

Tuan Nguyen Gia

Implementation of a Smart Fridge by Using
RFID and Web Technology

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

30 October 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/38073043?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Abstract

Author(s)
Title

Number of Pages
Date

Tuan Nguyen Gia
Implementation of a smart fridge by using RFID and Web tech-
nology
62 pages
30 October 2012

Degree Bachelor of Engineering

Degree Programme Information Technology

Instructor(s) Kimmo Sauren, Senior Lecturer

The purpose of the project was to build a smart system which could be applied in daily life
to improve the quality of life. A smart fridge helps users save time in buying necessary
products by providing information about food inside the fridge. Furthermore, the smart
fridge helps users take care of their health by warning about expired or opened products.

The project was built based on HTML, PHP, JavaScript, MySQL, a Sirit Infinity 510 RFID
reader, antennas and a fridge. HTML and PHP are programming languages for building
the interface of the project. JavaScript, which is a programming language used in the cli-
ent-side, was used to make the website become more fascinating. MySQL is a relational
database management system for processing data. The RFID reader and antennas played
important roles in the project. The set of RFID equipment had responsibility for reading and
checking product data. The fridge was just a familiar fridge used at home.

Users could add their favourite food and dishes to the system which stored the information
and updated the shopping list, so users ensured that they always had the wanted products
in the fridge. Moreover, the system had some special features in protecting users’ health.
The system listed all the expired products in the fridge and informed or warned about
some opened products. Users would know the exact time when the product was opened
and how long the product could be used after being opened. The main objective of the
application was to prove that the RFID technology could be applied in daily life and was to
provide a convenient, easy-to-use and smart system which could help people in improving
the quality of life.

The result offers users a high-tech and multi-functional system enhancing the quality of
life. Moreover, the project shows that the RFID technology is possible to be applied at
home.

Keywords smart fridge, RFID, HTML, PHP, JavaScript, MySQL

Contents

Abstract

Abbreviations and technical terms

1 Introduction 5

2 The smart fridge 6

2.1 Overview of the smart fridge and its components 6

2.2 Introduction to RFID 7

2.3 Sirit Infinity 510 RFID reader 11

2.4 Web user interface 17

3 Design of the application 23

3.1 Use case diagrams 23

3.2 Activity diagrams 30

4 Implementation of a smart fridge 35

4.1 Setting up and testing the physical connection 35

4.2 Creating a reader profile 39

4.3 Software design 40

4.4 Software preparation 41

4.5 End-user application 42

4.5.1 Building a PHP file for connecting a PC with a reader 42

4.5.2 Running the file as script in the background 43

4.5.3 Building the user interface of the smart fridge 44

4.6 Testing and locating the system 53

5 Results and discussion 54

5.1 Problems and solutions 54

5.2 Benefits 57

5.3 Drawbacks 58

5.4 Further development 58

6 Conclusion 60

References 61

Abbreviations and technical terms

CLI Command Line Interface

CSS Cascading Style Sheets

HTML Hypertext Markup Language

JavaScript prototype-based scripting language

JIT Just-In-Time

JSP JavaServer Pages

LAN Local Area Network

LBT Listen Before Talk

PC Computer

PHP Hypertext Preprocessor

PNG Portable Document Format

RF Radio frequency

RFID Radio Frequency Identification

RX Receive

SQL Structured Query Language

SSH Secure Shell

TCP/IP Transmission Control Protocol/ Internet Protocol

TX Transmit

UML Unified Modelling Language

VAC Volt Alternative Current

VDC Volt Direct Current

5

1 Introduction

Technology has been developing dramatically in many areas from biotechnology, com-

puter science, electronic to wireless technology. The RFID technology is an example of

the wireless technology, and it plays an important part in daily life and in industry. The

RFID technology covers many areas and fields, so the idea of taking advantage of the

popularity and development of the RFID technology to develop a new product to be

launched to the market is feasible. Besides, in the modern and busy era, people need

easy-to-use, convenient and smart products which help them to save time, to protect

their health, and to improve the quality of life, so the smart fridge project system based

on the RFID and web technology was implemented.

The main target of the project is to build a smart fridge with a user-friendly interface

based on the RFID technology. Therefore, the aim of the project is that users could

easily use the system without understanding how the technology inside the system

works. The project was built as a demo for the RFID Lab Finland which is a non-profit

organization, whose mission is to help other enterprises to improve their operational

efficiency with the RFID technology. Therefore, the smart fridge system was built for

implementing the main functions of the smart fridge. The advanced functions of the

fridge were not included in the project. These advanced functions could be later studied

when the project was able to run in a stable way. The project was built based on the

RFID equipment which was supplied by other member companies such as Nokia, and

GS1, so the project hardware was a combination of different hardware from different

companies.

The goal of the project is to prove that the RFID technology could be combined with

other technologies and the RFID technology could be applied at home for daily using.

In addition, the report on this project could be used as a guide for a person who wants

to build a system using the RFID technology or for other RFID technicians who want to

develop the smart fridge system.

6

2 The smart fridge

2.1 Overview of the smart fridge and its components

Working process

The smart fridge is a comprehensive system combining physical hardware, a software

application, a computer, and a screen. The working process of the system is described

in figure 1.

Figure 1: The smart fridge system.

As can be seen in figure 1, an antenna is attached to the fridge for reading a tag infor-

mation including tag id, password, and mask. After the tag information is sent to the

reader through the cable of the antenna, the tag information is stored in the database

or sent to the computer through TCP/IP or a serial cable. The computer with a running

application gets the data sent by the reader and shows the information in the user inter-

face through a browser. End users can use the smart system through a computer

browser or a mobile phone browser.

7

Hardware

The physical hardware includes an RFID Sirit Infinity 510 reader with two antennas, a

fridge, a computer, cables, and a switch. While an antenna attached to the fridge veri-

fies the tag located inside the fridge, the other antenna is used for registering a new tag

or verifying a tag taken. The equipment which includes a computer for running and de-

ploying the application and a reader is connected in the LAN through a switch. In order

to increase the effect of the user interface, wide or touch screens are recommended.

Software

The software and applications used in the smart fridge project were a database, PHP,

JQuery, JavaScript and Eclipse. In order to simplify the complexity of the smart fridge

system, Xampp, which is a useful and simple application, was used because Xampp

has MySQL, PHP5, Apache, and many other utilities. In addition, Xampp is a free ap-

plication supporting many operating systems from Windows, Linux, Solari to MAC OS,

so it is simple to install Xampp in many systems. However, using Xampp was more

complicated because some configuration values in the configuration file had to be edit-

ed. Eclipse was used because of its user friendly interface and development platform.

Some ready-made JavaScript and PHP libraries, which are well-known, secured and

free of charge, were used. JQuery is one of the useful libraries for harmonizing with

JavaScript. Finally, a Firefox browser was used for showing the view of the smart fridge

to final end users.

2.2 Introduction to RFID

RFID stands for radio frequency identification which is an example of a wireless system

using a radio frequency electromagnetic field. When a tag is placed near antennas, a

tag data will be read and transferred to the reader through a radio wave. The reader is

connected to the computer, so that the data can be used for many different purposes

depending on the businesses. The basic RFID system is described in figure 2. [1]

8

Figure 2: Basic RFID system

Figure 2 describes the basic structure of an RFID system which usually combines three

components: tag/transponder, reader/antenna, and computer. The tag usually uses a

silicon microchip to store unique information which is called “tag_id”. Besides

“tag_id”, other information can be stored depending on the type of the tag.

“tag_id” is transferred in the RFID tag reading process.

Many types of RFID systems are introduced in RFID show rooms and fair centres;

however, setting up and using them for reducing the cost of a business is challenging.

In general, all types of RFID systems provide a typical function generating data through

wireless connections, but in detail, different RFID systems, which have different func-

tions, are used for distinct purposes. For example, the key system in the Helsinki

Metropolia University of Applied Sciences is built based on the RFID technology. Each

student/staff member has a specific key which stores a personal authority for accessing

doors. A user who wants to access a room must show his/her key at the reader at-

tached to the door because the reader is able to read a tag at a distance of a maximum

of 10 centimetres. The reader reads the data from the key then decides whether to

allow access or not. This system is totally different from a system in logistic industry

using expensive readers and antennas. The reader in industry can read a tag at a dis-

tance from 1 meter to 100 meters depending on the tag types and the reader types, so

the cost of setting up an RFID system varies. [1]

9

There are two main categories of RFID systems: passive systems and active systems.

Passive RFID tags which do not have transmitters and their own power sources, reflect

back energy coming from the antennas of the reader. Active RFID tags have their own

transmitters and power supplies. Besides the two main categories, semi-passive tags

are used in some applications. [1]

The RFID technology is applied in many applications and many fields including asset

tracking, manufacturing, supply chain management, retailing, payment system, security

and access control. RFID systems used in these fields are different from price to func-

tion. In asset tracking, a company attaches RFID tags to items or assets which are

usually lost or hard to find. Those items can be easily tracked by an RFID real-time

locating system using RFID beacons. In storage industry, every product has one RFID

tag with a unique number. When these tags are in the read-range, which is a specific

distance in which an RFID reader is able to read the data, the RFID reader reads all

the tags information through antennas. Therefore, all products can be efficiently man-

aged. [1; 2]

Active RFID system

Active RFID tags are usually applied in industries which use large cargos or items

needed to be tracked over a long distance, from 20 meters to 100 meters. A tran-

sponder and a beacon are the two main types of an active RFID system. A transponder

is usually in the sleeping mode which helps to save battery life when it is outside the

read-range. When a transponder is in the read-range, it receives a signal and is woken

up to broadcast a unique “tag_id” to the reader. A beacon, which differs from the

transponder, is often used in real-time locating systems that receive the information of

a tag’s location in an interval time. The interval time, which is every five seconds or five

times a day, can be modified depending on the user’s purposes. Using beacons is

complicated because in order to get “tag_id”, at least three antennas must be set in

specific areas where assets are tracked. [1]

Active RFID tags have a broad read-range with a limit up to 100 meters. In most cases,

information transmitted from tags is reliable as the information is broadcasted to the

reader. In some special situations, information transmission is affected by the environ-

ment. The price of one active RFID tag varies from 10 dollars to 50 dollars depending

10

on the form-factor, the tag’s memory, and the tag’s battery. Besides, the price is influ-

enced by a motion sensor, tamper detection, or a temperature sensor. Although the

price of an active tag is quite high, an active RFID system is still used in real-time asset

monitoring and many other applications because it provides a better layer of security

than a passive RFID and the price of an active RFID reader is lower than the price of a

passive RFID reader. Tag life is from three to eight years depending on the tag broad-

cast rate. [1; 3]

Passive RFID system

A passive RFID tag has no transmitter or power source, so a passive RFID tag just

reflects the signal sent from the reader’s antennas. The price of a passive RFID tag

varies from 10 cents to 40 cents. A passive RFID tag is very simple and cheap, so tag

maintenance is unnecessary. Hence a passive RFID tag is used in many companies

and many fields. However, the read-range used for a passive RFID tag ranging from a

few centimetres to nine meters is shorter than the read-range of an active RFID tag. [1]

A passive RFID transponder includes a microchip attached to an antenna. There are

many ways to pack a passive RFID transponder depending on the purpose of the ap-

plication. A transponder can be embedded, for example, in a plastic key or card. In

some special covers, it has capability to resist coldness, heat or even cleaning chemi-

cals. [1]

A passive RFID tag is capable of working at different frequencies from low frequency

and high frequency to ultra-high frequency. A low frequency passive tag can be read in

the read-range of 0.33 meters with operating frequency at 124 kHz, 125 kHz, or 135

kHz. A high frequency passive tag can be used within 1 meter at 13.56 MHz, while an

ultra-high frequency passive tag can be read from 3 meters to 9 meters with a band

from 860 MHz to 960 MHz. Radio waves at different frequencies have distinct behav-

iours influencing applications. The passive tag has a life cycle of 10 years depending

on the environment around the tag. [1; 3]

11

2.3 Sirit Infinity 510 RFID reader

The infinity 510 reader is a flexible, adaptable multifunctional RFID system applied in

many fields and many RFID applications. It is easy to set up 510 RFID reader connec-

tions, which are described in figure 3.

Figure 3: Sirit 510 reader’s physical connection. Reprinted from Sirit [4]

As can be seen in figure 3, the reader has four TX/RX antenna ports. These antennas

are special components mainly used for reading information from RFID tags and writing

data to tags. In addition, the Sirit 510 reader offers one extra LBT antenna which is

used to look for a free channel or a network device. All antennas are connected to the

reader through cables which have different lengths depending on users’ purposes;

however, the longer the cable the more “loss signal” strength occurs. The reader

has three ports including an Ethernet port for connecting to LAN by an RJ-45 cable, a

serial port for connecting to a PC by a serial cable and an I/O port for controlling the

reader’s input-output. There is no I/O port in figure 3 but in reality, it is placed between

the Ethernet port and the serial port. The I/O port, which is used for digital input-output,

provides four optically isolated input signals which have values ranging from 5 to 24

12

VDC and from 1 to 5 mA. Digital inputs can be used to trigger the reader for tag read-

ing or configured for an external read trigger from other devices. Digital output signals

provided by the reader have values from 3 to 40 VDC for voltage and a maximum of

100 mA for current. Both digital input and output can be manipulated by an I/O control-

ling command. The Sirit 510 reader uses 15 VDC from the adapter which converts 100-

240 VAC input to 15 VDC output. [5]

Reader users can send specific CLI commands to the reader for administrating the

RFID system through channels which are automatically chosen by the reader. The

channel number is unique, so the next ready channel number is incremented by the

latest channel number used. The Sirit 510 RFID reader can be accessed by a human

interface or a machine interface. The human interface allows reader users to send a

command directly to the reader and receive responses from the reader. Reader users

can use some ready-made applications such as Putty to connect to the reader through

the Ethernet port or use their own applications to send commands. A machine inter-

face, which differs from a human interface, supports direct connection between the

event channel and the reader’s command. The machine interface has two default ports

such as “50007” port and “50008” port defined by the producer. The “50007” port

is used in the bidirectional channel and reserved for the reader’s command and the

reader’s response while the “50008” port is used in the unidirectional channel and

reserved for the event channel, which sends an asynchronous report. [5]

The Sirit 510 reader helps users in management due to a large number of useful com-

mands which are strings of characters invented by Sirit-RFID producer through some

RFID standards. Commands, which can be sent by SSH or any application with a

socket connection to the reader, are categorized into three main types of commands,

including “GET” commands, “SET” commands and “EXEC” commands. The “GET”

commands are used to retrieve values of a specified reader configuration variable. The

“SET” commands are used for setting values for reader configuration variables. The

“EXEC” commands are applied for running the reader’s functions. Response com-

mands have four types including “GET” responses, “SET” responses, “EXEC” re-

sponses and “ERROR” responses because the “ERROR” responses are reserved in

case of the system’s malfunction or error request. The “GET” responses show “OK”

and information of a configuration variable such as “tag_id”, password, or a data

value. The “SET” and “EXEC” responses only show a string “OK”. When the com-

13

mand’s syntax or a specific type of the command is not supported, the reader will re-

spond with an error response message which is a string of characters showing the er-

ror type. All error responses start with “error” string and continue with the name of

different error types such as “error.internal.processing_error”, “er-

ror.app.not_running”. In order to help users in programming the system , different

data types are supported such as “bool”, “int”, “string”, “enum”,

“enumlist”, “array”, “list”, “compound”, and “compound list”. These

data types are familiar to all programmers, so it is easy to write an application which

can take advantage of these data types. [5]

Furthermore, users configure the reader easily through a reader firmware written by

Sirit RFID producer. The firmware, which is secured, is installed in the reader, so users

just connect to the reader at the default IPv4 address of the reader through the firm-

ware interface in any browser. The default profile created by Sirit, which users can use

to log into the system the first time, has two usernames: administrator and guess. If a

user logs in with the guess account, he/she only sees some the reader values which

are unchangeable. Meanwhile, if a user logs in with the administrator account, he/she

can create his/her username, password and change all configuration values. [5]

The RFID reader firmware is exclusive software of Sirit and is possibly updated to the

newest version. Figure 4 shows the interface of the reader firmware which is shown in

the browser when connecting by the default IPv4 address of the reader.

14

Figure 4: The firmware interface of the Sirit 510 reader [5]

The interface is user friendly and easy-to-use. When a user wants to use the system,

he/she must log into the system by using the “login” button in the top left of the inter-

face. When a user clicks this button, one form with a username field and a password

field will show in the interface. The reader supports the profile in managing the system.

With the administrating account, an administrator can create different profiles which are

used in distinct situations. When a ready-made profile is loaded, all configuration val-

ues will be loaded to the reader. There are two types of configuration: basic configura-

tion and advanced configuration. Basic configuration can be configured and used by all

users while advanced configuration is recommended to technical users who have

knowledge of the reader and radio transmission. [5]

For a basic configuration, the reader administrator can add and modify some neces-

sary typical reader values which are shown in the list box with an explanation. He/she

can manage his/her profiles through the “manage profile” mode in which the user

15

can add, remove, edit, and load ready-made profiles or restore the default. The “Set-

ting up Ethernet/LAN” mode, which includes an IPv4 address, a DNS server and

a domain name, is important in connecting between the application and the reader in a

local area network because the reader cannot be accessed with unsuitable values con-

figured in this mode. However, the Sirit infinity 510 offers an extra serial port which can

be directly connected by a serial cable from a PC to the reader in case the Ether-

net/LAN does not work. The user can use the default mode provided by Sirit or set up a

serial port configuration with specific values which are clearly explained in the note

form in the basic configuration. The serial connection can be set by using Putty soft-

ware or any software used for a serial, TCP/IP connection. After the connection is set,

the reader user can give commands through a CLI and he/she can fix the IPv4 problem

by modifying the Ethernet configuration information. Besides, the basic configuration

mode provides an antenna configuration which includes all the necessary values such

as conducted power, attenuation, cable loss, gain, gain units and mux sequence which

is for setting the antenna’s order in reading the signal. These values are set due to the

cable’s length and users’ purposes. Last but not least, the “set regulatory” mode,

which is used for setting up working regions and sub regions, is provided. All values of

this mode are initially set by Sirit; however, the user can change it when he/she de-

ploys the system in a specific geographic region. [5]

For an advanced configuration mode, the reader requires users who understand about

the reader and have knowledge of an RFID to set configuration values because of the

complexity of this mode. The “Firmware management” mode allows users to up-

date the reader firmware to the newest version, or rollback the reader firmware to the

previous version. A firmware version, which has unique value, is a string of numbers

defined by producer. However, when the reader manager does not store the previous

working version of the firmware, the reader cannot continue a rollback process. Unlike

the other modes, the “firmware management” mode does not have a reset button

because when different firmware versions are applied, the user interface will change.

Sirit always recommends users to use the newest firmware version which supports new

features and functions. Before updating the newest version, the previous working firm-

ware version is kept in a safe place in order to keep the reader working. In addition, the

Sirit 510 reader supports a “transfer file configuration” mode which allows

the reader manager to transfer the current working configuration file into a text file, a

XML file or load an existing configuration file with a XML or text format. The advanced

configuration mode provides a CLI which is used for sending commands and receiving

16

responses from the reader. Furthermore, the advanced configuration mode supports

the “expert configuration” mode comprising a “setup” sub-mode, a

“tag” sub-mode, a “version” sub-mode, an “information” sub-mode, a

“communication” sub-mode, an “antennas” sub-mode, a “digital IO”

sub-mode and a “modem” sub-mode. Every sub-mode of the “expert configura-

tion” mode is similar to the sub-mode of the basic configuration but it has more in-

formation and detail values for configuring. The user needs to understand every value

used in the “expert configuration” mode because different values of the read-

er’s variable give different results which may delimit some reader’s functions or stop

the reader working. The reader has the “user application management” mode

which the user can use to upload a Java or Python application written by the third par-

ty. In addition, the user can change the reader’s working mode by modifying the “op-

erating” mode which includes three different sub-modes such as an “autonomous”

mode, a “polled” mode, and a “standby” mode. However, in the newest firmware

version, Sirit updates some functions and the reader’s operating modes, so “autono-

mous” and “polled” modes are obsolete and replaced by an “active” mode which

is used for an asynchronous event in which the reader reads the tag information con-

tinuously and stores the tag data in the database, after that the reader reports automat-

ically. The user can register to the event or poll to the database or combine functions of

two modes in the “active” mode. The last mode which does not support the tag in-

formation reading, responding and reporting automatically is a “standby” mode in

which the reader does not send any signal or transmit any energy automatically. The

process of reading and responding is done by using commands. [5]

After setting up the reader with basic and advanced configurations, the user can use a

status mode to check the current stage of the reader, to view all tags in an area and to

view a log which is important feature for debugging. The view log helps debuggers see

what changes other users have done, so they can fix problems or jump back to some

previous working states. When using the reader, the user must consider the reader’s

database capacity because the reader’s database capacity stores a maximum of ten

thousand tags. The reader provides two methods including the method of reading and

reporting tag information immediately and the method of purging the content of the da-

tabase for solving the problem of the database capacity. [5]

17

2.4 Web user interface

In general, when a user uses a browser to access a website hosted by a server, a

website receives a request from the user and responds the necessary data to the user.

A website is created by combining many web pages including texts, images, audios,

and videos. A web page is a plain text document and is written following a hypertext

markup language (HTML) format. The web page must be hosted by a server that is a

physical hardware computer running many services in order to serve users’ needs.

When the web page is placed on the server, it can be connected through the Internet or

a private local area network (LAN) by request/response protocols such as a Hypertext

Transfer Protocol (HTTP), a Hypertext Transfer Protocol Secure (HTTPs). Basically,

the web includes the client side and the server side which can be placed in the same

system or in different systems depending on applications. At the client side, a browser

sends a request under the Uniform Resource Locator (URL) form to a server and waits

for a response. When the server receives the request, it analyzes the request URL and

sends the response back to the browser. If the server cannot understand the URL, it

sends some errors or warning messages to the browser. [6; 7]

HyperText Markup Language (HTML)

Hypertext markup language (HTML) is a main language for displaying web pages in a

web browser. The first HTML document was created by Berners-Lee in 1991. The

newest version of HTML is HTML 5 which has been popularly applied in many web

pages. A HTML form is simple with tags enclosed by angle bracket. HTML tags are

mostly represented with a pair of tags: the opening tag and the closing tag whilst some

unpaired tags which are known as empty elements. For example, one pair of HTML

tags for declaring a paragraph is “<p>” and “</p>”, while unpaired tag such as

“” is for inserting images to a HTML document. The HTML document allows

other programming languages embedded in such as PHP, JavaScript, and JSP. Fur-

thermore, HTML supports Cascading Style Sheets (CSS) which is a style sheet lan-

guage used for describing the look and formatting of a document. Three CSS styles are

inline, internal, and external. CSS is applied to many pages by adding an external CSS

file in the external style while in the inline style and in the internal style, CSS is used for

one single occurrence of an element and one single document respectively. The struc-

ture of a basic HTML page is described in figure 5. [8; 9]

18

Figure 5: Structure of one basic HTML file.

Figure 5 shows the basic structure of one basic HTML page starting with the

“<HTML>” tag and ending with the “</HTML>” tag. The <head> element is used for

containing all the head elements such as “<title>”, “<base>”, “<link>”,

“<meta>”, “<script>” and “<style>”. The “<title>” tag is used for pre-

senting the name of web page in browser. The “<body>” tag is for defining the body

of the web page which contains all contents of HTML document such as texts, hyper-

links, images, tables, lists. The “<p>” tag specifies a paragraph in the HTML docu-

ment. In addition, a HTML element can be provided some additional information

through attributes which are located in the opening tag and created by two parts: a

name and a value. The name and value of the attribute are separated by equal sign. A

HTML code “<p lang=”en-us”> this text is in English</p>” has the

attribute name: “lang” and the attribute value: “en-us”. [8; 9]

PHP: Hypertext Preprocessor

PHP, which is a server-side scripting allowing websites to be dynamic, was created by

Rasmus Lerdorf in 1994. PHP can be written in separated PHP files or embedded in

HTML files depending on the size of PHP code and programmers’ willingness. There

are more than 20 million websites and 1 million webservers using PHP because of its

advantages. PHP is an open source programming language so many groups and or-

ganizations are using, and developing it. As a consequence, many PHP websites are

built for discussing, researching about PHP. For instance, the PHP.net, a reliable and

popular website, created by a PHP group is often used as a guide for PHP program-

19

mers. In addition, it is easy and quick to build websites by using PHP. All PHP scripts

are interpreted by web servers with a PHP processor module; therefore basic PHP

scripts can be built without compilation. [10; 11]

Furthermore, PHP, which is an object oriented programming language supporting clas-

ses, functions, inheritances, abstract classes, and interfaces, provides the clear struc-

ture of the program, so the program creating, modifying and maintaining becomes eas-

ier. PHP has ability to work in many operating systems such as Linux, UNIX, and many

versions of Windows operation system, so a programmer can choose the best operat-

ing system to develop PHP depending on the familiar operating system, programming

tools installed and the production environment. Moreover, Model-View-Controller

(MVC) is supported by many PHP frameworks: Zend framework, Prado, CakePHP,

CodeIgniter and many other frameworks. [10; 11]

PHP scripts are located between “<?php” and “?>” and there is no limitation for a

number of “<?php” and “?>” in PHP files or HTML files, so the programmer can

implement necessarily PHP scripts anywhere in the website. There are two ways for

commenting in PHP. The first way uses “//” for a sentence comment. The second

way uses “/*” and “*/” for a paragraph comment. All comments are not interpreted

when the PHP script is executed. The basic PHP script is showed in listing 6.

<html>

 <body>

 ?php

 // a sentence comment

 /* a paragraph comment or a block comment*/

 $a = 0;

 echo $a;

 ?>

 </body>

</html>

Listing 6: The basic PHP script

Listing 6 represents the PHP script which starts with “<?php” and ends with “?>”.

PHP can be embedded in a HTML document, so in listing 4, the PHP code is located in

20

between “<body>” and “</body>” tags for displaying the web page content. A PHP

variable starts with “$” character and supports many programming language types

such as “string”, “int”, ”double”, “float”. The “Echo $a;” method is

used for printing the value of the variable “a” on the screen. Semicolon “;” in the

PHP script is used for ending one PHP statement.

Apache HTTP Server

Apache acts as a web server with the main function to parse any file which is request-

ed by browsers for displaying correct results. An Apache server has many features

such as an UNIX threading, a new build system, a multiprotocol support, a new apache

API, an IPv6 support, a filtering, multi-language error responses, a simplified configura-

tion, a native Windows NT Unicode support. In addition, Apache features include regu-

lar expression libraries updated, password-protected pages for a multitude of users,

asynchronous supports, overriding configurations, a name virtual host directive, re-

duced memory usage. Apache is free, flexible and quite powerful, so many students

and teachers in many technical schools and universities such as the HCM National

University, the Helsinki Metropolia University of Applied Sciences used Apache servers

for studying and teaching. According to Netcraft website, Apache servers have been

running over 27 million the Internet servers. [10; 12; 13]

MySQL

MySQL is an open-source relational database management system allowing PHP and

Apache to work together to access the correct data in the readable format. MySQL is

popular because it has many features such as multi-layered designs with independent

modules, very fast thread-based memory allocation system supports, many data types

supporting, and many others. [13; 14]

MySQL can be interacted though commands which are “CREATE”, “INSERT”, “UP-

DATE”, ”DELETE”, “ALTER”. The “CREATE” command is used when a database user

wants to create new databases, new tables. In order to insert values for tables, the

“INSERT” command must be used. The “UPDATE” command is used for updating new

data for the database. When a user does not need any table, any database, he/she can

delete them by the “DELETE” command. The “ALTER” command is used in case a

21

user wants to change tables such as replacing columns or modifying names. A user

can use other commands for selecting the data existing in the database. The “SE-

LECT” command is always used for selecting the data. However, it is hard to select the

desired data with only the “SELECT” command because the data may be large, com-

plicated. Therefore, other functions and commands such as group clauses, group func-

tions and conditional clauses are introduced to support the “SELECT” command in se-

lecting the correct and necessary data. Group clauses include “GROUP BY”, “ORDER

BY”, group functions consist of ”COUNT()”, “AVG()”, “SUM()”, ”MAX()”, “MIN()”,

”GROUP CONCAT()” while conditional clauses comprise of “WHERE”. Besides, many

other commands and functions are supported in MySQL with the purpose of helping

users in manipulating the data in the database. All commands for MySQL are intro-

duced in mysql.com website with full explanations and examples. [14]

In managing data, a security plays an important role, so MySQL supports a privilege

and password system to guarantee the security. Furthermore, passwords are encrypt-

ed when users connect to a server. Administration in MySQL is managable because

MySQL offers the command line program and the graphical user interface. The com-

mand line program supports “mysqladmin” and “mysqldump” commands. The

“mysqladmin” command is applied for checking the server configuration and current

status. The “mysqldump” command is used for backing up the database while the

“mysqlcheck” command is used for maintaining the database. [13; 14]

JavaScript

JavaScript is a programming language used in the client side and embedded in a

HTML document. In order to use JavaScript in the HTML document, the JavaScript

code must be located between the “<SCRIPT>” tag and the “</SCRIPT>” tag. The

example of the JavaScript code is shown in listing 7.

22

<html>

 <head>

 <title>hello world!</title>

 <script language="JavaScript">

 // This is a comment

 function show_alert(){

 alert(“this is JavaScript”);

 }

 </script>

 </head>

</html>

Listing 7: JavaScript in the HTML document

Listing 7 shows that JavaScript is embedded in the HTML document between the

“<head>” tag and the “</head>” tag. The JavaScript code starts with the

“<script>” tag and ends with the “</script>” tag. JavaScript has a single line

comment and a block comment. The single line comment needs “//” at the beginning

of the line while the block comment needs to have “/*” at beginning and “*/” at the

ending.

The main function of JavaScript is to make websites become interactive. Therefore,

programmers can use JavaScript to validate the data, respond directly to users, control

multiple frames navigation and carry out many other activities on browsers. JavaScript

does not have any class, although JavaScript is object oriented programming lan-

guage. Due to lacking of the class, objects can be inherited from each other or from the

object prototype chain. JavaScript has some ready-made objects; however, program-

mers can create or delete their own objects. JavaScript is an interpreted language that

can be executed and interpreted by browsers without any preliminary compilation or

conversion. However, it is possible to interpret or compile the script by using the just-in-

time (JIT) complier depending on browser’s decision. With the JIT method, JavaScript

will be run faster. JavaScript and JavaScript JIT compilers are supported by almost all

browsers. [15; 16]

23

3 Design of the application

Designing, which is a process of planning a software solution, is very important for

building the final application. A software design, which is unapparent to users, is often

presented in the form of UML diagrams. Depending on scales of projects and ways of

building projects, a number of diagrams and types of diagrams can be different. In this

project, functions and system activities of the fridge are very important, so “use case”

diagrams and “activity” diagrams were created.

3.1 Use case diagrams

A use case diagram describes interaction between actors and the system. An actor

carries out actions to the system, and in the meanwhile several actors can do one

action simultaneously. Each action is described in one “use case” diagram. In the

project, six “use case” diagrams were built, and accordingly the smart fridge has six

main functions which users can use. The six diagrams are described in figures 8-13.

24

Figure 8: A use case adding a new product to the fridge.

Figure 8 demonstrates the working process of adding a new product to the fridge and

its relationship with users and a maintenance man. Firstly, when a user brings a prod-

uct close to the first antenna read-range, the product id is stored in the database. After

that, if the product is put inside the fridge, the second antenna attached to the fridge

reads and stores the product id into the other database. The maintenance man needs

to be ready to fix the system when the database, or the antenna, or the reader is not

working.

25

Figure 9: A use case taking the product away

Figure 9 presents the process of taking one product out of the fridge. When the product

is taken away, the database updates the information such as deleting product id in the

database or changing status: inside or outside the fridge. Finally, the screen is updated

with the new information. The maintenance should be done regularly to fix all system

problems.

26

Figure 10: Use case editing the product

Figure 10 shows the process of editing the product. At first, a user needs to choose

one product id on the screen. The user can add, edit the information or delete the

product data. The updated information of the product will be shown by notifications on

the screen.

27

Figure 11: Use case adding favourite food

Figure 11 presents the process of adding favourite food to the system. Firstly, a user

activates the adding favourite food process by using the “add favourite food”

button in the main view. After that, he/she submits the information including unit, name,

and quantity of food into the database. The updated data will be shown on the screen.

28

Figure 12: Use case adding the favourite dish

Figure 12 represents the process of adding the favourite dish to the system. A user

chooses the “add favourite dish” button to activate the process of adding the

favourite dish. The information of the dish such as “name”, “meat”, “seafood”,

“vegetable”, “spices”, and “extra ingredients” can be added through

boxes. If a specific dish does not have meat or vegetable, these boxes can be empty.

Besides, the user can upload images for the dish into the database. If the user does

29

not like recommended recipes, he/she can use the “searching other recipe”

button which opens a new tab in a browser and shows information about other recipes

which are retrieved from other cooking websites with thousands of dishes and recipes.

Figure 13: Use case purging the database information

Figure 13 demonstrates the process of clearing the database information in the system.

The different information is deleted depending on which button is activated. A user can

use the button to clear the information of favourite food, the favourite dish, and the

missing ingredients. Moreover, when the user uses all purging buttons, he/she clears

all the database information. Consequently, the system begins at the initial stage when

the next using time.

30

3.2 Activity diagrams

An “Activity” diagram, which is a graphical representation for describing the sys-

tem activities, interacts with actions, iteration and concurrency. When users have done

some actions to the system, the system will carry out some internal processes. In the

project, five activity diagrams, represented in figures 14-18, were built.

Figure 14: Adding a new product activity diagram

Figure 14 displays the activity of the system when adding a new product. Firstly, when

the new product is put near the first antenna, its information will be added to the system

database. After that, the product id will be shown on the screen. Two situations includ-

31

ing “product inside the fridge” and “product outside the fridge”

occur. If the product is still placed near the first antenna and located outside the fridge,

the system automatically opens the “option” page where the system can receive the

updated data from a user. If the product is put inside the fridge, the product id is stored

in the second database. After that, the system will update the first database in which

the status of the product is changed such as “inside the fridge”, “outside

the fridge”.

Figure 15: Taking a product away activity diagram

Figure 15 demonstrates the process of taking a product away. When a user takes a

product out of the fridge, the system will open the “option” page comprising four

32

options such as “remove product”, “take product”, “open product”, and

“update product”. When the system receives the data chosen by the user from

options, the system decides which direction it must carry on depending on the submit-

ted data. If the user chooses the “remove product” option, the system will delete

the product data in the database. If the user decides the “take product” option,

the system just changes the status of the product from “inside the fridge” into

“outside the fridge”. If the user determines to open the product, the system will

set the status of the product to be opened and records the opened date of the product.

If the user chooses the “update product” option, the system will open the “edit”

page. Finally, the system updates the screen.

Figure 16: Editing a product activity diagram

33

Figure 16 represents activities of the system when editing a product. First of all, the

system receives the data (“tag_id”) submitted by a user. Based on the product id,

the system can load the “edit” page with the product information. Next, the system

receives the updated information taken from the “editing” interface. Depending on

the content of the updated information, the system decides to delete or edit the product

information. Finally, the system updates the information on the screen.

Figure 17: Purging database activity diagram.

Figure 17 displays activities when purging databases information. When the first an-

tenna reads the product id, it stores the product information. After that, if the product is

put inside the fridge, the product information is stored in the second database. When

the favourite dish is added, its information is stored in the “favourite dish” data-

base. Therefore, when receiving the submitted data from the user, the system decides

which database is used and emptied. Finally, the system updates the new information

on the screen.

34

Figure 18: Adding a favourite item activity diagram

Figure 18 shows activities in the system when adding favourite food or adding a favour-

ite dish. When the system receives the submitted information from a user, it decides

which page should be opened. After that, the system will get the new data submitted by

the user in the corresponding interface and it updates the database and shows the data

on the screen.

35

4 Implementation of a smart fridge

The smart fridge was built with many stages including setting up and testing physical

connections, creating the RFID reader profile, software designing, setting up the soft-

ware, constructing the final end user application for connecting between physical com-

ponents and the software, testing and debugging, and setting up the whole system in

the RFID lab show room. All stages in the system were important and constructed step

by step because some stages could not be continuously built and tested if the previous

stage did not work.

4.1 Setting up and testing the physical connection

The smart fridge system worked based on “tag_id” which was read at antennas and

later sent to the reader and the computer; therefore, the connection between the Sirit

510 reader with antennas and the computer played an important role in the system. If

the connection was successful, the computer could get the tag information used for

recording a new product. Setting up this connection was a challenge because the Sirit

510 reader is only used in industries or in large companies. Connections between the

reader and two antennas, the reader and the computer were described in figure 3 in

section 2.3.

 After the hardware was connected, it had to be tested by using the Putty application to

open the channel and apply some commands for reading the tag information and re-

ceiving the tag information. Two ways for testing the connection between the computer

and the reader were a LAN connection and a serial connection.

Serial connection

 At first, the reader was tested by using a serial connection because it was more con-

venient and easier to set up. If reader is tested by using a LAN connection, the IPv4

address of the reader must be known in advance. The information needed for the serial

connection was serial line, speed (baud rate), data bits, stop bits, parity, and flow con-

trol. The project used “COM 1”, “115200” in speed, “8” in data bits, “1” in stop

bits, “none” in parity and “none” in flow control. These values were taken from the

36

Sirit 510 reader manual. The Putty interface used for the serial connection is shown in

figure 19.

Figure 19: Setting up the serial connection in Putty

As can be seen in figure 19, the necessary data was filled in the Putty. When opening

the connection, one new interface which was used for setting commands was shown.

The easiest way for testing the reader was using “?” in the help mode. If the reader

responded with some instructions such as texts in figure 20, it meant that the reader

was working.

37

Figure 20: Reponses from the help mode of the reader

The next step was testing the connection between the reader and antennas by sending

“tag_read_id()” command which was unable to work if there was no RFID tag near

antennas. When the reader responded with texts shown in figure 21, it demonstrated

that antennas worked.

Figure 21: Responses from the reader when sending command “tag_read_id()”

The “Tag_id” shown in figure 21, was unique. It was easy to check an IPv4 address of

the reader by using the “com.network.1.ip_address” command. If the reader re-

38

sponded with string “ok” and an IP address, it meant that reader was able to work with

a LAN connection. In figure 22, the reader IP address is “192.168.0.192”.

Figure 22: Reader’s responses from sending “com.network.1.ip_address”

Figure 22 shows the IP address of the reader and other information of the reader such

as a firmware, an event, and a view log. In order to see details of the firmware, the

event and the view log, sets of firmware, event and view log commands had to be

used.

TCP/IP connection

Another way to connect the reader with the computer was using an IPv4 address in

case the serial connect could not work. Disadvantage of the LAN connection was that

the IPv4 address and ports must be known in advance; however, this drawback could

be solved by using the third party software such as the advance IP scanner which is

free, easy-to-use and harmless to the computer. The scanner software could be used

by using the “scan” button to scan all equipment working in the same LAN with the

computer of the user. After scanning, the software returned an IPv4 address, a MAC

address and other information relating to a LAN. Through the reader MAC address, the

reader IPv4 address, which was used for the TCP/IP connection, was recognized.

When the TCP/IP connection was successful, one command line interface, shown in

figure 23, opened.

39

Figure 23: Connection to reader through an IPv4 address

Figure 23 shows that the connection between the reader and the computer was set up

successfully. The reader gave “cliuser”, a default username, which has the same

privilege as a guess user. In order to manage the reader, the user needs to use com-

mand to change a guess account into an admin account because all configuration val-

ues are unchangeable under a guess account. The process of checking “tag_id”

could be carried out in the same way as the process of checking “tag_id” in the seri-

al connection.

4.2 Creating a reader profile

Creating a reader profile was important because it stored the reader’s configuration

values. Depending on user’s purposes, profiles can have the same or different configu-

ration values. Two methods of creating the profile are using the firmware interface and

using CLI commands requiring knowledge of the reader’s commands. The reader uses

a profile name convention; therefore, when creating a new profile, a user needs to fol-

low the instruction of the reader in the Sirit reference guide showing that the name pro-

file must consist of a character “A-Z”, ”a-z”, ”0-9”, ”-” or “_”. Commands for creating and

checking the current active profile are “read-

er.profile.save(name_of_profile)” and “reader.profile.active” re-

spectively. By using the firmware interface, the user chooses “manage profile” in

the basic configuration in order to create a new profile, which is shown in figure 24.

40

Figure 24: Creating a new profile by using the web interface

Figure 24 shows the reader interface used to create a new profile. Furthermore, the

reader allows users to delete the current active profile and restore the factory profile by

sending commands in the CLI or using the firmware interface. Although the reader

stores many profiles, only one profile, which can be activated by using the “activate”

button in the firmware interface or using the “reader.profile.save” command in

the CLI, is used at a specific time.

In the project, the profile “tw” having all suitable configuration values was created

by using the firmware interface. Antennas, protocols and a communication were set up

for verifying that the connection was successful and the “tag_id” could be read; so

all values for these fields were identical to default values. Later, the configuration val-

ues of antennas, protocols and a communication were edited for harmonizing with the

final application when the project was shown at the RFID lab show rom.

4.3 Software design

Software design, which is usually represented by UML diagrams, was the important

stage in constructing the smart fridge system. Based on UML diagrams, the final appli-

cation was constructed more easily. All diagrams were created by the Astah profes-

41

sional tool, which is a commercial product providing many useful features, such as

easy-to-use, friendly user interface, and many programming languages, and system

compatibility. “use case” diagrams defining functionalities which a user can manipu-

late when he/she uses the system were firstly created. Main components in the “use

case” diagram are actors with direct interactions to the system, actions which actors

do and the system. One user can do many actions to the system and one action could

be done by many users. Six “use case” diagrams including “adding product

use case”, “taking away product use case”, “editing product use

case”, “purging database use case”, “adding favourite food use

case”, and “adding favourite dishes use case”, were created in the pro-

ject. All details of specific cases were described in section 3.1. After finishing “use

case” diagrams, activity diagrams describing activities which the system reacts to

when a user acts one specific action must be created. The activity diagram includes the

starting activity, actions and the ending activity. Five activity diagrams comprising

“adding product activity”, “taking away activity”, “editing ac-

tivity”, “adding favourite food and dish activity” and “purging

database activity” were constructed. All details of these activity diagrams were

explained in section 3.2.

4.4 Software preparation

The smart fridge project used the PHP programming language and MySQL for the final

application so Eclipse and Xampp were installed in C drive. Eclipse, which is open-

source software, helps programmers construct applications more easily by providing a

ready-made platform comprised of a framework, tools, runtime for building and deploy-

ing. In the project, the Eclipse portable version, which supports the PHP programing

language, was used for simplifying the project complexity. In order to change some

values of Xampp configuration, the “http.conf” file, which was located at

“C:\xampp\apache\conf”, had to be edited. In the “http.conf” file, the line

starting with “DocumentRoot” had to be modified as “DocumentRoot

"C:/Documents and Settings/RFIDLAB/My Documents/workspace"”

showing the workspace location which Eclipse used as the main workspace to store

the whole project. Apache in Xampp was tested by using a Firefox browser with “lo-

calhost” string in the URL and “index.html” created in the workspace to ensure

the successful configuring. Server services including the Apache service had to be ac-

42

tivated. Two ways of turning on server services include using the Xampp control panel

and using commands in the CLI. In the project, the “Start apache_start” com-

mand was applied in the CLI. If the browser responded with the content written in the

“index” file, the Apache and the workspace were ready to use. Otherwise, all steps

of the Apache configuring must be carried out again. In order to make the final applica-

tion interface more flexible, JQuery, which is a ready-made and free JavaScript library,

was used. The JQuery library could be downloaded from the official JQuery website

and directly added to the project in the workspace. The project could not work without

the database because of its importance and useful features. The database, which is

MySQL server, is included in Xampp by default, so the database could be directly used

without the consideration of configuring. MySQL services could be turned on by using

the Xampp control panel or using the “Start mysql_start” command in the CLI.

After the database “rfid” was created by the “CREATE DATABASE rfid” com-

mand, the “SHOWS DATABASES” command was used to test an existence of the

“rfid” database. The “rfid” database was shown on the screen if all commands

were successful. Many tables including “add_new_product”, “favour-

ite_food”, “rfid_store” were created by the “CREATE TABLE” command in

the database in order to store the project data. [17]

4.5 End-user application

The final application written in HTML, PHP, MySQL, CSS and JavaScript was one of

the most important stages in constructing the smart fridge because the end-user appli-

cation was shown in the web interface which a user could use directly to interact with

the system. In the end-user application, many files, which had different functions, were

created.

4.5.1 Building a PHP file for connecting a PC with a reader

Firstly, connecting the computer with the RFID reader through the TCP/IP connection

was established by using PHP socket commands: “$socket = sock-

et_create(AF_INET, SOCK_STREAM, SOL_TCP)”, “sock-

et_connect($socket, $destination_ip,$destination_port)”. The

“$socket = socket_create(AF_INET, SOCK_STREAM, SOL_TCP)” command

including three parameters such as “AF_INET” for the IPv4 Internet, “SOCK_STREAM”

43

for the socket type, and “SOL_TCP” for the TCP protocol which provided full-duplex,

reliable, connection-based byte streams was used to create and return socket re-

sources. The “socket_connect($socket, $destina-

tion_ip,$destination_port)”command was used for socket connecting. When

connecting successfully, other commands, which are shown in figure 25, were used for

logging in and getting data from the socket.

Figure 25: Sending commands to reader by PHP

Figure 25 represents commands which were taken from the RFID manual and were

applied in the “main.php” file for retrieving data from the socket. The “sock-

et_read” command including the socket and the connection port was used for re-

ceiving responses from the reader.

4.5.2 Running the file as script in the background

The reader responded to a user immediately when the user did some actions in the

application; therefore, the “main.php” file for getting “tag_id” at antennas and

updating the database had to be run as script in the background. Two ways of running

files as script in background include using the PHP “exec” command or using the

“cmd.exe” in Windows to run the file. However, the “cmd.exe” command was used

because the main web page running infinity loop would be automatically refreshed for

updating the newest information. If the PHP “exec” command had been used in main

web page file, the “exec” command would have recalled. As a consequence, anten-

nas would stop for some seconds due to refreshing time delay. The “C:\"Program

Files"\PHP\php.exe -f "C:\Documents and Settings\RFIDLAB\My Doc-

uments\workspace\Rfid_Reader\main.php" > "C:\Documents and Set-

44

tings\RFIDLAB\Desktop\test.txt"” command includes three parts: the location

of the PHP executable file, the location of the file run in the background, and the output

file for testing. It was used to run the “main.php” file which combined two main steps.

4.5.3 Building the user interface of the smart fridge

The user interface of the smart fridge was shown with two frames including the left

frame for showing all products information, favourite food, dishes, and the shopping list,

and the right frame for editing products by using the “<FRAME src="

frame1.php">” tag ,the “<FRAME src=" frame2.php">” tag and the

“<FRAMESET cols="50%,50%">” tag. The system main view is shown in figure 26.

45

Figure 26: The system main view

Figure 26 describes the system main view including two frames: the left frame and the

right frame. The left frame is used for showing the product information, and functions of

the fridge. When a function in the left frame is activated, the system will make a pro-

cess to call other pages corresponding with the function. As a consequence, the right

frame is updated with corresponding pages.

46

Figure 27: Overall view of the fridge.

Figure 27 represents the left frame with the product id, the product name, the shopping

list and the current time which was built in the “time.php” file including the

“date_default_timezone_set(„Europe/Helsinki‟)” function for setting the

Helsinki time zone and the “getdate()” function for returning an array storing the

current time. The part of the “time.php” file is shown in listing 28.

47

<?php

 date_default_timezone_set('Europe/Helsinki');

echo "<div align='center'>

<h2> Welcome to smart fridge \n </h2>";

 echo '
';

 $today=getdate();

 echo $today['weekday'].",

".$today['hours'].':'.$today['minutes'].' '

 .' ,

'.$today['mday'].'.'.$today['month'].'.'.$today['year']

;

 echo '</div>';

?>

Listing 28: PHP code in the “time.php” file

Listing 28 shows the method of setting the time zone and retrieving the current time

including current minute, hour, day, month, and year. The “time.php” file was added

to the frame by the “include(„time.php‟)” method.

The “Food list recommendation” table and the “food needed to buy” list

have “show/hide” buttons, which were used for showing or hiding the content of the

“food list recommendation” table and the “food needed to buy” list when

buttons were activated. Buttons operation-handled system was built by the JavaScript

function described in listing 29.

<script type="text/javascript">

 function show_hide(id) {

 var v = document.getElementById(id);

 if(v.style.display == 'block')

 v.style.display = 'none';

 else

 v.style.display = 'block';

 }

</script>

Listing 29: The “Show_hide” function in JavaScript

48

Listing 29 represents how the “show_hide” function was written in JavaScript. The

button function included an invisible mode and a visible mode. The “Food list

recommendation” table had buttons for adding the missing products to the “food

needed to buy” list. When the button was used, the smart system added necessary

products by updating the database with the parameter “updating values prod-

uct_name from table rfid_store” inside the MySQL function. The “Prod-

uct_name” value and the “rfid_store” table can be changed by other values and

tables due to specific situations.

All buttons in the bottom of the page described in figure 27 were used for purging the

database information by using the “deleting from table” parameter inside the

“mysql_query()” function. Depending on user’s purpose, a specific button could be

used. When a user uses all buttons, the whole system is restarted.

In the project, the tooltip feature, which was built by the JavaScript tooltip library, was

added. When the user puts mouse on the product name, all information of the product

such as “tag_id”, ”product‟s name”, “expiration date” will be shown in

the tooltip.

The right frame was used for showing the “editing” form, the “adding” form, or

the “option” form. A specific form was loaded depending on which function was acti-

vated. The frame is shown in figure 30.

49

Figure 30: The right frame of the screen

Figure 30 shows the right frame which is opened when a user uses the “add fa-

vourite food” button, the “add favourite dishes” button. The top of figure

50

30 shows the “edit” form and some buttons which the user can use to add and up-

date data in the database. The “edit” form is described in listing 31.

<form action='<?php $_SERVER['PHP_SELF']?>' meth-

od='post'>

 <input type='text' name='num' id='num' />

<input type='submit' name='submit_num' val-

ue='submit' id='submit_num' />

</form>

Listing 31: A form in PHP

Listing 31 shows how to build one PHP form. The form has “action” parameter de-

fining the address of the page which the form uses to submit data to. In this case, the

action was set with the “$_SERVER['PHP_SELF']” PHP’s global variable which

would submit the information from the form to the same page. In figure 30, the button

“now” and the small calendar icon are used to add date to the form. When the user

clicks the icon between a date string “12 September 2012” and the button “now”,

one calendar table is shown on the screen. The user can choose a specific date from

the calendar table. The calendar was built in the PHP language and stored in the cal-

endar library containing the calendar class, images and CSS. In the project, the calen-

dar library written by “TJ @triconsole” was used and modified for being suitable with

the project. The bottom of figure 30 shows other form which is used for adding a num-

ber of favourite foods shown. For example, when a user needs to add three favourite

foods, he/she submits the “please add number of favourite food” form with

number three filled in. As a consequence, the form shown in figure 32 extends with

other fields.

51

Figure 32: The favourite food form

In figure 32, three different types of food are shown in the form. A user could choose

values from boxes or type by him/herself. All added information was updated by using

the “mysql_query()” function with the “updating” parameter.

If the user drags mouse to a specific product in the “food list recommend”, the

product data is shown in the tooltip. If he/she clicks a specific dish, the right frame of

the screen is opened with recipes of the dish. Figure 33, which shows the page in the

right frame, is an example when the user chooses Lincolnshire sausage in the “food

list recommendation” table in the left frame.

52

Figure 33: A recipe of a dish

Figure 33 shows a recipe of Lincolnshire sausage. Recipes are different depending on

which dish a user wants to choose. Besides, there was one “search for other

recipes and directions” button for searching other recipes for the same dish.

If the user clicks the “Search for other recipes and directions” button,

the system will load the other page from the other cooking site which has hundreds of

recipes for making dishes. Besides, the right frame can load the “checkTag.php” file

which has a form including four options: “open product”, “remove”, “up-

53

date”, “item waiting” when a product comes to antennas. These options, which

were built in PHP and MySQL in order to update the status of the product, are shown in

listing 34.

<form>

<input type="radio" name="choose" val-

ue="open product" /> open product

<input type="radio" name="choose" val-

ue="remove" /> remove

<input type="radio" name="choose" val-

ue="update" /> update

<input type="radio" name="choose" val-

ue="item waiting" /> item waiting

</form>

Listing 34: A option form in PHP

Listing 34 describes a radio form in PHP. The function “mysql_query()” with differ-

ent parameters such as “update”, “delete” was used for updating new data. Next,

CSS, which helps programmer in adding, for example, colors, dimensions, fonts, load-

ing image, and modifying visibility, was created and added. All templates, fonts, imag-

es, ideas provided by RFID Lab Finland were added to CSS.

4.6 Testing and locating the system

Testing and debugging were carried out in order to ensure that the system could work

in a stable way. Every stage of the system was tested after constructing; however,

when combining all stages together, some errors might occur. Firstly, all data in the

database had to be purged by activating purging data buttons which were mentioned in

section 4.5.3. One example product had to be used at the antenna which was located

far away from the fridge for ensuring that the system could read the data from the new

product. If the product information was immediately shown at the user interface, the

reader and its antenna worked in real time. Next, the product had to be put inside the

fridge in order to test the antenna which was attached to the fridge. After that, the

product inside the fridge was taken out to the antenna for checking the

“checkTag.php” page, antennas and the database. All buttons had to be used and

54

all forms had to be filled and submitted for testing. After testing, the antenna configura-

tion had to be modified. In the project, all calculations were done by a specialist of

Electrica OY because the smart fridge project had to be in harmony with other projects

which used the same RFID technology.

Finally, the process of setting the system location in the RFID lab show room was car-

ried out. The project needed two antennas: one antenna had to be attached to the

fridge and the other antenna had to be located about two to three meters far from the

fridge. The screen, which is a monitor or a touchscreen, was located near the fridge. A

location of the reader and its antennas can be changed due to user’s wishes.

5 Results and discussion

5.1 Problems and solutions

The smart fridge project was built during five months with many difficulties. In some

stages, the project did not run smoothly. The project was about to be eliminated due to

the long working hours spent for the project and its difficulties. However, the project

was successfully finished with the help of some professionals from RFID lab Finland

and Electria OY. Finally, the project fulfilled all the requirements from RFID lab Finland

and the project has been on show in the RFID lab show room.

First of all, exploring the reader firmware was challenging. In the project, the reader

used the obsolete firmware version, so all information written in the Sirit Infinity 510

reader guide was unsuitable. The interface shown in the guide was different from one

shown in the computer when the reader firmware was accessed in a browser. Upgrad-

ing the firmware was carried out for solving the problem. However, after upgrading, the

project still had some unexpected issues among the reader, its firmware and manual.

Although the firmware and the manual were got from Sirit, the reader could not support

some operation modes and commands in the manual. The idea of replacing another

reader was considered but it was difficult to purchase a new RFID reader and its an-

tennas. Therefore, the project was tested again with other antennas and new comput-

ers. After testing, it was found that a reason causing problems was compatibility be-

tween the reader and its firmware. For example, the “autonomous” mode and the

“polled” mode were supported, while the “active” mode which combined the

“polled” mode and “standby” mode could not be applied to the reader.

55

It was easy to let antennas to work generally; nonetheless, it was a challenge to force

antennas to work in specific situations because the configuration of antennas depends

on conducted power, attenuation, cable loss, gain, gain units, and computed conducted

power. Many mathematic combinations were calculated to figure out the frequency of

antennas; however the project did not work smoothly because all formula used in cal-

culations still had some small errors. In order to solve this problem, the project was

tested with different values; as the result, the suitable configuration values were found.

The project was later put into a server; however, it was firstly built as a demo, so

Xampp was used. In order to use Apache in Xampp, some configuration values in the

“http.conf” file had to be modified. For example, some configuration values in the

“DocumentRoot” line in the “http.conf” file had to be modified. The line “Docu-

mentRoot” is used to specify the workspace location. Apache has many configura-

tion features such as security, and a virtual host which can be modified due to the us-

er’s purposes. However, the project just used the Apache server without any security

concerns because the project was a demo located in the RFID lab show room. Later,

when the application is uploaded into a server for online using, security issues will be

considered. All problems with Apache in Xampp might be disappear but replaced with

other problems happening in the server. Another difficulty when dealing with the

Apache server was error reporting. Apache offers the error and warning reporting,

which is useful for checking errors but in some cases, it is annoying. In the project, the

error and warning reporting was set in the default mode; therefore, the reporting was

always unintentionally shown on the main screen. This issue was solved by modifying

the Apache configuration file or by applying some PHP commands. The method of us-

ing the PHP “ini_set(„display_errors‟,1)” command was used for solving

the error reporting issue.

The system reacted in real time; so every time when some actions were carried out,

the web page had to be reloaded for updating the new information. As a consequence,

users had to wait until the whole page was loaded. In order to solve the problem of the

loading time, the method of running the file in the background was used. Running the

file in the background was mentioned in section 4.5.2.

When building the end-user application, some difficulties occurred because the applica-

tion was complicated and written from many programming languages. First of all, there

56

were differences in the time format between PHP and MySQL. In the project, the data

was created by PHP and stored in MySQL; however, when the data was called from

MySQL, it showed some strange characters. In order to solve this problem, converting

methods were created. The “$mysqldate = date('Y-m-d', $phpdate)”

method was used to convert dates from PHP to MySQL and the “$phpdate =

strtotime($mysqldate)” method was for converting dates from MySQL to PHP.

After that, the “mysql_query(“$sql_command”)” function had to be considered

because this function returned resources of the database. For getting the data from

resources, the function “mysql_fetch_array()” had be used in the PHP “while”

loop .

The smart fridge had to be updated immediately when a new tag was coming, which

caused some difficulties. At first, the “<meta http-equiv='refresh' con-

tent='1; url=http://localhost/Rfid_Reader/edit_open.php'>” tag was

used for refreshing the main page in one second or redirecting to other pages in the

project. The “<meta>” tag includes a character set for HTML, time in second for acti-

vating the command and the full URL. In the project, the “<meta>” tag worked but in

some cases, it deactivated some JavaScript functions; therefore, the project main view

was built in another way to solve the problem. The method of using two frames on the

screen was constructed for making the application interface become user-friendly and

dynamic. The way of creating two frames was described in session 4.5.3.

The project used many free and available libraries such as the tooltip library written in

JavaScript and the calendar library written in PHP, so some difficulties occurred when

applying these libraries to the project. As a result, some ready-made functions built in

these libraries could not run smoothly. In order to solve this problem, some new func-

tions were written and some ready-made functions were modified.

All problems were solved; as a consequence, all functions of the smart fridge, which

were designed in advance, were successfully constructed. The smart fridge has been

on show in the RFID lab show room which has about a thousand customers every

year. The project was successful but many new functions of the fridge will still have to

be studied in order to improve the project.

57

5.2 Benefits

Nowadays, many applications based on the RFID technology are used in industry, in

public places or in many companies, so the RFID system used at home in daily life is

unusual. However, when the project is published, it will prove that the concept of the

RFID technology can be applied anywhere. Besides, the project will also prove that the

RFID antenna is able to work in tough conditions such as the antenna attached to the

fridge worked in the stable way at +10 C.

In the project, the RFID reader and antennas have been continuously used for five

months without stopping, so it shows that the RFID reader and its antennas have good

quality and stability. In reality, many companies in logistics industry use the RFID tech-

nology in their products, services 24 hours per day and 7 days per week. For example,

the RFID technology is applied in key system in schools and universities in Finland.

Each student has his/her own RFID key which is used for checking the authorization at

every door. With the authorized privilege, the user can use his/her key to access to any

room anytime. This service is run in 24 hours a day and 7 days a week.

The smart fridge is a multi-functional, easy-to-use and modern system which improves

the quality of life and helps users in saving time. The smart fridge’s recommendation

dish function is an example of helping users save time in thinking and buying products

as well as finding suitable recipes for their daily meals. Furthermore, the system pro-

tects users’ health by informing expired products which are unhealthy. Besides, the

system provides the adding favourite food function which helps users ensure that all

necessary products are ready in the fridge.

Besides, the system is very flexible because users can choose different readers and

antennas as long as they are compatible. Although each of them has different features,

they still provide basic functions such as reading “tag_id”, or storing “tag_id” in

the database. Furthermore, users can combine the RFID reader and antennas with any

fridge because the system and the fridge can work independently.

58

5.3 Drawbacks

Although the system was successfully built, it still had some drawbacks. Firstly, the

system itself is complicated system combining many technologies; therefore, special-

ists or users with the knowledge of the RFID reader and its antennas had to configure

the system as well as fix problems of the system.

Besides, nowadays, passive RFID readers and antennas are mainly produced for in-

dustry and organizations, so prices of readers and antennas are expensive. For exam-

ple, the RFID reader and antennas used in the project have the price of 4000 euros.

5.4 Further development

In the near future, when the project is published successfully, many companies might

produce a smart fridge system. As a consequence, the system price will probably be

competitive and many services will be offered to buyers who will hopefully be eager to

possess one smart fridge system at home with the reasonable price.

The project was built as a demo for the RFID lab show room, so it used the database

installed in host machine. It is possible to upload the project into a server which users

can access through the Internet, so they can use the project and see products inside

the fridge everywhere. Besides, users can use their mobile phones with the Internet

connection to connect to the project, which is helpful in buying favourite products and

ingredients which are needed for daily meals.

When the project is uploaded into the server, the system security could be improved by

checking the user authority and categorizing groups of users. Only users with the au-

thorized privilege can access the system and possess their favourite food. Further-

more, the system can use the server database for recording a history of activities,

which will allow users to see who used the system at a specific time and what activities

happened.

Checking the food calories function, which is helpful in controlling the calories of a

meal, can be added to the system. Users could use this feature to categorize some

specific food for each member of family depending on users’ wants and their physics.

For example, following doctor’s instructions, a specific person might need to consume

59

1800 kcal per day for his/her special training. He/she could create a food list and add to

the system which would calculate and return the number of total calories. Every time

when he/she uses a product, the system will show how much calories he used and how

much is left.

When the system is produced industrially, the current system reader and antennas

could be replaced by other readers and antennas for reducing the system cost. Fur-

thermore, the project could be combined with the smart phone technology. Some appli-

cations used in smart phones could access the system, so the user can use the system

everywhere.

60

6 Conclusion

The main goal of the project was to build a smart fridge using the RFID technology.

The project demonstrated the usefulness of the system in daily life. Users could pos-

sess a modern, smart system at home and they could easily use the system without

understanding how the technologies built in the system work.

Applying the RFID technology everywhere in society is not impossible due to the suc-

cess of the system. The project proved that the concept and idea of constructing a

smart system combining the RFID technology and the web technology are practical.

The RFID technology may be not only applied to the smart fridge but also used in other

projects which relate to people’s daily lives.

Due to the limitations of the project, the project, which was built as a demo version for

the RFID lab show room, showed how to build a smart system using the RFID, web

technology. In order to improve the project quality and usefulness, the project should

be uploaded into a server which all users can access everywhere anytime. Further-

more, the project could be studied for improvement and it could be combined with the

smart phone technology. Users could use their phones with a ready-made application

such as Android application, IOS application or Windows phone application to access

the smart fridge. Users could use the information provided by the system to buy prod-

ucts online through their mobile phones.

The project also showed that software design plays an important role in constructing

one system from basic ideas, and that building a smart fridge was complicated. In the

near future, when the RFID, web and smart phone technology are perhaps connected,

applying the smart system using these technologies might bring high profits and bene-

fits not only to producers but also to users. The smart fridge project has been on show

in the RFID Lab show room which has about 1000 visitors every year.

61

References

1. The Basics of RFID technology [pdf]. RFID Journal; 2012
URL: http://www.rfidjournal.com/article/view/1337/1
Accessed 26 July 2012

2. Active RFID Asset Tracking using WiseTrack [pdf]. WiseTrack; 2010
URL: http://www.wisetrack.com/rfid.html
Accessed 5 August 2012

3. What is RFID? [online]. Association for Automatic Identification and Mobility;
2011
URL: http://www.aimglobal.org/technologies/rfid/what_is_rfid.asp
Accessed 10 August 2012

4. Infinity 510 Quick Start Guide [pdf]. Sirit; 2009

5. Infinity 510 Protocol reference guide [pdf]. Sirit; 2009

6. An introduction to Web site Content [online]. Phizzie Design & Productions
URL: http://www.phizzie.com/content/an-introduction-to-content.htm
Accessed 12 August 2012

7. Lane D, Williams HE. Web Database Application with PHP and MySQL. 2nd ed.
O’Reilly; 2008

8. HTML <body> Tag [online]. W3Schools; 2012
URL: http://www.w3schools.com/tags/tag_body.asp
Accessed 14 August 2012

9. Duckett J. HTML&CSS design and build web sites. John Wiley & Sons; 2011

10. Welling L, Thomson L. MySQL Tutorial. Sams Publishing; 2007

11. The Advantages of PHP [online]. Designer’s playground; 2011

URL: http://www.designersplayground.com/pr/the-advantages-of-php/
Accessed 18 August 2012

12. Overview of new features in Apache 2.0 [online]. The Apache software Founda-
tion; 2012
URL: http://httpd.apache.org/docs/2.2/new_features_2_0.html
Accessed 18 August 2012

13. Goodman D, Morrison M. JavaScript Bible. 6th ed. Wiley Publishing; 2007

14. The Main Feature of MySQL [online]. MySQL; 2012
URL: http://dev.mysql.com/doc/refman/5.0/en/features.html
Accessed 19 August 2012

15. Chapman S. What is JavaScript? [online]; 2012

URL: http://javascript.about.com/od/reference/p/javascript.htm

62

Accessed 20 August 2012

16. Glass K M, Scouarnec Y L, Naramore E, Mailer G, Stolz J, Gerner J. Beginning
PHP, Apache, MySQL Web Development. Wiley Publishing; 2004

17. What is Eclipse and Eclipse foundation[online].The Eclipse foundation; 2012
URL: http://www.eclipse.org/org/
Accessed 20 August 2012

