-

sen for discussion purposes.

Statistical analysis

The results are presented as the mean 6 standard deviation (SD).

Statistical significance between different vaccination groups was cal-

culated by Student’s t-test and Kaplan–Meier analysis using the stat-

istical package for the social sciences (International Business Machine

Corporation, Armonk, NY, USA) statistical software. P-values less

than 0.05 were considered significant.

RESULTS

High level of cross-reacted antibody is induced by H5N1-

M2e vaccination

As shown in Figure 1, a difference of five amino acids was observed

between the sequences of H5N1-M2e and H7N9-M2e. To examine

whether these variations would affect the reaction of the antibody

induced by the H5N1-M2e vaccine and H7N9-M2e, we tested the

antibody titers in serum samples collected from H5N1-M2e-vacci-

nated mice using ELISA with plates coated with H5N1-M2e and

H7N9-M2e, respectively. The titers of immunoglobulin G antibody

specific to H7N9-M2e (Figure 2A) and H5N1-M2e (Figure 2B) were

gradually increased in mouse serum samples collected after each

vaccination, reaching very high levels (.1:105) 10 days after the

last booster vaccination. By contrast, M2e-specific antibody was

undetectable in serum samples collected from mice vaccinated with

FA, SAS, or PBS alone. The adjuvant effect of SAS seemed to be better

than that of FA because H5N1-M2e plus SAS induced a higher level of

antibody responses. Importantly, the antibody titers specific to H5N1-

M2e and H7N9-M2e were similar (P . 0.05). These results indicate

that H5N1-M2e vaccination induced a high level of M2e-specific

antibody that effectively cross-reacted with H7N9-M2e, although a

difference of approximately 21% (5/24) amino acids was identified

between the sequences of H5N1-M2e and H7N9-M2e.

Furthermore, M2e of another H5N1 virus strain A/Hong Kong/

156/97, which is nonreactive with H5N1-M2e (A/Vietnam/1194/

04)-induced antibody,19 was included as a negative control in the
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Figure 2 Cross-reacting M2e-specific antibody responses induced by H5N1-M2e vaccination. Mice were vaccinated three times with tetrameric H5N1-M2e peptide mixed

with FA (H5N12M2e1FA) or SAS (H5N12M2e1SAS). Mice vaccinated with PBS, FA, or SAS were used as control. Mice sera were sampled 21 days after priming and the

first booster vaccination and 10 days after the second booster vaccination for the ELISA detection. The end point titer of each sample was determined as the highest dilution

that yielded an OD450 nm absorbance higher than the blank OD450 nm absorbance plus 2 SD. The data are shown as the geometric mean of 10 mice per group with its

corresponding SD on a log10 scale. (A) H7N9-M2e tetrameric peptide was used as coating antigen in the ELISA. (B) H5N1-M2e tetrameric peptide was used as coating

antigen in the ELISA. (C) HK/156-M2e tetrameric peptide was used as coating antigen in the ELISA. The detection limits (1:100 and 1:20) are indicated by the dotted line.

*, **, and *** indicate significant differences (P , 0.05) between the H5N1-M2e and HK/156 M2e cross-reactive antibody titers detected on 21 days after priming, 21 days

after first booster and 10 days after second booster H5N12M2e1FA vaccinations, respectively. Experiments were repeated five times.
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Figure 3 Survival rate in mice challenged with lethal dose of H7N9 virus. H5N1-

M2e1FA- and H5N12M2e1SAS-vaccinated mice were challenged with 10

LD50 of A/Anhui/01/13 (H7N9) influenza virus. FA, SAS, and PBS alone were

used as negative controls. The survival of mice (10/group) was observed for 21-

day post-challenge. The survival rates (%) were calculated corresponding to the

mice survival. * and ** indicate significant differences (P , 0.01) between the

survival rates of the H5N12M2e1FA group and the FA group and between the

survival rates of the H5N12M2e1SAS group and the SAS group, respectively.
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ELISA experiments. As shown in Figure 2C, the titer of HK/156-M2e

cross-reactive antibody was approximately 2 logs lower than that of

H7N9-M2e (P , 0.05), indicating that H5N1-M2e vaccination did

not induce sufficient antibody toward HK/156-M2e.

H5N1-M2e vaccination provides potent cross-protection against

lethal challenge with H7N9 influenza virus

To evaluate whether H5N1-M2e vaccination could provide effective

cross-protection against lethal infection of H7N9 virus, the H5N1-

M2e-vaccinated mice were challenged with 10 LD50 of mouse-adapted

A/Anhui/01/13 (H7N9) virus. As shown in Figure 3, vaccination of

H5N1-M2e with either FA or SAS, could protect 80% (8/10) of mice

from lethal challenge of H7N9 virus. The protective effect was similar

to the results from experiments using lethal challenge with homogen-

ous H5N1 virus.20 By contrast, the survival rate of mice vaccinated

with SAS or PBS was 0% (0/10). Interestingly, 1 out of 10 mice

vaccinated with FA also survived the lethal challenge (survival rate

10%). The survival rate of H5N1-M2e-vaccinated mice were

significantly higher than that of mice vaccinated with FA, SAS, or

PBS (P , 0.01). These results show that H5N1-M2e vaccination could

provide satisfactory cross-protection against the lethal infection with

the novel H7N9 virus.

H5N1-M2e vaccination reduces viral load and tissue damage in

lungs of mice with lethal infection with the H7N9 virus

To examine whether H5N1-M2e vaccination could inhibit viral infec-

tion and tissue damage in the lungs of mice challenged with a lethal

dose of H7N9 virus, six mice per group were sacrificed at day 6 post-

challenge and their lungs were collected for detection of viral load and

tissue damage. As detected by TCID50 assay and QRT-PCR, virus titers

(Figure 4A) and viral RNA copies (Figure 4B) in the lungs of mice

vaccinated with H5N1-M2e were significantly reduced, which was
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Figure 4 Virus titers and pathological changes in mouse lungs challenged with H7N9 virus strain A/Anhui/01/13. Mice were challenged with 10 LD50 of A/Anhui/01/

2013 (H7N9) 10 days after the second booster vaccination. Mice lungs were sampled at day 6 post-challenge, and the virus titers in the lungs were determined by (A)

TCID50 assay and (B) QRT-PCR. The data are presented as geometric mean 1SD of (A) TCID50 per mouse lung and (B) viral RNA copies per mouse lung on a Log10

scale. * and ** indicate significant difference (P , 0.01) between the virus titer of the H5N12M2e1FA group and the FA group and between the SAS

H5N12M2e1SAS group and the SAS group, respectively. (C) Histopathological changes in mouse lungs collected at day 6 post-challenge were detected by H&E

staining. The histopathological changes in representative images of lungs from mice vaccinated with H5N12M2e1FA, H5N12M2e1SAS, FA, SAS, or PBS are

shown. A representative image of normal mouse lung is included as negative control (magnification 3100).
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approximately 2 logs lower than that in the mice vaccinated with FA,

SAS, or PBS (P , 0.01). Consistent with this result, H&E staining

showed that the lung pathology of mice vaccinated with H5N1-M2e

was less severe than mice vaccinated with adjuvant or PBS. Severe

damage of lung tissue was observed in adjuvant- or PBS-vaccinated

mice, which included damage to the bronchial epithelium with dena-

tured pneumocytes, neutrophils, and mononuclear cells, marked infil-

tration of lymphocytes, and fused alveoli wall with focal hemorrhage

(Figure 4C).

H5N1-M2e and H7N9-M2e 3D structure analysis

We analyzed monomer sequences of H5N1-M2e (A/Vietnam/1194/

04) and H7N9-M2e (A/Anhui/01/13) using PEP-FOLD and com-

pared the structural differences between the predicted 3D models.

M2e of A/Hong Kong/156/97 (H5N1), which is non-reactive with

H5N1-M2e (A/Vietnam/1194/04) induced antibody,19 and M2e of

A/Beijing/501/09 (H1N1), which is cross-reactive with H5N1-M2e-

induced antibody,21 were included for analysis. As shown in Figure 5,

all four M2e were folded as hairpin shapes. The U-shaped regions of

M2e-A/Vietnam/1194/04 (H5N1), M2e-A/Anhui/01/13 (H7N9), and

M2e-A/Beijing/501/09 (H1N1) were more exposed than that of M2e-

A/Hong Kong/97 (H5N1). The structural differences between these

four M2e peptides might be due to the properties of the substituted

amino acids, and they might affect the antigenic site accessibility.

DISCUSSION

To control potential new influenza pandemics, the best measure may

be to develop a universal influenza vaccine because no existing vac-

cines can provide effective cross-protection against a mutated or reas-

sorted novel influenza virus. Current efforts to develop universal

vaccines include the development of M2e-based vaccines, HA stem

vaccines 29 and M1 VLPs.30 M2e-based vaccine candidates can provide

cross-protection against infections of different subtypes of influenza

virus.20,21,31 In our previous studies, we showed that an H5N1-M2e-

based tetrameric peptide vaccine exhibited promising protection

against lethal challenge with different clades of H5N1 virus and other
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Figure 5 The 3D structure prediction of the M2e structures of H5N1 and H7N9 subtypes. The 3D structures of M2e of (A) A/Vietnam/1194/04 (H5N1), (B) A/Anhui/

01/13 (H7N9), (C) A/Hong Kong/156/97 (H5N1), and (D) A/Beijing/501/09 were predicted using the online software PEP-FOLD. The skeleton structure prediction

model is shown on the left, and the amino acid spherical structure prediction model is shown on the right with two different angles. Each amino acid is shown with its

specific color according to the software. The amino acid variations between A/Vietnam/1194/04 (H5N1), A/Anhui/01/13 (H7N9), A/Hong Kong/156/97 (H5N1), and A/

Beijing/501/09 (H1N1) are indicated with white numbers on the skeleton prediction models.
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subtypes of influenza virus.20,21 In this study, we further demonstrated

that this tetrameric peptide vaccine could also offer potent protection

against infection with a novel H7N9 influenza virus, which caused a

first outbreak from March to June 2013 and a second outbreak from

November 2013 to December 2014 in China.

Our results showed that the H5N1-M2e tetrameric peptide vaccine,

together with either FA or SAS, induced a high antibody response that

was able to effectively cross-react with H7N9-M2e (Figure 2). The

vaccinations thus protected the mice from a lethal challenge with

the H7N9 virus (Figure 3). The survival rate of H5N1-M2e-vaccinated

mice against a H7N9 lethal challenge was 80%, which was the same as

that of H5N1-M2e-vaccinated mice against a H5N1 lethal challenge.20

Consistently, viral load and lung damage in H5N1-M2e-vaccinated

mice were much lower and less severe than that in adjuvant- or PBS-

injected mice (Figure 4). Although T-cell responses induced by an

M2e-based vaccine have been reported previously, the protection by

the M2e vaccination was mainly attributed to the induced antibodies

but not the T cells.19 Similarly, our results showed that the cross-

protection of the H5N1-M2e vaccination was directly related to the

levels of cross-reactive antibodies toward the M2e of challenge viruses.

Unlike vaccinations with inactivated viruses, HA-subunit vaccines

and VLP vaccines, which may provide complete protection against

infection by homogenous viruses but poor cross-protection against

infection by heterogeneous viruses, our results illustrate that the

H5N1-M2e tetrameric peptide vaccine can provide satisfactory

cross-protection against infection with a novel influenza virus that

has newly emerged in humans.

Amino acid mutations at positions 10 and 11 of M2e reduce the

monoclonal antibody binding affinity,32 whereas virus mutants at

M2e position 10 can escape the protection of M2e antibodies.33

Moreover, M2e peptide variants at positions 10, 14, and 16 signifi-

cantly reduce reactive antibody-binding titer.19 These findings indi-

cate that although M2e is relatively conserved among different

subtypes of influenza virus, amino acid mutations at certain positions

could indeed affect the efficacy of M2e vaccination. Notably, there are

five amino acid differences at positions 13, 14, 18, 21, and 24 between

H5N1-M2e and H7N9-M2e, which accounted for approximately 21%

(5/24) of the total amino acids of M2e (Figure 1). However, these

amino acid variations did not abolish the efficacy of the vaccination.

The protection against lethal challenge by H7N9 virus (Figures 3 and

4) was not affected, despite the fact that the amino acid variations

between H5N1-M2e and H7N9-M2e included a mutation at position

14, which has been reported to affect the antibody cross-reaction.19 To

examine how the amino acid variations may affect the structure of the

M2e peptide, the 3D structures of M2e-A/Vietnam/1194/04 (H5N1),

M2e-A/Hong Kong/156/97 (H5N1), M2e-A/Anhui/01/13 (H7N9),

and M2e-A/Beijing/501/09 (H1N1) were analyzed using the online

software PEP-FOLD (Figure 5). The 3D structures of M2e-A/

Vietnam/1194/04 (H5N1) and M2e-A/Anhui/01/13 (H7N9) showed

that the middle regions were similarly folded as an ‘‘open’’ structure,

although there were five amino acid differences between these two

M2e sequences (Figure 1). Although there was only one amino acid

difference between M2e-A/Vietnam/1194/04 (H5N1) and M2e-A/

Beijing/501/09 (H1N1), the 3D structure of M2e-A/Beijing/501/09

(H1N1) showed a relatively more ‘‘open’’ structure (Figure 5).

However, M2e-A/Hong Kong/156/97 (H5N1), which contained

amino acid variations at positions 10, 14, and 16 (Figure 1) and had

low cross-reactivity with the H5N1-M2e-induced antibody

(Figure 2C), had the same region folded as a hairpin structure.

According to the 3D prediction model, the 12th amino acid, arginine,

and the 15th amino acid, tryptophan, in the structure of M2e-A/Hong

Kong/156/97 (H5N1) are bulky and are located at the top of the

hairpin, which may provide steric hindrance that blocks the access

to the lower region of the structure. This structure may limit the

antibody-binding ability and the antigen processing by the immune

system. By contrast, the 12th-position arginine and the 15th-position

tryptophan of the other three M2e structures orientate in such a way

that they would not block the lower access. These observations may

explain why the H5N1-M2e vaccine-induced antibody could still react

with M2e that contained variations at positions 13, 14, 18, 21, and 24,

but it could not react with M2e containing amino acid variations

at positions 10, 14, and 16, because their 3D structure were not

compatible.

A slight protection (10% survival) was observed in mice vaccinated

with FA alone (Figure 3). A similar phenomenon was also reported in

other studies, in which vaccination with FA alone provided a slight

protection (10% survival) against lethal challenge by enterovirus 71

and group A Streptococcus, respectively.34,35 A possible explanation is

that the adjuvant alone may induce innate immune responses that can

provide a certain level of protection against viral infections.36

Nevertheless, the survival rate of the mice vaccinated with H5N1-

M2e plus FA was significantly higher than that of the mice vaccinated

with FA alone (P , 0.01), indicating that it was H5N1-M2e but not the

adjuvant that provided the key protection against lethal challenge with

the H7N9 virus.

In summary, this study has illustrated that H5N1-M2e may provide

potent cross-protection against lethal challenge from a novel avian

influenza A H7N9 virus, even though approximately 21% amino acids

were different existed between H5N1-M2e and H7N9-M2e. These

results suggest that the M2e tetrameric peptide may provide broad

spectrum of cross-protection against infections by heterogeneous

influenza viruses. The M2e tetrameric peptide may be a promising

candidate for the development of a universal vaccine. To improve

the vaccine’s protection, the M2e vaccine may be used together with

inactivated virus, HA-subunit and/or other types of vaccines.

Complete protection has been reported in the combined use of an

M2e-based vaccine and inactivated virus vaccine.37
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