

Bernard Kakengi

Modern Queueing Management System:
 QCracker

Helsinki Metropolia University of Applied Sciences
Bachelor of Engineering
Information Technology
Bachelor´s Thesis
5 November 2012

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Theseus

https://core.ac.uk/display/38074852?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Abstract

Author(s)

Title

Number of Pages

Date

Bernard Kakengi

Modern Queueing Management System QCracker

47

5 November 2012

Degree Bachelor of Engineering

Degree Programme Information technology

Specialisation option Software Engineering

Instructor(s)

Godfred Mathias, QCracker-Project Manager

Olli Hämäläinen , Senior Lecturer

The purpose of this project was to develop a modern and affordable queueing management system

that would take advantage of modern available software development tools and networking infra-

structure unlike traditional queueing management systems. The primary targeted markets are the

emerging markets in Africa especially the eastern part of Africa. The system was intended to be af-

fordable by any business entity and would be localized to meet people’s expectations. In order to

achieve this vision a company called Kifaru software solution Ltd was set up to carry out the devel-

opment.

QCracker is based on client-server architecture. The QCracker client software communicates with

QCracker server over the Local Area Network. The QCracker server and client software use QT

(Nokia) framework. Currently both the client and the server are running in an MS Windows environ-

ment, but in the near future there is a plan of porting the server to Linux.

The result of the project shows that it is always fair to be treated equally with respect considering the

first in, first served (FIFO) system. Modern Queueing Management System is applicable anywhere

where people queue up for services. It saves the customer’s and service provider’s time, increases

efficiency, productivity of the staff and customer confidence towards their service provider.

Keywords Modern Queueing Management System

1

Contents

1 Introduction 3

2 Qcracker System Context 6

3 Qcracker System Configuration 8

4 System Top Level Requirements 10

4.1 Top level use case diagram 11

4.2 Detailed Description of Actors and Use Cases 12

4.2.1 Description of Use case: Client GUI startup 13

4.2.2 Description of Use Case: Get next customer 16

4.2.3 Description of Use Case: Exit Client 16

4.3 Actor Customer 16

4.4 Actor IT Support 19

4.4.1 Description of Use Case: Server Startup 20

4.4.2 Description of Use Case: LogOut 20

4.5 Actor Manager 20

4.5.1 Description of Use Case: StartupClientGui 22

5 Design 23

5.1 Qt Framework 23

5.2 Boost Standard Library 24

5.3 Server Design 24

5.3.1 Server Controller 26

5.3.2 CustomerGUI 27

5.3.3 QueueManager 28

5.3.4 InterThreadQueue 28

5.3.5 Client Handler Thread 30

5.3.6 Ticket Printer 30

5.4 Server Class Diagram 31

5.5 Client Design 37

6 Discussion 40

7 Conclusion 44

2

References 46

3

1 Introduction

The QCracker system is an attractive and modern computerized Queueing Manage-

ment System. QCracker is made up of a digital LED display mounted on the counter

station to display the queue number of a customer being served, client software appli-

cation installed in a counter’s computers, a touchscreen displaying available services to

customers, a thermal Point of Sale (POS) ticket printer and a loudspeaker for announc-

ing the queue number to be served next and the station location.

The goal of this project was to design from scratch and develop a modern queueing

system that would take advantage of modern available software development tools

and networking infrastructure unlike traditional queuing management systems.

The following situation could be considered as an example. A group of 100 people are

waiting to be served in a post office for instance without any order. Undoubtedly this

will lead to a chaos, unfairness and a noisy and unpleasant environment to be served

in. The time of customers and service providers will be wasted. The service provider

will end up with unhappy customers and that is negative thing to the service provider

in today’s competitive business.

Figure 1 below illustrates a general idea of QCracker in graphical notation, tells how

the system start by arrival, waiting positions and server which serve the client and then

departure.

 Departure

 Waiting position

Figure 1. Standard graphical notation for QCracker

Figure 1 above, a standard graphical notation for QCracker is illustrated. The open rec-

tangles with slots represent queues, and the circle represents the server. The path is

Arrival

4

expressed as lines with arrows. Although the graphical notation expressively depicts

the process of a queueing system, does not distinguish between tokens.

The objective of QCracker system is to provide the following functionality to the service

provider:

 Thermal printed tickets with queueing information

 Real-Time counter service analysis and queue trends

 Easy to add/delete/edit features of QCracker queues

 Improved counter visibility with bright counter LEDs

 The system to take advantage of the existing local area network (LAN) in-

frastructure and therefore no extra hardware or cabling required when

installing and commissioning the system. The only required hardware is

the LED and loudspeaker (this makes the system cheaper than other

Queueing Management Systems on the market).

 QCracker to provide all User Interfaces in African local chosen official lan-

guages. This makes the system user- friendly and easily acceptable by

local people.

 The system to increase efficiency and productivity of the staff working at

counters and their managers. This with other benefits described above

will increase trust amongst its customers.

 Queue jumping, unaccounted delays and contention amongst customers

to make history by introducing QCracker.

 The image of the service provider to emerge as organized, professional

and concerned with the well being of customers

QCracker follows a client-server model; the architecture of the server plays an im-

portant role in determining the performance and scalability of the entire system. A

server application in this system is multi-threaded to enable concurrent processing of

multiple client requests. The multi-process model involves frequent context switching

between the various processes and the use of Inter- Process Communication primi-

tives.

5

Figure 2 illustrates a designed of QCracker which consists of several clients and a serv-

er which give clients services needed, and all this connection is through a Local Area

Network

Figure 2 above shows a QCracker client-server general model, a client is the side that

initiates the communication process, where as the server responds to incoming client

requests and the server provides services to several clients across the local area net-

work (LAN). The clients are the ones which are service requestors and send requests

for services and data to the server. The server is the service provider. On receiving a

client request, the server processes the request and replies back to the client from

whom the request originated. All communication from the server application passes

through the network subsystem of the operating system and is then directed to the

outside world through the network adapter. Three major components that constitute

an Internet server are the server application, the operating system and the interfaces

from the server application to the operating system.

Figure 2. QCracker client-server general model

SERVER

 LAN

CLIENT

.............

.

6

2 Qcracker System Context

Figure 3 below elaborates how the QCracker system interacts with External users as

well as External output devices and External Input Output devices, which are all con-

nected to the QCracker system

 Output to

 Manager

 Output to Interact with

Staff

 Interactwith Interact with

 Technician

 Interact with

 Output to C Customer

Figure 3. QCracker System Context Diagram

The QCracker system context diagram in Figure 3 above depicts the interface between

the system and the external environment. The diagram shows the external users and

how they interact with the external system classes. The staff or clerk interacts with

<<External User>>

MonitoringGUI

<<system>>

QCracker

System
<<External User>>

Installation/

Configuration GUI

<<External output device>>

TicketPrinter

<<External User>>

ClientGUI

<<external output device>>

TicketNumberAnnouncer

<<External Input Output>>

KifaruCompanyServer

<<External User>>

CustomerGUI

7

the system via a Client GUI (Graphical User Interface) interface class. The customer

interacts with the system using the class interface Customer GUI.

The technician who is responsible for installing and configuring the system interacts

with the system using the interface class the Installation/Configuration GUI. The

QCracker system will use the TicketPrinter interface class to output the ticket data to

the Point of Sale (POS) printer and it will also output the audio messages to the loud-

speakers via an interface TicketNumberAnnouncer. The manager monitors the queues

using the external interface class MonitoringGUI.

8

3 Qcracker System Configuration

This section describes the general overview of the QCracker System configuration. It

contains the QCracker basic components and how each component is connected to

each other so that the whole system could function.

 Touch Screen

 QCracker Server Thermal ticket printer

Loudspeaker

 Customer Number Display

 Local Area Network

Counter clerk PC counter clerk PC

 Local Area Network

Figure 4. QCracker System Configuration

Service A Service B

Service C Service D

Service D Service D

0 0 1 0 0 2

Qcracker Client

Software
Qcracker Client

software

9

Figure 4 shows the basic overview of the QCracker system configuration. The client is

connected to the LED digit display via USB. The client software controls the digit LED

display. The server and clients are connected via Local Area Network. The server is

connected to a thermal POS printer via USB. The loudspeaker is connected to the serv-

er via an audio output interface.

The customer will be presented on a modern touch screen connected and controlled by

the QCracker Server with a list of available services/departments in a graphical form.

The services are presented as soft buttons. The customer using a finger selects a ser-

vice. The ticket with queuing information including a branch name, date and time of

issue (A number indicating the customer position in the queue, waiting time and other

customized messages) is issued by the thermal printer connected to the QCracker

server as shown in figure 4. The customer takes a ticket, relaxes and waits anywhere

in the lobby to be called. Light emitting diodes (LEDs) are connected through the

QCracker client software and they are capable of bright 7 segment units to displays

client number and the serving counter.

10

4 System Top Level Requirements

There were several software development steps taken into account when QCracker

was built:

 Feasibility involved gathering information from potential customers in East Afri-

ca.

 High- level design based on our potential customer requirements. Some of the

requirements have been generated internally.

 Implementation(actual coding) of software

 Testing the software which is still in progress

 Deployment which will take place soon

 Maintenance which will be done after deployment

The company’s clients who showed interest in the system allowed Kifaru Software So-

lution Ltd (the company) to carry out the development of the system. The main goal

was to create with a working prototype that could be demonstrated to the clients and

then after the demo clients would specify more detailed requirements.

The QCracker customer (user of the system) upon arrival is presented with a list of

available services in a graphical form on a modern touch screen controlled by the

QCracker Server. The services are presented as soft buttons. The customer using a

finger selects a service. The ticket with queueing information e.g. a number indicating

the customer position in the queue, waiting time and other customized messages is

issued by the thermal POS printer connected to the QCracker server. The customer

takes a ticket and waits anywhere in the hall to be called.

The counter clerk presses the next customer button on the QCracker client software

which sends a request to the QCracker server which retrieves the next number in front

of the queue and sends it to the QCracker client software as a response. Upon receipt

of the number the client software sends the number to an LED display which is con-

nected to the counter clerk’s PC. The LED will flash the displayed number several times

to indicate the location of the clerk counter. As the number flashes the server via the

loudspeaker will announce, in a local language, the customer number and the location

of the serving clerk.

11

The QCracker system collects, analyzes and stores the counter clerk’s service statistics

which will be sent over to the manager when the clerk exits the QCracker client soft-

ware.

After the customer is served, he or she can leave his or her feedback on the customer

feedback units; managers/supervisors can monitor the performance of their staff

through the real time reports generated by the QCracker server [3]. Section 4.1 speci-

fies the functional requirements of the QCracker in terms of use cases, class and se-

quence diagrams.

4.1 Top level use case diagram

This section specifies the top level functional requirements by a top level use case dia-

gram as shown in figure 5.

Figure 5. Top level use case diagram

12

Table 1 is detailed description of actors taken from figure 5 above in the QCracker sys-

tem and what they do specifically. Table 1 provides a simple classification of actors and

full descriptions of what specific actor interacts or uses the system.

Table 1. Description of use case diagram

Actor Description

Counter

Staff/Clerk

The Counter Staff is interested in getting the next customer in the

queue. The system provides the next queue number as a digit.

IT Support The IT staff installs the client and server client software and config-

ures them

Manager Logs on to the system and monitors the queues on real time basis.

Customer Presses the button of the desired service and gets the ticket showing

the position in the queue.

As table 1 illustrates, main actors in the system are divided into two, in which one con-

cerns about staff and other is non-staff which is only a customer in this case.

4.2 Detailed Description of Actors and Use Cases

 Table 2 specifies the functional requirements primarily associated with Counter Clerks.

Table 2. Counter Clerk Description

Actor Definition Required capabilities

Counter Clerk Role played by service pro-

vider employee who pro-

vides front line service to

customer

Basic computer (window) skills

Use a QCracker Client Software

to log onto and navigate the

QCracker Client User Interface

13

Figure 6 shows an actor counter clerk and five different use cases of what he can per-

form in the QCracker system.

Figure 6. Counter Clerk Use Case Diagram

Figure 6 shows that counter clerk can first login the system and then he can start up

the client GUI and exit client GUI as well and after his day is over ,then he can logout

from the system.

4.2.1 Description of Use case: Client GUI startup

The QCracker system by counter clerk starts up the client software GUI as illustrat-

ed in figure 7, and most of the preconditions taken into account before startup are

that no QCracker client process is running on the counter clerk computer and the

QCracker server must be up and running at that time. Counter clerk launches the

client by either double clicking the QCracker client icon on the desktop or selects the

program from Start->All Programs. Then the counter clerk is prompted with the fol-

lowing QCracker login dialog box.

14

Figure 7. QCracker Login Dialogue Box

 As seen in figure 7, the counter clerk enters the credentials and presses the OK but-

ton. The QCracker system successfully validates the Clerk, dismisses the login dialog

box and displays the following Client. All buttons in the GUI are enabled.

Figure 8 illustrates a client GUI showing how a clerk can be authenticated before going

to serve the customer, the system will validate and allow him and then the really client

GUI will appear as shown in figure 8

Figure 8. Client GUI

Figure 8 shows how the clerk can log into the system and the system will validate if

the clerk have access.

Password: ***********

QCracker Login:

Depart-

ment:

Loans

User Name: Kakengi
Dropdown box

OK Cancel

15

If the clerk has access to the QCracker system, then another client GUI will prompt.

This GUI is the one which will allow the clerk to operate the NextCustomer button

Figure 9. Client GUI after login

Figure 9 above illustrates that, if the system fails to connect the clerk, then these are

the options taken into account by the system:

 If the credentials become rejected, the system will clear all the fields in the log-

in dialog box and display the message ‘The password or username is wrong,

enter again…. The system will allow three attempts before dismissing the dialog

box and displaying the message ‘Login failed´, please see the administrator’

 If for some reason the system cannot establish the communication with the

server when trying to log into the system, then the message ‘Cannot establish

connection with the server, see the administrator will prompt,’ then the dialog

box will be dismissed.

16

4.2.2 Description of Use Case: Get next customer

The system retrieves the next customer in the queue to be served. These are some

of the pre-conditions taken into account before the next customer button is

pressed:

1. The counter clerk presses the ‘Get Next Button,’ the system updates the ‘Now

Serving Customer No’ field in the Client GUI with the next number on the

queue. The buttons are disabled in the GUI. The system displays this number

on the LED display and flashes the number 10 times.

2. As the number flashes in the LED, the loudspeaker will announce the flashing

number and the counter number. The announcement would be like “Customer

number X goes to counter number Y please!” This announcement will be re-

peaed three times.

3. The buttons become enabled once the flashing stops.

 Alternatively if the LED becomes faulty, the system will notify the counter clerk using a

dismissable dialog box.

4.2.3 Description of Use Case: Exit Client

The system shuts down the client GUI by counter clerk, but the pre-condition must

be that the QCracker client must be connected to the server. To logout of the sys-

tem the counter clerk shall press the exit button; alternatively, if the LED becomes

faulty, the system will notify the counter clerk using a dismissable dialog box.

4.3 Actor Customer

Table 3 specifies the functional requirements primarily associated with a customer and

tells what a customer is capable of doing as an external user of QCracker system.

17

Table 3. Customer Description

Actor Definition Required capabilities

Customer The role played by the

service provider customer

 No skills required apart

from using a finger to

press the service button

and take a ticket.

 Table 3 demonstrates that a customer needs no skills in the QCracker system except

pressing the button by a finger to a select service he or she wishes.

Figure 10 shows an actor customer and how she or he interacts with the system. The

customer does one task, which is to select a service.

Figure 10. Customer Use case Diagram

Figure 10 above shows a description of how the customer is interacting with QCracker

system.

Description of Use Case: Select Service

The system is up and running and the Customer GUI is displayed. The Customer

presses the service button by a finger and the system issues a ticket via a POS printer.

The ticket has a number on it representing the position in the queue.

The ticket will have service provider customizable messages printed above and below

the number. The messages could be adverts customized by the service provider.

18

Figure 11 illustrates customer GUI, where several services are available for a customer

to choose from. The customer can choose one service from available ones at a time

and ready to be serviced.

Figure 11. Customer GUI

 Figure 11 illustrates a case where a customer chooses a service he or she desires and

after choosing the service, the process goes to the printer for printing the ticket how-

ever if something goes faulty or if the ticket printer is faulty, the system will display

critical error and display a message ‘QCracker is out Of service’. The service buttons

will become disabled. The QCracker clients will be notified the ‘Get Next Button’ on the

client GUI will become disabled and the LED display will indicate that the counter is out

of service.

However, it should be noted that Quit button is disabled all the time, and customer

cannot do anything with it.

19

4.4 Actor IT Support

 Table 4 specifies the functional requirements primarily associated with IT Support

actor. This role is played by a technician who has known QCracker system in

depth and has qualified for that role.

Table 4. IT support Description

Actor Definition Required capabilities

IT support The role played by the

service provider IT Sup-

port in the IT department

or an employee of kifaru

software solution Ltd.

Service Provider Local Area

Network knowledge

QCracker System knowledge

Table 4 shows how IT support interacts with a system and the special requirements or

capabilities that the IT support should have.

 Figure 12 shows the IT support as an actor and how it uses the QCracker system.

Figure 12. IT support use case diagram

Figure 12 shows the IT support and how he or she interacts with a QCracker system by

log into the system, then configuring or installing system before logging out from the

system.

20

4.4.1 Description of Use Case: Server Startup

The QCracker system starts up the server tests the POS printer and the loudspeak-

er. One major precondition is that no server is running. The printer is switched on

and the loudspeaker is functional and the IT Support staff starts the server by dou-

ble clicking its icon or selecting it from the Star->All programs. The system displays

the Customer GUI.

 Description of Use Case: Configuration

The system can be updated and being monitored by the IT support for configuration,

and some installation as well at any time needed

4.4.2 Description of Use Case: LogOut

The system stops the server tests, the POS printer and the loudspeaker, if they are

off. The authority of stopping the server is given by the Technician who is IT sup-

port trained and has knowledge of QCracker system. A major precondition with this

is that no server is running. The Printer is switched off and the loudspeaker is in the

wait functioning mode.

The IT Support stops the server by double- clicking its icon or selecting it from the

Start->All programs and then shuts down the menu. The system displays nothing after

stopping the server.

4.5 Actor Manager

Table 5 below specifies the functional requirements primarily associated with the Man-

ager Actor.

21

Table 5. Manager Description

Actor Definition Required Capabilities

Manager The role played by the

service provider employee

whose task is to supervise

Counter Clerks.

Basic Computer (window)

skills

Use a QCracker Client

software to log onto and

navigate the QCracker cli-

ent User Interface

Figure 13 shows how the manager is interacting with the QCracker system.

Figure 13. Manager Use case Diagram

 Figure 13 illustrates that manager can operate several duties in the QCracker system

including monitoring the Queue by the first starting up client GUI and at the end exit-

ing client GUI. In addition of that the manager will have his own GUI which will enable

him to do duties which no one else can do in the system.



22

4.5.1 Description of Use Case: StartupClientGui

The Manager double- clicks the monitoring tool icon on the desktop or selects the

monitoring tool from Start->All Programs. The user interface starts up and displays

all the queues created in the system. The system starts up the client GUI, while this

is done the server must be up and running. The manager selects the queue to do

the monitoring. The system displays the following data:

 The queue name

 The number of customers currently waiting in the queue

 The average waiting time in the queue

 The name of each counter clerk attending this queue, the counter num-

ber and the list of customers attended so far. The list will have the fol-

lowing details:

 The time the customer was called to be served

 The time taken to serve the customer.

 The customer number currently being served.

 The average time it takes to serve each customer

Description of Use Case: ExitGui

The system shuts down the monitoring tool GUI under the pre-condition that the moni-

toring tool is displayed.

23

5 Design

5.1 Qt Framework

Qt is a cross-platform application and UI framework. It includes a cross-platform class

library, integrated development tools and a cross-platform IDE. Using Qt in QCracker

was beneficial because developers were able to write applications once and deploy

them across many desktops and embedded operating systems without rewriting the

source code. [10]

 QT was chosen for QCracker because of the following reasons:

 It is good for developing GUI application, so we used it to develop the client

and customer GUI and other dialog boxes such as login dialog boxes.

 It provides good and easy support for multithreading and inter-process com-

munication. When the server spawns threads to serve client it uses QT multi-

threading framework. Objects like QueueManager and CustomerGUI communi-

cates using the signal or slot feature of the framework. The sender of the mes-

sage emits the signal and the receiver just registers for that signal and receives

with one line of code.

 We have plans to port our server to Linux. At the moment it is running under

Windows. Because of the Qt nature of cross platform not so big effort needed

when porting to Linux.

 We wanted to develop in C++ and QT is in C++.

 With the Qt Creator cross-platform IDE, Qt is fast to learn and easy to use,

and its modular class library means that we can spend more time on innova-

tion of QCracker, and less time on infrastructure coding getting the software to

the market faster .

 Qt allows QCracker to integrate with the WebKit web rendering engine, which

means that we can quickly incorporate content and services from the Web into

our native application, and can use the web environment to deliver our services

and functionality impressing our users in the process.[10]

24

Qt in QCracker provides a portable API for creating and synchronizing threads, and

offers the option of building the Qt library with thread support in QCracker. With the

emergence of multi-processor computers, multithreaded programming is rapidly gain-

ing popularity. [11]

Qt provides thread support in QCracker in the form of platform-independent threading

classes, a thread-safe way of posting events, and signal-slot connections across

threads. This makes it easy to develop portable multithreaded Qt applications and take

advantage of multiprocessor machines. Multithreaded programming was a useful para-

digm in developing QCracker for performing time-consuming operations without freez-

ing the user interface of an application. [12]

Thread support in Qt for QCracker includes the following:

 Thread-affinity in Qobject

 Per-thread event loops

 Post events to any thread

 Signals and slots across threads

 Thread-safe reference counting

5.2 Boost Standard Library

Boost speeds initial development, results in fewer bugs, reduces reinvention-of-the-

wheel, and cuts long-term maintenance costs. Moreover Boost has now been accepted

to be part of C++ compiler. Boost is also familiar sto developers. These were the main

reasons why we chose Boost. In our code we are using Boost mainly in resource han-

dling and control. Memory monitoring facilities, locking and unlocking of resources are

all handled by the Boost library.

5.3 Server Design

The QCracker server is a multithreaded application designed to handle multiple client

requests simultaneously. To achieve this functionality it utilises the services provided

25

by the Qt framework. The Qt framework provides wrappers around the operating sys-

tem calls. Figure 14 below depicts the high level architecture of the server.

 Server Application

Figure 14. QCracker Server Architecture

As figure 14 shows, the server application utilizes the services provided by the Operat-

ing system. Currently the server runs on MS Windows OS via Qt framework to com-

municate with its hardware.

 Operating System

 Hardware

TouchScreens
Loudspeaker

(POS)ThermalPrinter

26

Figure 15 describes in detail how the objects of the server communicate with each

other using a synchronous call.

Figure 15. QCracker main objects structure

Figure 15 describes a detailed server design. At startup the following objects become

created and start to sending and communicating with other objects through a synchro-

nous call.

5.3.1 Server Controller

At startup the Server Controller registers its TCP port number. The port number will

be used by clients to connect to the server. When the connection requests arrive

from the clients, the Qt framework will deliver a message to the QCracker server

Ticket An-

nouncer

Client Handler

Thread

Queue Manager

TicketPrinter

Handler

Server

Controller

Queue

Monitor

Customer GUI

InterThreadQueue

27

with the socket descriptor of the client. The socket descriptor is the one which ena-

bles the server to communicate with the client.

Upon receiving the connection request from the client, the server using the QT frame-

work creates a thread to serve the client requesting the connection. The server passes

the socket descriptor received earlier from the framework as shown in figure 16. The

thread makes a connection to the client and waits for requests. The same thread will

serve the client as long as the client is connected

Figure 16. Server Controller Communication

Figure 16 shows how the server controller communicates with the client and how the

thread is made in order for client to be served for the entire period when the client is

on.

5.3.2 CustomerGUI

The customer GUI at startup displays the customer Graphic User Interface and re-

sponds to the button pressed. It maps each button with its associated service. The

buttons must be available at any time to the customer, so the queue manager just

emits a message to any object that has registered for that message and returns

SERVER CLIENT

THREAD ConnectionRequest(ClientAddress,

PortNo)

Create(Socket Descriptor)

Requests

Responses

Disconnect

X

28

very quickly to respond to more presses. Using this method the GUI becomes re-

sponsive at any time.

5.3.3 QueueManager

The Queue Manager is responsible for all the queues. When the object gets created

it reads from the configuration file the details of the queues to create and creates

them. It does listen for button press events from the Customer GUI. When it re-

ceives the events it determines the queue type and creates a ticket object and

sends it to the relevant queue to be queued and the same ticket gets sent to the

TicketPrinter object.

5.3.4 InterThreadQueue

InterThreadQueue objects get created by the Queue Manager. The underlying im-

plementation of the actual Queue is the C++ STL (Standard Template Library)

queue. The queue is based on First in First out (FIFO). The InterThread Queue has

been designed to accommodate multi-threads hence the name. As many threads try

to read and write from-to the queue the mechanism called mutexe (Mutually Exclu-

sive) for controlling or serialising the operations has been introduced in the multi-

ThreadQueue. The mutexes used are from the Boost Library. When a thread needs

to read off the queue it must acquire a lock. Only one thread can acquire a lock at

any given time. Other threads trying to acquire the lock while locked will be blocked

until it is released or operation fails and they return and try again later (See the di-

agram below). This mechanism ensures the integrity of data being read or written.

The implementation has been deliberately remove

Figure 17 illustrates in more detail the sequence diagram: how locking and unlock-

ing of queues is performed in QCracker system.

29

 send(ticket)

LockIsAcquired

 push_back(ticket)

 <-- - - - - - - - - - - - - - - - -

 <- - - - - - - - - - - - - - - - -

 Receive(ticket)

LockIsAcquired

 Receive(ticket)

 <- - - - - - - - - - - - - - - - - - - - - - -

 Pop(ticket)

 TicketIsReturned

LockIsReleased

 Receive(ticket)

 LockIsAcquired

 Pop(ticket)

 TicketIsReturned

Figure 17. Locking and unlocking of queues

Thread A Thread B Queue Manager InterThreadQueue Queue

LockIsReleased

Failed

30

Figure 17 is a top level sequence diagram expressing the concept of how locking and

unlocking of queues is taking place in the QCracker system.

5.3.5 Client Handler Thread

The client handler thread is created by the server upon receipt of the incoming con-

nection from the server. They are the ones which do the actual work of serving the

client. There is one thread per each connected client. The requests from the client

become responded by the thread. The threads keep client transaction statistics in a

file and they are responsible for sending emails to the manager at the end of the

business day.

When a client presses the ‘Get Next Customer’, the thread will retrieve the queue

ticket from the queue. It will extract the number from the ticket object and send it

to the client. When the customer is issued with the ticket, the threads will get this

information and notify the client about the customer waiting in the queue.

5.3.6 Ticket Printer

The ticket printer object is created by the Queue Manager. This object is responsible

for interfacing with the QPrinter, the Object in the Qt framework which talks directly

with the printer driver.

Ticket Number Announcer

The ticket Number announcer is responsible for handling the conversion from text to

speech using the text to the speech library.

31

5.4 Server Class Diagram

Below in figure 18, a static model of the server classes is presented. The model defines

the classes of objects in the server, some of the attributes of the classes and the rela-

tionships between classes.

Figure 18. QCracker server class diagram

32

From the diagram in figure 18 above it can be seen that the QCracker server com-

municates with Customer GUI, Queue Manager and Client Handler thread and these

other classes are the ones responsible for sending data to other subclasses.

Server Sequence Diagrams

Below are some of the sequence diagrams representing the dynamic model of some of

the interaction between objects when the server starts up and when a customer se-

lects a service. It should be noted that these are just some of the chosen sequence

diagrams on the QCracker system chosen for this specific project.

Server Startup Sequence

Figure 19 illustrates the Server start up sequence diagram and table 6 explains exactly

what is going on in the figure 19.These are just explanation of the Server startup se-

quence diagram from figure 17.

Table 6 below elaborates on all the steps taken into account in the sequence diagram

in figure 19.

Table 6. Server startup sequence explanation

Message Description

1: The main function creates a customer GUI object, and stores the ad-

dress of the GUI object.

2: The main function creates the Queue Manager. The Queue Manager is

responsible for creating and managing all customer queues.

3: The main function passes the address of CustomerGUI object to the

QueueManager object. The two objects do communicate with each oth-

er directly.

4: The main function creates QCrackerServer object. This object will be

responsible for handling client connections and create threads to pro-

cess client requests.

5: The main function passes the address of the customerGUI object to the

QCrackerServer.

33

The following figure 19 explains the server startup in a sequence diagram.

Figure 19. QCracker server startup sequence diagram

34

Figure 19 illustrates a sequence diagram for the server in the QCracker system from

the beginning when the server starts to run and make communication by taking re-

quests from the client.

35

The following figure 20 below illustrates the process where a customer starts to select

a service.

Figure 20. QCracker Customer Sequence Diagram

36

Figure 20 above elaborates on what is going on when a customer selects the desired

service until he is served

Customer selects a service

Table 7 clarifies step by step what is going on when the customer selects service from

the touch screen on wards.

Table 7 is explanation of the Customer select service sequence diagram from figure 20

above telling all necessary steps drawn from the figure above

Table 7. Customer select service explanation

Message Description

1 Customer selects a desired service by pressing a button on the touch

screen. The customerGUI object receives a command.

1.1 The customer GUI sends a message to a QueueManager to process the

ticket service request. The QueueManager creates a ticket.

1.1.1 The QueueManager sends a ticket to the relevant queue object.

1.1.2 The QueueManager creates a TicketPrinter object.

1.1.2.1 The TicketPrinter object creates a Qt Framework object Qprinter which

interface with the thermal printer. Upon creation it sets up the printer

1.1.3 Once the printer is ready, the QueueManager will commands a

TicketPrinter to print a ticket.

2 TicketPrinter relays the message to the Qprinter object which commands

the printer to print the ticket and the ticket is printed and issued to the

customer.

Table 7 above clarifies the point when the customer is exposed with a customer GUI

with different options for choosing the desired services. This is a table from the se-

quence diagram telling the important steps taken from figure 20 point of view.

37

5.5 Client Design

Below is a high- level design of QCracker Client and Server system diagram including a

top high- level class diagram with its attributes, the classes showing the relationships

of each other and how information is distributed through a client system

Figure 21 describes how the client is architectured from inside the system.

Figure 21. QCracker Client Architecture

 Figure 21 shows high-level design of client. Basically this shows how data flows when

the clerk presses the next button. The data first is flowing from QCracker client Appli-

cation, then to Qt framework which is using Windows operating system which TCP/IP

is within. Windows OS is using TCP/IP protocol stack to send messages to the server.

This applies to the client as well, so it is the same concept used to architect the client

38

Figure 22 illustrates a simplified design of the client showing how the client is com-

posed of and designed in the QCracker System.

Figure 22. Client Design

Figure 22 shows the message handler handles the messages to and from the server. It

receives the messages, decodes them and passes them onto the controller, which for-

wards them on to the relevant object. Accordingly ClientGui is the one which communi-

cates with the clerk and Digit Display is the one responsible for displaying numbers on

the screen. This object is responsible for interfacing with the LED Digit display, it will

receive the number to display and will forwards it to the driver to be displayed. It will

also process messages coming from the digit number display.

 The controller module is the coordinator of all other objects in the client. It is the cen-

ter of everything logical in design of the client. It communicates with other objects by

knowing their references (pointers), it assigns them tasks and after the tasks are done

they will be back to the client controller using the same address they have sent the

task from. This feature is supported by the Qt framework. In other words it is known

as a synchronous call or a call back function where the object communicates using

references or addresses. Figure 23 illustrates a static model of the client classes. The

ControllerModule Digits Disp-

layModule

ClientGuiModule

Server Messa-

geHan-

dlermMmM

39

model defines the classes of the objects in the client, some of the attributes of the

classes and the relationships between the classes.

Figure 23. Qcraker Client class diagram

 Figure 23 shows the QCracker high- level client class diagram showing the relation-

ships between classes, and each class showing its attributes and some of the methods

in each class used to design a client.

40

6 Discussion

QCracker was developed using a mixture of water fall and iterative methodology. It

was started off with the idea of building a queuing system. The idea came about

when I visited East Africa (Tanzania in particular) and saw long queues in a noisy

and chaotic environment and thought that there must be a better and modern way

of handling such long queues. As software engineering student I quickly thought

about developing a computerized queuing system that would be modern and still af-

fordable to common service providers in East Africa and Africa as a whole.

I started off by speaking to stakeholders in businesses where customers normally

queue up for services and they were interested by the idea of having a computer-

ized system. They expressed their wishes of what the system should be like and

what it should do. As I discussed with them I gathered the requirements. I even

spoke to ordinary customers and they told us how it would be to have such a sys-

tem as it would solve many of the problems caused by unordered, chaotic and un-

fair queues.

The main concern of the service providers was the pricing. They urged us to make

the system as cheap as possible but still modern. We decided to take up the chal-

lenge and develop the system.

I captured the requirements and specified them using use case diagrams as shown

in section 4.1. I did the analysis of tools and framework and started to design the

system. I found that some of the requirements needed adjustment as a result of

design. So I went back and adjusted them accordingly. I then started implementa-

tion followed by verification. The verification included unit testing, integration and

then the system which is still ongoing.

41

Below are the steps followed and still following to build the system:

Requirement gathering

 Design

 Implementation

 Verification

 Maintenance

The result of the project shows that there are several parts of the system which are

running and functioning as planned. These include the QCracker client where the re-

quests are sent from client to server over existing LAN through TCP/IP. The server is

up and running and communicates well with the client. It communicates accordingly

with client. The client software uses a queue number from the server to the fake LED,

and a 3 digit number should be displayed on the digit display. This feature is tempo-

rary until we get the real LED, once I install the system to our customer. The client can

log into the server accordingly, the client GUI represents all the necessary information

to the user and the user (clerk) can call the next customer.

 The results of a modern queuing management system apply to many seemingly unre-

lated situations, from serving customers at service counters to managing traffic con-

gestion in a cosmopolitan city, and from designing switching equipment for telecom-

munications to understanding Internet behavior.

 Recalling the purpose of the project, the aim was to create a system which would take

advantage of the LAN and which would be cheaper and affordable to our main cus-

tomer as mentioned. Another purpose was to design from scratch and develop a mod-

ern queuing system that would take advantage of modern available software develop-

ment tools and networking infrastructure unlike traditional queuing management sys-

tems.

42

The main difference between the old queuing system and QCracker (modern queuing

management system) is that a modern queuing management system attempts to do

more through the use of a computerized system, and it helps the management by

producing statistical reports on information such as arrival rates and patterns, waiting

and service times, and default and reneging cases. Based on these statistics report

from the server, the optimal use of resources can be achieved, helping the trade-off

between service quality and service cost. The latest Internet-enabled systems allow

remote system monitoring, report generation and system configuration across an In-

ternet link. In that case QCracker is totally based on software and rely on a server to

give all the services involved. All the client and other services will be tracked ad moni-

tored, all information will be saved on the server, at the end of the day retrieved at

any point unlike the old queuing system.

Generally the Qcracker system works accordingly and it is definitely an improvement

over the old version of a queuing system. There are several points that might be de-

batable about the implementation of the improvements in QCracker:

1. The scope of this project was limited in time and, therefore, the improvements

 Over the Qcracker leave room for further development, such as improving the

 high tech devices into the system.

2. Due to the departure of several employees from the company who started the

project the company had to suffer financially. Regarding this is small company

and this is the first product for the company, it takes time to teach and intro-

duce the concept to the new employers who did not start the project, which as

a matter of fact delay the launching time of our product and incur more ex-

penses in our company.

3. Delaying order of hardware devices from foreign countries to support software

has resulted in employees not to fully concentrating on this project full time. As

a result, it increases the expenses in the company.

Qcracker is still under development. As discussed earlier, it is supposed to be launched

sometime at the end of this year in the eastern part of Africa. The product is working

according to our customer requirements and the results show that it might help to im-

43

prove the efficiency of the employees and make it easy for the employer to keep track

of his/her employees on how many customer per given day can be served by a clerk

and to calculate the average time taken per clerk to serve a single customer, according

to which department he/she is assigned to.

Another result shows that QCracker would generate customer feedback on how clerks

perform their duties. This will ensure that a customer is well served with fairness and

with a positive attitude, and it would also give customers power to assess the customer

services due to the fact that customers are the ones who makes the system work.

44

7 Conclusion

The goal of this project was to design from scratch and develop a modern queuing

system that would take advantage of modern available software development tools

and networking infrastructure unlike traditional queuing management systems.

The outcome of the project was the creation of a modern queuing management sys-

tem.

The first objective of QCracker was to achieve better quality of service to customers.

In its most basic form QCracker will issue a queue number ticket to an arriving cus-

tomer and later call the number when the time slot for that number becomes available,

eliminating the need to stand in line while waiting. In this way QCracker will provide

comfort as well as fairness to customers. It will also allow customers to maintain their

position in a queue while seated comfortably or engaged in constructive activities. The

service provider can provide entertainment for waiting customers and can take ad-

vantage by displaying advertisements on the information screen. When the time slot

becomes available, QCracker via loudspeaker will announce the queue number to be

served and give instructions on the location of the counter and at the same time assist

the customer to locate the counter. QCracker displays the customer number on the

LED display fitted at counter’s station.

As the staff at the counter serves the customer, QCracker collects statistics that show

the performance of the staff. For example, the total number of customers served daily

by the staff for example how long it took to serve one customer, how long the custom-

er waiting time was. This statistics will be available to the management for analysis

and definitely will assist them to make important business decisions. A statistics email

is sent to the manager at the end of each business day if required. QCracker provides

means for monitoring the status of the queues on the real time basis. The manager

can remotely log into QCracker and view the status and progress of queues and based

on that information he or she can take action.

The QCracker project has got developers with a high knowledge of programming in

Object Oriented Design and C++ programming skills and an understanding of the Qt

framework. The reason for choosing this topic was that I am currently working for

Kifaru software solution limited and my main task is taking part of the development

45

sector as well as the testing sector which is still in progress. The project itself motivat-

ed me to the degree that I wanted to be part of the team. Being part of a small and

startup company would give me a tremendous opportunity to learn, grow professional-

ly and meet challenges that would make me a complete engineer.

The results proved that it is possible to create a simplified model of a computerized

intelligent queueing system where a server communicates with a client over an existing

local area network, with some basic dynamic functionality. However, the results also

demonstrated the challenge of establishing a proper working system, which may vary

its response functionality while interacting with the system. The results proved that it is

possible as well to create a well working product from scratch according to the cus-

tomer requirements.

This project was limited both in time and resources, thus concentrating on a simple

mechanism of developing features which are more beneficial to the customer.

Another limitation on QCracker was the employees, especially in the software testing

department. This was due to the fact that it is start -up company growing, so financial-

ly the company is not stable enough, which delay to launch the product. Though test-

ing is ongoing it could have been done earlier.

The constraints ranged from equipment lack to the availability of applying real-life tests

to the system. QCracker is open to future development and it has established itself to

maintain and update the system accordingly.

Generally QCracker achieved its goal due to the fact that the system is working accord-

ing to the customer requirements even though it is a bit late to launch it. Overall the

customer is satisfied with the prototype produced so far and I am open to another

challenge of developing another software product.

46

References

1 Bose S. An Introduction to queuing system [online]. Kluwer/Plenum; December 2002.

URL: http://home.iitk.ac.in/~skb/qbook/qbook.html. Accessed 5 March 2012.

2 Zukerman M. Introduction to queuing theory. University of California: Moshe publish-

er; 2000.

3 Blanc J P C. Queuing Models [online]. Tilburg: Tilburg University; 14 January 2011.

URL: http://lyrawww.uvt.nl/~blanc/qm-blanc.pdf. Accessed 10 March 2012

4 Bell D. UML Bascis Class Diagram [online]. IBM Corporation; 15 September 2004.

URL:http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/b

ell. Accessed 10 March 2012.

5 Ambler S. Agile Modeling [online]. DDJ State of the IT Union,USA: Ambysoft Inc; 7

July 2009.

URL:http://www.agilemodeling.com/artifacts/classDiagram.htm#Classeshttp://www.wav

etec.com/QueueManagement/Components.aspx. Accessed 24 March 2012.

6 Cooper R. Queueing Theory. [online]. Florida Atlantic University: Encyclopedia of

computer science; 12 March 2000.

URL: http://www.cse.fau.edu/~bob/publications/encyclopedia.pdf. Accessed 24 March

2012.

7 GMS. The Queue Management Concept. [online]. Selangor Darul Ehsan: General

Microsystems Sdn Bhd; 8 June 2011.

URL: http://www.gms.com.my/GMS_Home/concept.htm. Accessed 26 April 2012

8 Kenneth W. Notes On Queueing Theory. [online]. Department of Computer Science

North Carolina: Microssoft professional; 20 August 2012

URL: http://williams.comp.ncat.edu/comp755/qnotes.pdf. Accessed 30 March 2012.

9 BOUML. Reverse Engineering. [online]. Object Management Inc; 27 May 2012.

URL: http://www.bouml.fr/doc/index_cpproundtrip.html. Accessed 4 April 2012

47

10 Digia Qt. Cross Platform Application and UI Framework. [online]. Helsinki Finland:

Qt Digia; 10 October 2012.

URL: http://qt.nokia.com/. Accessed 22 june 2012.

11 Blachette J. Qt 4's Multithreading Enhancements. [online]. Qt Digia; 16 October

2011.

URL: http://doc.trolltech.com/qq/qq14-threading.html. Accessed 22 June 2012.

12 Digia. Qt Developer Network. [online]. Thread support Department: Qt Digia; 27

0ctober 2012.

URL: http://qt-project.org/doc/qt-4.8/threads.html. Accessed 24 june 2012.

13 Lewis B. A Guide to Multithreaded programming. New Jersey, USA: Prentice Hall

PTR; 1995.

14 Mayhew L, Smith D. Using Queuing Theory to Analyse Completion Times in Acci-

dent and Emergency. London: Cas Business School; 2006.

15 Beveridge J, Wiener R. Multithreading Application in win32. Boston, Massachu-

settes,;Addison-Wesley Professional; 1996

16 Kleinrock L. Queueing Systems. Volume 1: Theory. University of California: Wiley;

1975

17 Gross D, Shortle F, Thompson M, Harris M. Fundamentals of Queueing Theory,

Set (Wiley Series in Probability and Statistics). University of California: Wiley-

Interscience; 2009.

18 Narayan Bhat U. An Introduction to Queueing Theory: Modeling and Analysis in

Applications (Statistics for Industry and Technology). Basel, Switzerland: Birkhäuser;

2008.

19 Xu W. Application of Proxels to queuing Simulation with Attributed Jobs. Magde-

burg,German: Otto-von-Guericke University; 1 March 2008.

URL: http://wwwisg.cs.ovgu.de/sim/files/theses/xu.pdf. Accessed 27 September 2012.

Appendix 1

1 (1)

Appendix 2

1 (1)

