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Abstract—The cloud computing paradigm has been advocated
in recent video conferencing system design, which exploits the
rich on-demand resources spanning multiple geographic regions
of a distributed cloud, for better conferencing experience. A typ-
ical architectural design in cloud environment is to create video
conferencing agents, i.e., virtual machines, in each cloud site,
assign users to the agents, and enable inter-user communication
through the agents. Given the diversity of devices and network
connectivities of the users, the agents may also transcode the
conferencing streams to the best formats and bitrates. In this
architecture, two key issues exist on how to effectively assign
users to agents and how to identify the best agent to perform a
transcoding task, which are nontrivial due to the following: (1)
the existing proximity-based assignment may not be optimal in
terms of inter-user delay, which fails to consider the whereabouts
of the other users in a conferencing session; (2) the agents may
have heterogeneous bandwidth and processing availability, such
that the best transcoding agents should be carefully identified, for
cost minimization while best serving all the users requiring the
transcoded streams. To address these challenges, we formulate
the user-to-agent assignment and transcoding-agent selection
problems, which targets at minimizing the operational cost of
the conferencing provider while keeping the conferencing delay
low. The optimization problem is combinatorial in nature and
difficult to solve. Using Markov approximation framework, we
design a decentralized algorithm that provably converges to a
bounded neighborhood of the optimal solution. An agent ranking
scheme is also proposed to properly initialize our algorithm so as
to improve its convergence. The results from a prototype system
implementation show that our design in a set of Internet-scale
scenarios reduces the operational cost by 77% as compared to
a commonly-adopted alternative, while simultaneously yielding
lower conferencing delays.

I. INTRODUCTION

As front-facing cameras become popular on personal de-

vices (e.g., laptops, tablets, and smart phones), recent years

have witnessed a skyrocketing growth of video conferencing

(VC) systems on those devices. According to Cisco, the

number of video conferencing users is growing at an annual

rate of 51.7% and will surpass that of audio conferencing users

by 2015 [2]. Another trend has been the advocation of cloud

computing services in multi-party VC systems, to overcome

the constraints of user devices and boosting the conferencing

experience by employing the rich and on-demand resources

provided by a geo-distributed cloud platform.

In a typical cloud-assisted VC system design [11], [21],

illustrated in Fig. 1(c), video conferencing agents, i.e., virtual

machines, are created in each cloud site, and users join a

conferencing session by subscribing to those cloud agents.

Users communicate through the agents, which exchange the

(a) Clinet/Server (b) Peer-to-Peer (c) Cloud

Fig. 1. Different VC architectures

streams, transcode the streams to the best formats and bitrates

and deliver them to users with diverse devices and network

connectivities. Such a cloud-assisted VC paradigm outper-

forms traditional client/server (C/S) based (Fig. 1(a)) and P2P-

based (Fig. 1(b)) VC approaches, due to the following:

(i) Meeting stringent delay requirements better. Accord-

ing to ITU-T Recommendation G.114 [14], the maximum

acceptable user-to-user conferencing delay is 400 ms. In a C/S

architecture, clients may often suffer from a long delay due

to considerable distances from the servers. Direct connections

between users in a P2P system may yield lower delays, while

measurements [11] have corroborated that the delay in a cloud-

assisted VC system is comparable or even lower than that.

(ii) Providing more bandwidth and computation capacity
at lower costs. Conferencing devices are diverse in screen res-

olution (≈ 100 possible resolutions), hardware (≈ 2800 types),

and OS (≈ 14 types) [18]. On-the-fly transcoding is demanded

for converting the streams from one format/bitrate to another,

to cater for such device heterogeneity. The C/S architecture

utilizes dedicated servers, but suffers from limited scalability

and high operational costs. The limited capacity of peers in

the P2P design hinders such computation-intensive jobs, and

hence the number of peers allowed in a VC session is often

significantly limited. In contrast, cloud-assisted VC provides

scalability by employing on-demand bandwidth/computation

resources at cloud agents, at a lower cost.

Nevertheless, two key challenges still exist in the state-of-

the-art design of cloud-assisted VC, for optimizing both the

operational cost of the service provider and the conferencing

experience of the users. First, current design typically assigns

users to the nearest agents in terms of delay [11], [21], which

may not be optimal in inter-user delay and traffic cost, as

they are oblivious to whereabouts of the other users in a

conferencing session and diversity of transcoding latency in

heterogeneous agents. For example in Fig. 2, user 4 should be

assigned to SG agent following the nearest assignment policy.

However, assigning user 4 to TO agent is better since: (i) the
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Fig. 2. A VC scenario with 4 users (PlanetLab nodes) in 1 session and 4 cloud
agents (Amazon EC2 instances). Values on edges are real-world measured
latencies. Agents in larger diamonds have higher capabilities. SG: Singapore,
TO: Tokyo, OR: Oregon, SP: Sao Paulo.

user-to-user delays in this session are reduced because TO

agent is closer to the other 3 agents than SG agent, e.g., the

delay of flow from user 4 to user 1 via TO is at least 27+ 67
while the delay via SG is at least 20 + 117; (ii) since user

3 is already assigned to TO agent, assigning user 4 to TO

eliminates any inter-agent stream exchanges with SG agent,

leading to reduced traffic cost as well.

Second, how to identify the best agent to perform a transcod-

ing task, given the heterogeneity of agent VMs, has not been

well studied in the literature. The agents may have diverse

resource availability, leading to different transcoding delays.

The best transcoding agents should be carefully identified, for

cost minimization while best serving all the users requiring

the transcoded streams. For instance in Fig. 2, though we have

shown assigning user 4 to TO agent leads to lower delay and

traffic cost, SG agent is better in terms of transcoding delay,

given that it is more computationally powerful than TO agent.

All the existing studies we are aware of and review in

Sec. VI adopt the nearest policy for user-to-agent assignment

[11], [21]. To the authors’ knowledge, this work is the first

to simultaneously minimize the service provider’s cost and

maximize the user’s experience in a cloud-assisted confer-

encing system, by addressing user-to-agent assignment and

transcoding task assignment problems in a unified mathe-

matical framework. The main contributions of the paper are

summarized as follows:

� We formulate the User-to-agent Assignment Problem
(UAP) (Sec. III), which finds the best user-to-agent assignment

and transcoding task assignment solution to minimize the

overall cost of the service provider and inter-user delay at

the same time. The constraints are capacity constraints of the

heterogeneous agents and stringent delay requirements of the

users. The problem is a nonlinear combinatorial optimization

problem, difficult to solve even in the centralized manner under

static system settings.

� Inspired by the Markov approximation approach [7]

which is a technique to solve combinatorial network problems,

we devise an efficient distributed algorithm to solve UAP,

which runs locally in each session and optimizes the over-

all assignment (Sec. IV-A). Highlights of the algorithm are

TABLE I
KEY NOTATIONS

Notation Definition

U
se

rs

S Set of VC sessions, S � |S|
U Set of users, U � |U|

U(s) Users of session s
s(u) Session of user u
P(u) Set of other participants in user u’s session

R
ep

re
se

n
ta

ti
o
n R Set of video representations, R � |R|

κ(r) Corresponding bit-rate of representation r
ruu Upstream representation of user u
rduv Downstream repr. of user u from user v
θ U × U transcoding matrix

A
g
en

ts

L Set of cloud agents, L � |L|
ul Upload capacity of agent l
dl Download capacity of agent l
tl Transcoding capacity of agent l

σl(r1, r2)
Transcoding latency of agent l from repr. r1 to
repr. r2

D L× L inter-agent delay matrix
H L× U agent-to-user delay matrix

O
p
t.

V
ar

s. λlu
User assignment variable; 1 if user u is assigned to
agent l, 0 otherwise

γlruv
Transcoding task assignment variable; 1 if rdvu = r
and the transcoding is done at agent l, 0 otherwise

its adaptability to system dynamics, bounded approximation

gap, and robustness in case of inaccurate measurements of

transcoding latency values and RTT between nodes.

� We propose a proximity- and resource-aware agent

ranking scheme, called AgRank, as the initialization step of

our algorithm, which further improves the convergence of the

algorithm (Sec. IV-B). The scheme features a high success

rate for the initial user-to-agent assignment, i.e., the initial

assignment by AgRank significantly overlaps with the optimal

assignment when the entire algorithm is completed.

� We implement a system prototype and carry out trace-

driven evaluation experiments using PlanetLab nodes and

Amazon EC2 instances (Sec. V). Observations from the ex-

periments demonstrate the significant improvement brought by

our solution in both static and dynamic scenarios. In a set of

typical Internet-scale scenarios, our solution simultaneously

reduces the traffic cost and the delay by 77% and 2%,

respectively, as compared to the commonly-adopted nearest

assignment strategy [11], [21].

II. VIDEO CONFERENCING MODEL

Consider a cloud-assisted video conferencing system with

multiple conferencing sessions, each of which is established

among a set of users. Each user in a session records a

video in a specific format/bitrate/resolution (referred to as a

representation), streams it to other users via cloud agents,

and demands streams of specific representations from the

other participants. Along each flow from a source user to a

destination user, the upstream representation produced by the

source may be different from the downstream representation

required by the destination, and transcoding is carried out at

the agents. We proceed with detailed definitions of elements

of our model using the key notations in Table I.
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Session and user. Let S be the set of sessions and U be the

set of users. Assuming that each user participates in exactly

one session, we denote the users of session s by U(s) ⊆ U
and the session that user u belongs to by s(u) ∈ S . Let

P(u) ⊆ U be the set of other participants in user u’s session,

(i.e., P(u) = {v|v ∈ U , s(v) = s(u), v �= u}).
Representation. A representation refers to a specific con-

figuration of format, encoding bitrate and spatial/temporal res-

olution of a stream, e.g., example representations of YouTube

videos are (360p, 1 Mbps), (480p, 2.5 Mbps), (720p, 5 Mbps),

(1080p, 8 Mbps), etc. Let R be the set of all possible

representations of all the users. Based on the access bandwidth

and hardware specification of the device, each user specifies its

upstream representation, ruu ∈ R, which is the representation

of the stream it produces, and downstream representation,

rduv ∈ R, which is its required representation of the stream

from another user v in the session. Let κ(r) denote the

corresponding bit-rate of representation r. We also define

θ = [θuv]U×U as the transcoding matrix, where θuv = 1
if source u and destination v are in the same session but

produce/require different representations, i.e., s(v) = s(u) and

ruu �= rdvu, and θuv = 0, otherwise1.

Cloud agent. Agents, in set L, are virtual machines which

the VC service provider leases from disparate cloud sites

(data centers) in advance. Each agent l ∈ L is described

by a quadruple {ul, dl, tl, σl(.)}, corresponding to its upload

capacity (in Mbps), download capacity (in Mbps), transcoding

capacity (the number of concurrent transcoding tasks), and

transcoding latency (in ms), respectively. We assume that each

agent allocates a fixed amount of resources (CPU, memory)

for each transcoding task, i.e., one unit of its transcoding

capacity, such that its number of concurrent transcoding tasks

can be derived. The transcoding latency σl(r1, r2) is an

increasing function of the bit-rates of both the input (r1) and

output (r2) representations. We assume that the VC provider

obtains agent-to-user and inter-agent delays through active

measurements. Let D = [Dlk]L×L be the inter-agent delay
matrix and H = [Hlu]L×U be the agent-to-user delay matrix,

where Dlk is the latency between agents l and k and Hlu is the

propagation delay between agent l and user u. We assume that

agents are fully connected and agents do not forward traffic

of other agents.

III. USER-TO-AGENT ASSIGNMENT PROBLEM

In this section, we formulate the user-to-agent assignment

problem with the goal of finding optimal user-to-agent and

transcoding task assignments. The objective is to jointly min-

imize (i) total bandwidth and transcoding cost of the service

provider and (ii) conferencing delay. The constraints of the

problem are (i) bandwidth and processing capacity of cloud

agents and (ii) end-to-end delay of users.

1Note that θ could be customized to support just high to low quality
transcoding operations by changing the definition of θuv = 1 as s(v) = s(u)
and rdown

vu < ruu , by assuming ordered set of representations in quality.

A. Optimization Variables

Let λlu be the user assignment variable such that λlu = 1
if user u is assigned to agent l, and λlu = 0, otherwise. Each

user must subscribe to exactly one agent. Hence, λlu’s satisfy

the following:∑
l∈L

λlu = 1, ∀u ∈ U , (1)

λlu ∈ {0, 1}, ∀l ∈ L, ∀u ∈ U . (2)

Another category of decisions is which agents should per-

form which transcoding tasks. The transcoding from an up-

stream representation to a different downstream representation

can potentially be done at the source agent, the destination
agent, or a tertiary agent.2 Let γlruv be the transcoding
task assignment variable where γlruv = 1 if user v requires

representation r from user u (i.e., rdvu = r) and the transcoding

is done at agent l, and γlruv = 0, otherwise. γlruv’s satisfy

the following constraints:∑
l∈L

∑
r∈R

γlruv = θuv, ∀u ∈ U , ∀v ∈ P(u), (3)

γlruv ∈ {0, 1}, ∀l ∈ L, ∀r ∈ R, ∀u ∈ U , ∀v ∈ P(u). (4)

Constraint (3) states that transcoding of the flow from u to v is

needed only when θuv = 1, i.e., the upstream and downstream

representations differ, and exactly one agent should carry out

the transcoding to the required representation.

The dimension of our decision space is O(LU+θsum

), where

U , θsum, and L are the total numbers of the users, the

transcoding tasks, and the agents, respectively.

B. Capacity Constraints of Cloud Agents

Download and upload capacity constraints. For notational

convenience, let νlru � maxv∈P(u) γlruv denote whether

agent l transcodes u’s stream to representation r for at least

one other participant in u’s session (1 yes and 0 no), and

ν′lu � maxr∈R νlru denote whether agent l transcodes u’s

stream at all (1 yes and 0 no). The download capacity

constraint of agent l is formulated as∑
u∈U

(
λluκ(r

u
u) +

∑
k∈L,k �=l

μklu

)
≤ dl, ∀l ∈ L, (5)

where the first term is due to the last-mile upstream of users

who directly subscribe to agent l and the second term depicts

the outgoing traffic of user u from all other agents towards

agent l. Define μklu to represent the download traffic at agent

l due to receiving via another agent k the stream originated

from user u, as follows:

μklu = λkuν
′
luκ(r

u
u) + ( max

v∈P(u),
θuv=0

λlv)λku(1− ν′lu)κ(r
u
u)

+
∑
r∈R,
r �=ru

u

( max
v∈P(u),

rd
vu=r

λlv)(1− λlu)νkruκ(r),

2We do not consider possible parallel transcoding of the same flow at multiple agents
in this work.
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where the first term represents the traffic from u’s agent k to

agent l for transferring u’s stream for transcoding at l, the

second term depicts the traffic of sending the upstream to

other parties, and the last term is the traffic by considering

bit-rate changes after transcoding. Similar to the download

capacity constraint we get the following constraint for the

upload capacity:∑
u∈U

(
λlu

∑
v∈P(u)

κ(rduv)+
∑

k∈L,k �=l

μlku

)
≤ ul, ∀l ∈ L, (6)

Transcoding capacity constraints. Regardless of the number

of destinations, transcoding of user u’s upstream representa-

tion to representation r occupies one unit of the transcoding

capacity of agent l. Hence the transcoding capacity constraint

at l is formulated as follows:∑
u∈U

∑
r∈R

νlru ≤ tl, ∀l ∈ L. (7)

C. End-to-End Delay Constraints of Users

The end-to-end delay of a flow from user u to user v is the

aggregation of the following: (1) propagation delay from u to

u’s agent l, Hlu; (2) the propagation delay between u’s agent

and v’s agent, including two cases: (a) from u’s agent l to v’s

agent k directly, Dlk, or (b) from u’s agent l to a tertiary agent

m (for transcoding) and then to v’s agent k, Dlm +Dmk; (3)

from v’s agent k to v, Hkv; (4) (possibly) the transcoding

latency at an agent l, σl(r
u
u, r

d
vu). We ignore any queuing

delay at the agents, since our bandwidth and transcoding

capacity constraints have ensured the availability of resources

for the respective tasks. Employing the transcoding matrix θ
and defining θ̄uv = 1 − θuv , we get the end-to-end delay of

flow u→ v as

duv =
∑
l∈L

(λluHlu + λlvHlv)+ θ̄uv

(∑
l∈L

∑
k∈L

λluλkvDlk

)

+θuv

(∑
l∈L

∑
k∈L

∑
r∈R

γlruv

(
Dlk(λku + λkv) + σl(r

u
u, r

d
vu)
))

.

Let Dmax be the maximum acceptable delay, e.g., 400 ms.

The end-to-end conferencing delay constraint is:

duv ≤ Dmax, ∀u ∈ U , ∀v ∈ P(u). (8)

D. Optimization Problem

Objective function. We seek to minimize the overall opera-

tional cost of the VC service provider, as well as a delay cost

based on inter-user delays. The operational cost of the provider

contains two parts. (i) Inter-agent bandwidth costs: bandwidth

cost of session s is formulated as G(xs) =
∑

l∈L gl(xls),
where xls =

∑
u∈U(s)

∑
k∈L,k �=l μklu is the total incoming

traffic to agent l from other agents in session s, and vector

xs = [xls]l∈L. gl(.) is a convex and increasing function3.

3Such a bandwidth cost only considers inter-agent data transfer, but not the
last-mile traffic to/from users, since the latter is fixed in all possible user-to-
agent assignments.

(ii) Transcoding cost at the agents: the overall transcoding

cost in session s is similarly formulated as follows, where yls
indicates the number of transcoding tasks agent l performs in

this session and hl(.) is a convex function

H(ys) =
∑
l∈L

hl(yls), ys = [yls]l∈L, yls =
∑

u∈U(s)

∑
r∈R

νlru.

The delay cost at users in session s is described by function

F (ds), where ds = [du]u∈U(s), du = maxv:u∈P(v) dvu is

the maximum end-to-end delay experienced by user u for

receiving streams from other participants, and F (.) is a convex

and increasing function, e.g., F (ds) = (
∑

u∈U(s) du)/|U(s)|.
Putting all pieces together, we cast the problem as

UAP: min
λlu,γlruv

∑
s∈S

(α1F (ds) + α2G(xs) + α3H(ys))

s.t. Constraints (1)-(8).

Problem UAP aims to find optimal user-to-agent and transcod-

ing task assignments with the objective of jointly minimizing

total bandwidth (G(xs)) and transcoding cost (H(ys)) of

the service provider and conferencing delay (F (ds)). The

objective function is the sum of the above costs, weighted

by design parameters α1, α2 and α3. The constraints of

the problem are bandwidth and transcoding capacities of

cloud agents (Sec. III-B) and end-to-end delay of the users

(Sec. III-C). Note that including delay in the objective function

is for pushing conferencing delays experienced by users to

be as small as possible, although we have constrained their

upper bound by (8). Design parameters αi ≥ 0 can be adjusted

to achieve any desired performance/cost trade-off, e.g., larger

α1 leans more towards optimizing conferencing peformance,

while larger α2 and α3 stress operational cost minimization.

Finally, we remark that tackling problem UAP even in a cen-

tralized manner is difficult, due to its combinatorial nature (i.e.,

due to binary assignment variables in Sec. III-A), persistent

dynamics in the system, and large problem size.

IV. ALGORITHMS AND DISCUSSION

Our goal is to design a parallel and adaptive solution

—each session solves its assignment problem locally, such

that the solution can scale with the problem size and adapts

to the dynamics. Recently proposed Markov approximation

approach [7] is one technique that allows us to construct one

such solution. The overview of our solution approach is as

follows. First, in Sec. IV-A, we devise a Markov-based parallel

and adaptive user-to-agent assignment algorithm that runs in

one agent of each session (e.g., the session initiator’s agent).

The algorithm proceeds in an iterative fashion and converges

to a near optimal assignment solution. The original Markov

approach may suffer slow convergence. Second, in Sec. IV-B,

we propose a fast bootstrapping algorithm which achieves a

feasible close-to-optimal initial assignment.

A. Markov Approximation-Based Parallel Algorithm

Generally, Markov approximation framework tackles com-

binatorial optimization problems in a decentralized manner
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Fig. 3. A simple VC scenario with 1 session, 2 users, 1 transcoding operation, and 2 agents

by 1) constructing a class of problem-specific Markov chains

with a target steady-state distribution and 2) investigating a

particular structure of the Markov chain that is amenable to

decentralized implementation.

1) Approximation Framework: Let f = {λ,γ} ∈ F be a

feasible solution to problem UAP, where F is the set of all

feasible solutions, i.e., all assignments that satisfy constraints

(1)-(8). Let Φf denote the objective function value of problem

UAP achieved by solution f and pf denote the percentage of

time that f should be in use. We formulate the approximate

version of problem UAP using log-sum-exp approximation [7]

as follows:

UAP-β : min
pf

∑
f∈F

pfΦf +
1

β

∑
f∈F

pf log pf , s.t.
∑
f∈F

pf = 1.

where β is a positive constant that controls the accuracy of

the approximation. UAP-β is a convex problem and we can

solve its KKT conditions and derive its optimal solution

p�f =
exp(−βΦf )∑

f ′∈F exp(−βΦf ′)
, f ∈ F , (9)

and the optimality gap between the optimal objective values

of UAP-β (denoted by Φ̂) and UAP is characterized by

min
f∈F

Φf − 1

β
log |F| ≤ Φ̂ ≤ min

f∈F
Φf . (10)

Note that the approximation gap vanishes as β approaches

infinity. The idea of introducing the above approximation

framework is to approximate the optimal solution to problem

UAP by time-sharing among its feasible solutions f ∈ F
according to p�f in (9). Towards this, the key is to construct

a Markov chain, which models feasible solutions as states,

achieves stationary distribution p�f , ∀f ∈ F , and allows effi-

cient parallel construction among the VC sessions.

2) Algorithm Design: Our parallel algorithm pursues the

near-optimal assignment solution by simulating such a Markov

chain over time. Especially, the algorithm starts with a feasible

assignment solution f , and may transit to another feasible

solution f ′ according to a transition rate qf,f ′ . The near-

optimal solution is achieved when the Markov chain converges

to the steady-state distribution p�f in (9).

Based on the theoretical insights from [7], the suffi-

cient conditions in constructing such a Markov chain is to

ensure that in the Markov chain: (i) any two states are

reachable from each other (i.e., the Markov chain is irre-

ducible); and (ii) the detailed balance equation is satisfied,

p�fqf,f ′ = p�f ′qf ′,f , ∀f, f ′ ∈ F . Sufficiency of these require-

ments is the key to allow two degrees of freedom in design.

The first degree of freedom is that we can set the transition

rate between any two states to zero if they are still reachable

from any other states.

Direct transition between two states corresponds to migra-

tion of the system from one feasible assignment solution to

another. To minimize the solution migration overhead, we

allow direct links between two states in the Markov chain only

if the value of exact one decision variable differs between the

two corresponding assignment solutions. An example Markov

chain is depicted in Fig. 3(b) corresponding to the scenario

in Fig. 3(a). Consider feasible solution 1 in Fig. 3(a) where

both users and the transcoding task are assigned to L1, and

feasible solution 2 where both users are assigned to L1 but the

transcoding task is assigned to L2. They differ by only one

assignment decision, so that there are direct links between state

1 and state 2 in Fig. 3(b).

Second, for two assignments f and f ′ with direct transitions,

we design the transition rate between two states as

qf,f ′ = τ exp
(1
2
β(Φf − Φf ′)

)
= τ exp

(1
2
β(Φs,f − Φs,f ′)

)
,

where Φs,f and Φs,f ′ are the local objective values of session

s (i.e., α1F (ds) + α2G(xs) + α3H(ys)) at solutions f and

f ′, respectively and τ is a positive constant that controls

the update frequency of our algorithm to be presented in

Alg. 1. The last equation above shows that we can calculate

the transition rate using the local objective function values

of the sessions, which enables parallel implementation of the

algorithm. It is easy to show that this transition rate satisfies

the detailed balance equations.

The procedures of our parallel algorithm are summarized

in Alg. 1. The algorithm is executed at the session initiator’s

agent. In HOP procedure, session s migrates to another feasible

assignment with a probability proportional to the objective

value of the target solution, i.e., the lower the target objective

value is, the more probable the session is to migrate to it.

In WAIT procedure, if the corresponding agent of session s
receives a FREEZE message, it pauses its countdown, since

another session is migrating, and resumes its countdown af-

terwards. Note that the FREEZE message is passed as an intra-

message within the cloud agents that operate in synchronized
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Algorithm 1: Markov approximation-based assignment

(for each session s)

1 procedure WAIT

2 Generate an exponentially distributed random number

with mean 1
τ and begin countdown according to it

3 while the timer has not expired
4 if Receive a FREEZE message then Pause

5 if Receive a UNFREEZE message then Resume

6 end
7 Invoke HOP

8 end procedure

9 procedure HOP

10 Broadcast a FREEZE message to other sessions

11 Fetch the updated list of residual capacities of agents

12 Fs ← set of all feasible solutions with only one

different decision

13 Migrate to solution f ′ ∈ Fs with probability

proportional to exp( 12β(Φs,f − Φs,f ′))
14 Broadcast a UNFREEZE message to other sessions

15 Invoke WAIT

16 end procedure

manner in a single cloud environment. The following propo-

sition shows that independent of the initial assignment, Alg. 1

converges to the stationary state with provable convergence

time (mixing time), with proof given in [7].

Proposition 1. Alg. 1 realizes a continuous-time Markov

chain, which converges to the stationary distribution in Eq. (9).

3) Differences with Similar Approaches: In some similar

approaches like simulated annealing [20], Gibbs sampling,

and Monte Carlo Markov chain approaches [6], the main idea

is to sample a set of states based on desired distribution by

implementing a Markov chain. Hence, these approaches share

the idea similar to Markov approximation. However, unlike

Markov approximation, these approaches do not explicitly

consider parallel Markov chain design. As such, they cannot

be leveraged to design solutions desirable for our problem. In

addition, unlike the similar approaches that are incompetent

against the system dynamics and noisy measurement of the

problem data, Markov approximation framework can provide

theoretical robustness to both system dynamics and noisy mea-

surements, which is discussed in details in the next subsection.

4) Robustness to System Dynamics and Noisy Measure-
ments: Our parallel algorithm is robust to variations due to

session dynamics, i.e., addition and termination of a session. In

the case that a new session starts, it can be bootstrapped with

any feasible assignment solution, and then the agent which the

session initiator is connecting to can execute its local algorithm

by starting its countdown process.

Moreover, in practice, it is possible to obtain only an

inaccurate measurement or estimate of objective function due

to noisy measurements of user-to-agent and transcoding la-

tency values. Consequently, with perturbed values of objective

function, Alg. 1 may converge to a sub-optimal steady-state

distribution. Fortunately, our employed theoretical approach

can provide a bound on the optimality gap due to the pertur-

bation errors using a quantization error model.

We assume the perturbed Φf takes only one of the following

discrete values
[Φf −Δf , . . . ,Φf − 1

nf
Δf ,Φf ,Φf +

1

nf
Δf , . . . ,Φf +Δf ]

and the perturbed Φf takes the value Φf + j/nfΔf with

probability ηj,f and
∑nf

j=−nf
ηj,f = 1, where Δf is the error

bound on configuration f and nf is a positive constant.

Theorem 1. The stationary distribution of the perturbed

assignment-hopping Markov chain is

p̄f =
δf exp(−βΦf )∑

f ′∈F δf ′ exp(−βΦf ′)
, ∀f ∈ F , (11)

where δf =
∑nf

j=−nf
ηj,f exp(β

jΔf

nf
), and optimality gaps are

0 ≤ Φavg − Φmin ≤ (U+θsum) logL
β , (12)

0 ≤ Φ̄avg − Φmin ≤ (U+θsum) logL
β +Δmax, (13)

where θsum =
∑

u∈U
∑

v∈U θuv is the total number of

transcoding tasks, Δmax = maxf∈F Δf is the maximum

perturbation error, Φmin = minf∈F Φf is the optimal value

of UAP, Φavg =
∑

f∈F p�fΦf is the expected objective with

the original Markov chain, and Φ̄avg =
∑

f∈F p̄fΦf is the

expected objective with the perturbed Markov chain.

The proof is relegated to our technical report [13]. Note that

Eqs. (12) and (13) signify when β increases the optimality

gap of the perturbed Markov chain decreases. But, the larger

β values may increase the convergence time of Alg. 1 [25].

Moreover, the bounds are independent of the specific values

of configurations, i.e., nf and ηj,f .

B. AgRank Algorithm

We proceed to design an agent ranking algorithm for

identifying a good starting feasible assignment solution, for

bootstrapping the Markov approximation-based algorithm. The

intuition is that if Alg. 1 can start from a close-to-optimal

assignment, not only high-quality conferencing experience can

be provided to the users starting from the beginning, but also

fast convergence of the algorithm can be achieved.

In a nutshell of the algorithm which we refer to as AgRank,

upon the start of a session, a potential agent of the session

(e.g., the nearest agent to the session initiator) identifies a set

of potential agents, ranks the agents, and assigns the users and

transcoding tasks based on the ranking. Based on the example

in Fig. 2, inter-agent delay is important in agent ranking, in

addition to the agents’ residual capacities and user-to-agent

delay. The design of AgRank is motivated by the idea of

Google’s PageRank [4] and topology-aware node ranking in

virtual network embedding [10] and is summarized in Alg. 2.

Constructing the potential agent list. In the first step, a

set of top nngbr closest agents, N (u), for user u are picked

as the possible agents and then the set of potential agents of

the session, N (s), is constructed by putting together N (u)
of all users (Lines 1-6). The parameter nngbr ∈ [1, L] is the
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Algorithm 2: AgRank (for each session s)

// Constructing potential agents
1 N (u)← ∅ // set of potential agents of user u

2 N (s)← ∅ // set of potential agents of session s

3 foreach user u ∈ U(s) do
4 N (u)← top nngbr nearest agents to u in L.

5 N (s)← N (s) +N (u)
6 end

// Agent ranking
7 ε > 0, t← 0

8 Initialize πl[0] =
ûl+d̂l+t̂l+σ̂l∑

k∈L ûk+d̂k+t̂k+σ̂k
, l ∈ N (s)

// ûl, d̂l, t̂l,and σ̂l are the normalized residual
quadruple of agent l

9 repeat
10 πT [t+ 1]← πT [t]D̂
11 δ ← ‖π[t+ 1]− π[t]‖
12 t← t+ 1
13 until δ < ε
14 π� ← π[t]

// User assignment
15 foreach user u ∈ U(s) do
16 Assign u to lsel

u ← argmaxl∈N (u) π
�
l

17 end

maximum number of potential agents for each user that could

be set on a per-session or per-user basis. Setting nngbr = 1
yields the nearest assignment and nngbr = L results in

subscribing all users to the highest ranked agent.

Agent Ranking. The second step is to rank the potential

agents based on a random walk model [4]. We define the initial

ranking of agent l ∈ N (s) as in Line 8, based on the nor-

malized residual quadruple of agent l. In this way, the initial

ranking of the agents is aware of the resource availability of

the potential agents which turns AgRank into a resource-aware
algorithm. Let D̂ = [D̂lk]|N (s)|×|N (s)| as normalized inter-

agent delay matrix where D̂lk = (minl′,k′∈N (s) Dl′k′)/Dlk,

and π = [πl]l∈N (s) be the vector of agent ranks. The rank

vector is updated iteratively with πT [t+1] = πT [t]D̂, whose

rationale is to capture inter-agent delay in ranking and find the

optimal agent ranks (Lines 7-14). It has been shown that this

iterative procedure converges very fast to a unique vector π�,

as optimal agent ranks [4].

User and transcoding assignment. Next, user u is assigned

to the highest ranked agent within the set N (u) (Line 16).

For transcoding task assignment, we apply the rule of thumb

that when there are at least two destinations with the same

downstream representations for the outgoing flow of a par-

ticular user, assigning the respective transcoding task at the

source agent is a good solution, whose transcoded stream can

be served to more than one destination. One may imagine

several other schemes for assigning the transcoding tasks, but

here we are only seeking a good feasible one.

C. Discussion

Real-time assignment migration without user experience
degradation. Alg. 1 converges to a bounded neighborhood

of the optimal solution at the expense of imposing over-

head to establish the new assignments. In each migration, a

momentary interruption in conferencing experience might be

happened as a consequence of switching the outgoing and

the incoming traffics into the new cloud agent. To provide

migration without user experience degradation, VC provider

can keep both the new and the old assignments active during

switching procedures by bearing some intermittent redun-

dant transmissions. Moreover, exploiting segmentation-based

transcoding approaches [15], transcoding migration can be

done by terminating the current segment and initiating the

transcoding of the new segment in the new agent. We mention

the implementation details in Sec. V.

Complexity Analysis. First, recall that Alg. 1 and AgRank
run at session initiator’s cloud agent, hence by migrating the

execution of the algorithms to the cloud agents, no additional

overhead is imposed to the client devices. At each iteration of

Alg. 1, the session initiator’s agent computes all feasible solu-

tions with only one different decision with a time complexity

of O(|U(s)|2L). We further note that to compute the transition

probability in Line 13 of Alg. 1, it only needs to have the

knowledge of local objective of the corresponding session, so

the algorithm could be implemented in a fully parallel manner

without requiring the global knowledge of the network. The

iterative scheme in AgRank yields precision ε with the number

of iterations proportional to max{1,− log ε} [4]. Constructing

candidate agents, user assignment, and transcoding assignment

takes a computation time of O(|U(s)|L logL), O(|U(s)|) and

O(|U(s)|2), respectively.

V. PERFORMANCE EVALUATION

We evaluate the performance of our algorithms using: 1)

a set of experiments based on prototype implementation of a

real-world cloud-assisted conferencing system (Sec. V-A), and

2) a set of large-scale trace-driven experiments (Sec. V-B). We

compare our solution to the nearest assignment policy (Nrst)
(that is the assignment policy in Airlift [11] and vSkyConf
[21]). For detailed illustration, we report the inter-agent traffic

(corresponding to the operational cost) and the conferencing

delay separately as the performance metrics, even though

the objective is a weighted combination of them. As for the

conferencing delay, we report the average delay of all users.

For the end-to-end delay constraint (8), we set Dmax = 400
ms according to ITU-U G.114 [14].

A. Experiments on Prototype System

1) Prototype Overview and Setup.: We implement the

cloud-assisted VC prototype software using the asynchronous

networking paradigm in C++, and employ the OpenCV li-

brary [1] to capture video frames of device cameras in two

representations and to transcode the streams. 6 Linux-based

EC2 instances in different regions are employed as the cloud

agents. A VC software is installed on them to execute our
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algorithms and to exchange and transcode the streams. Unless

otherwise specified, we set the capacity of agents to be large

enough and the transcoding latency of agents are in [30, 60]
ms, depending on the processing capabilities. Conferencing

users are distributed in 10 locations (5 in North America, 4 in

Asia, and 1 in Europe) using different operating systems. A

lightweight conferencing software is installed on users that

only transfers the video streams to/from an EC2 instance.

Finally, we have launched 10 actual conferencing sessions,

each with 3–5 participants.

We choose β = 400 in Alg. 1 which is proportional to the

logarithm of the problem state space [7]. The countdown timer

is set to 10 seconds, i.e., Alg. 1 executes every 10 seconds in

each session on average. In each iteration, the assignment of

either one user or one transcoding task is changed. When user-

to-agent assignment migration is in progress, if we instantly

tear down the old assignment, the other participants in the

session experience streaming interruption (e.g., a frozen screen

for a short period as 2-3 frames are delayed in a 30 fps video

rate). We resolve such interruptions as follows: The migrated

client sends its stream to both the old and the target agents for

a short time interval (less than 30 ms on average according

to the user-to-agent distances). This results in some overhead

traffic that could be considered as the migration cost of the

algorithm, whose volume (around 13.2 Kb corresponding to

240p representation) is negligible as compared to the amount

of traffic reduction after migration.
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Fig. 4. Evolution of traffic and delay over time (200 seconds) by executing
Alg. 1 with different βs and Nrst for initial assignment

In Figs. 4-7, the initial traffic/delay values at time 0 are

results of either Nrst or AgRank assignment policies, and

running Alg. 1 following the initial assignment reduces them

over time.

2) Traffic and Delay Reduction of Alg. 1: Fig. 4 demon-

strates that Alg. 1 achieves significantly traffic and delay

reduction, as compared to the initial assignment by Nrst,
and converges in about 180 seconds. The fluctuations in the

delay/traffic values are due to perturbations on actual data and

assignment migrations. Comparing results of different βs in

Fig. 4, we see that Alg. 1 with a lower value of β converges to

the optimal assignment more slowly with higher fluctuations.

In a dynamic scenario (Fig. 5), there are 6 sessions initially, 4
more sessions arrive at t = 40, and 3 sessions depart at t = 80.

We can see that the algorithm adapts well to the dynamics by

converging to new stable assignment solutions.
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Fig. 5. Evolution of traffic and delay over time by executing Alg. 1 with
β = 400 in the presence of session arrival/departure
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Fig. 6. Evolution of traffic and delay over time (100 seconds) by executing
Alg. 1 with β = 400 and AgRank with nngbr = 2 for initial assignment

3) Effectiveness of AgRank: Comparing the initial traf-

fic/delay values in Fig. 6 and Fig. 4, we can see that AgRank
performs better than Nrst – 15 Mbps vs. 22 Mbps inter-agent

traffic, with similar delays. In addition, starting from a close-

to-optimal initial assignment by AgRank, Alg. 1 converges

faster, i.e., obtained values at 100th second using AgRank for

initial assignment are almost the same as those at 200th second

with Nrst. We also note that although AgRank is an iterative

algorithm, it is a fast algorithm, e.g., it takes less than 200 ms

to find the optimal ranking of the agents upon session arrival

on average in a micro EC2 instance. We finally remark that

due to the parallel algorithm design, the convergence of the

algorithm is independent of the number of users.

4) Case Study: While the previous figures show aggregate

results in the entire system with 10 sessions, we study per-

session results in Fig. 7. The initial assignments are obtained

using Nrst policy. In Fig. 7 we report the performance of

3 sample sessions in more details. For example, in session

8, 4 users subscribe to 3 different EC2 instances in Tokyo,

Singapore, and Ireland initially, but soon all users are migrated

to the Tokyo agent, resulting in zero inter-agent traffic. Due to

the probabilistic nature of the system, a session may migrate to

a worse assignment for some time, e.g., migration of session

9 at t = 131, but can recover soon, e.g., session 9 migrates

back to the optimal assignment at t = 141.

B. Large-Scale Trace-Driven Experiments

1) Experimental Setup: We proceed to carry out Internet-

scale experiments using 256 PlanetLab nodes as the users

and 7 EC2 instances as the agents. We use the user-to-agent

and inter-agent delays (approximately RTTs divided by 2)

from [3], [22], where the RTTs are measured for 5 weeks
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Fig. 7. Evolution of traffic and delay with Alg. 1 for the case of 3 sample
sessions with different number of users

TABLE II
THE IMPACT OF DESIGN PARAMETER α ON ALG. 1

Alg. Cost Init.
Alg. 1

α2 = 0
(delay only)

α1 = α2

α1 = 0
(traffic
only)

Nrst Traffic 1443 979 829 521

Delay 166 149 150 209

AgRank Traffic 384 499 335 296

Delay 176 162 163 214

at a granularity of one ping per second. 4 representations,

360p, 480p, 720p, and 1080p are exploited and a sparse

transcoding matrix is considered such that 80% of users

demand for 720p and only 20% demand for the others. The

other parameter settings are the same as in the previous

experiments, unless otherwise specified. In each experiment,

we generate 100 random scenarios and plot the average results.

In each scenario, there are 200 users in total (picked randomly

from 256 PlanetLab nodes), who join different sessions, while

each session has at most 5 users.

2) Impact of Design Parameters: The result is summarized

in Table II and Fig. 8. When α1 = α2, Alg. 1 using Nrst
(AgRank) for initial assignment simultaneously reduces the

traffic and delay from those of Nrst policy by 42% (77%) and

10% (2%), respectively. In addition, initialization by AgRank
reduces the traffic by 73% at the expense of 6% longer delay

in comparison with those in Nrst, while the longer delay

could be compensated by Alg. 1. Fig. 8 demonstrates the box

plot of conferencing delay with different values of the design

parameter α for Nrst and AgRank as initialization. These

observations corroborate our claim that the nearest policy

yields neither minimal delay nor minimal operational cost, and

our user-to-agent assignment design can significantly improve

the conferencing experience and reduce the operational cost as

a “win-win” solution for both the users and the conferencing

provider. In addition, results in Table II (and specially the

conferencing delay values in Fig. 8, when the objective is

to minimize the traffic cost only (α1 = 0)) clearly reveal

that paying more attention to one part of the hybrid objective

function may sacrifice the other. This justifies that the hybrid

structure of the objective function is vital in design.

3) The Details of AgRank: The previous results showed

that AgRank significantly outperforms Nrst by reducing the

initial traffic cost. This reduction could be translated into an
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Fig. 8. Comparison of initial delay of AgRank and Nrst and the reduction
by executing Alg. 1 with different design parameters
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Fig. 9. Comparison of AgRank and Nrst
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Fig. 10. The impact of nngbr on AgRank

increased success rate of the initial assignment, i.e., all users

in the system can successfully subscribe to agents, by serving

more sessions with limited capacities of the agents. In Fig. 9,

we show the percentage of successfully initialized scenarios

(out of 100 random scenarios), with two versions of AgRank,

AgRank#2 with nngbr = 2 and AgRank#3 with nngbr = 3, and

Nrst under different average bandwidth capacities (Fig. 9(a),

unlimited transcoding capacity) and transcoding capacities

of the agents (Fig. 9(b), unlimited bandwidth capacity). We

observe that with AgRank#3, all 100 random scenarios can be

successfully initialized under average bandwidth capacity 750
Mbps, while with the resource-oblivious Nrst, only 8% of the

randomly generated scenarios can be successfully initialized.

The higher success rates of AgRank#3 than AgRank#2 show

that picking among a larger number of potential agents pro-

vides a larger feasible set. To explore this further, we compare

the performance of AgRank under different values of nngbr in

Fig. 10. Clearly, nngbr = 1, by which AgRank is equivalent to

Nrst, yields the highest traffic cost. With nngbr = L, all users

of each session are subscribing to one agent and hence suffer

from long conferencing delays.
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VI. RELATED WORK

Before the upsurge of the cloud paradigm, P2P was deemed

as an alternative to the client/server model. In [8], [9], a

P2P-based VC problem is tackled in utility maximization

framework. However, the lack of powerful nodes in P2P

hinders proper execution of high processing tasks. The idea of

exploiting cloud bandwidth resources for VC is first proposed

in Airlift [11]. Next, the authors in [21] employ the processing

power of cloud for transcoding, in addition to the bandwidth

resources. As mentioned before, these works adopt the near-
est assignment policy which suffers from excessive resource

usage. In very recent work [24], the authors propose a server

placement and topology control approach to only minimize the

latency in transcoding-free VC, without considering provider’s

cost. We note that the problem of delay-constrained video

transmission is studied previously in different scenarios such

as in wireless networks [5], [16]. Differently, this work focuses

on cloud video conferencing scenario with different set of

challenges.

Using the virtual network embedding paradigm [12] in [17],

a primal-dual algorithm is proposed for resource allocation in

real-time multimedia that could be customized to encompass

video conferencing. Different from [17], here, deep study of

problem UAP disclosed a difficult non-linear optimization

problem that makes finding the solution using primal-dual ap-

proach incompetent. The idea of migration and re-optimizing

the current configuration have been widely used in virtual

networking problems for ameliorating the acceptance rate of

vitrual networks [23], energy saving [19], etc. These goals

could also be imagined as additional motivations of proper

user-to-agent assignment in our problem.

VII. CONCLUSIONS

This paper addressed the cloud-assisted VC problem from

the perspectives of user-to-agent assignment and transcoding

task assignment, with the goal of designing a joint cost

effective and low delay solution. Two successive algorithms

are proposed: a decentralized algorithm to optimize the assign-

ment tasks and a bootstrapping algorithm to achieve a close-to-

optimal initial point for the former. Observations on extensive

experiments corroborated our claim that user assignment is

a critical design choice that results in a big difference in

system performance. Experimental results demonstrated the

superiority of our design compared to the existing work in

terms of reduced delay and cost, and thus makes it as viable

win-win solution for both the users and the VC service

provider.
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