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A CD8 T Cell/Indoleamine 2,3-Dioxygenase Axis Is
Required for Mesenchymal Stem Cell Suppression of

Human Systemic Lupus Erythematosus

Dandan Wang,1 Xuebing Feng,1 Lin Lu,1 Joanne E. Konkel,2 Huayong Zhang,1 Zhiyong Chen,1

Xia Li,1 Xiang Gao,3 Liwei Lu,4 Songtao Shi,5 Wanjun Chen,2 and Lingyun Sun1

Objective. Allogeneic mesenchymal stem cells
(MSCs) exhibit therapeutic effects in human auto-
immune diseases such as systemic lupus erythematosus
(SLE), but the underlying mechanisms remain largely
unknown. The aim of this study was to investigate how
allogeneic MSCs mediate immunosuppression in lupus
patients.

Methods. The effects of allogeneic umbilical cord–
derived MSCs (UC-MSCs) on inhibition of T cell pro-
liferation were determined. MSC functional molecules
were stimulated with peripheral blood mononuclear
cells from healthy controls and SLE patients and exam-
ined by real-time polymerase chain reaction. CD4� and
CD8� T cells were purified using microbeads to stim-
ulate MSCs in order to determine cytokine expression
by MSCs and to further determine which cell subset(s)

or which molecule(s) is involved in inhibition of MSC–
mediated T cell proliferation. The related signaling
pathways were assessed. We determined levels of serum
cytokines in lupus patients before and after UC-MSC
transplantation.

Results. Allogeneic UC-MSCs suppressed T cell
proliferation in lupus patients by secreting large
amounts of indoleamine 2,3-dioxygenase (IDO). We
further found that interferon-� (IFN�), which is pro-
duced predominantly by lupus CD8� T cells, is the key
factor that enhances IDO activity in allogeneic MSCs
and that it is associated with IFNGR1/JAK-2/STAT
signaling pathways. Intriguingly, bone marrow–derived
MSCs from patients with active lupus demonstrated
defective IDO production in response to IFN� and
allogeneic CD8� T cell stimulation. After allogeneic
UC-MSC transplantation, serum IDO activity increased
in lupus patients.

Conclusion. We found a previously unrecognized
CD8� T cell/IFN�/IDO axis that mediates the thera-
peutic effects of allogeneic MSCs in lupus patients.

Mesenchymal stem cells (MSCs) are non-
hematopoietic stem cells (non-HSCs) that can support
the function of HSCs in bone marrow (BM). MSCs have
been shown to possess regenerative properties and
unique immunoregulatory functions that make them an
attractive option for cellular therapy in patients with
autoimmune diseases and chronic inflammation (1). We
have previously shown that allogeneic BM- and umbili-
cal cord (UC)–derived MSC transplantation is a safe
and effective treatment of active systemic lupus ery-
thematosus (SLE) (2,3) and other autoimmune diseases,
such as systemic sclerosis (4), Sjögren’s syndrome (5),
and myositis (6). Conversely, autologous MSCs from
lupus patients cannot offer therapeutic benefits due to
intrinsic abnormal functions (7–9). However, the mech-
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anisms by which allogeneic MSC transplantation ame-
liorates SLE remain largely unknown.

It is now clear that MSCs exert immunoregula-
tory properties on various immune cells. This includes
suppression of T cell proliferation, regulation of den-
dritic cell (DC) maturation and function, modulation of
B cell proliferation and terminal differentiation, and
regulation of natural killer cells and macrophage func-
tion (10–12). Many factors are involved in MSC immu-
nomodulation, including but not limited to, production
of transforming growth factor � (TGF�), hepatocyte
growth factor (HGF), prostaglandin E2 (PGE2),
interleukin-10 (IL-10), indolamine 2,3-dioxygenase
(IDO), nitric oxide (NO), heme oxygenase 1 (HO-1),
and HLA–G (13–16). IDO, which is mainly produced by
DCs and macrophages, is an enzyme that degrades the
essential amino acid tryptophan and participates in
immune tolerance (17,18). In 2004, a study demon-
strated that human MSCs could secrete IDO in vitro in
the presence of mixed lymphocyte reaction. The IDO
that was secreted by MSCs mediated inhibition of nor-
mal T cell proliferation (19). However, other studies
have demonstrated that IDO plays a dispensable role in
human MSC suppression of T cell proliferation and have
instead suggested that HLA–G and IL-10 have a cell-
contact–dependent role (20). In animal studies, it has
been suggested that NO rather than IDO is involved in
immunomodulation by MSCs (21). Importantly, the
precise mechanisms responsible for the regulatory ef-
fects of MSCs in lupus patients remain unknown.

In this study, we determined that high levels of
interferon-� (IFN�), produced predominantly by CD8�
T cells in lupus patients, are a key factor involved in the
stimulation of allogeneic UC-MSCs to produce IDO,
which can then inhibit the proliferation of T cells from
lupus patients. Thus, we uncovered a previously unrec-
ognized CD8� T cell/IFN�/IDO axis that mediates the
therapeutic benefit of allogeneic MSCs in lupus.

PATIENTS AND METHODS

Lupus patients and healthy subjects. Seventy-nine
SLE patients and 89 healthy subjects were included in this
study. Informed consent was obtained from each subject for
the collection of peripheral blood or BM. Clinical study of
UC-MSC transplantation among lupus patients was registered
with ClinicalTrials.gov (identifier: NCT01741857). Six patients
underwent UC-MSC transplantation as previously described
(3). This study was approved by the Ethics Committee at The
Affiliated Drum Tower Hospital of Nanjing University Medi-
cal School and was conducted in accordance with the 1989
Declaration of Helsinki.

Antibodies and reagents. The following antibodies (to
humans) were used in this study: fluorescein isothiocyanate
(FITC)–conjugated anti-human CD3 (OKT3), anti-CD4
(11830), anti–HLA–DR (L203), phycoerythrin (PE)–
conjugated anti-human CD4 (11830), allophycocyanin (APC)–
conjugated anti-human CD8 (RPA-T8), CD25 (M-A251), and
the respective isotype-matched control antibodies (mouse
IgG1 and mouse IgG2a) (all from BD Biosciences); and
FITC–conjugated anti-human CD34 (4H11), CD44 (IM7),
PE-conjugated anti-human CD45 (HI30), CD29 (TS2/16),
CD166 (3A6), CD138 (DL-101), FoxP3 (150D/14), PE–Cy7–
conjugated FoxP3 (PCH101), APC-conjugated anti-human
CD4 (RPA-T4), CD19 (HIB19), PE–Cy7–conjugated anti-
human IFN� (4S.B3), purified anti-human CD3 (OKT3),
CD28 (CD28.2), CD40 (5C3) (no azide and low endotoxin) (all
from eBioscience). Recombinant human TGF�1 and anti-
human TGF� antibody were both from R&D Systems. Recom-
binant human IL-2, IL-4, IL-10, IL-6, tumor necrosis factor �,
IFN�, IL-1�, IFN�, and IFN� were from PeproTech.
1-methyl-DL-tryptophan was from Sigma-Aldrich. F(ab�)2 frag-
ment goat anti-human IgM was from Jackson Immuno-
Research. Purified anti-human IFN� (NIB42) and mouse IgG1
isotype (no azide and low endotoxin) were from BioLegend.
Human HGF, total IgG, and IgM enzyme-linked immunosor-
bent assay (ELISA) kits were from eBioscience. The human
TGF�1 ELISA kit was from BioLegend. Cell isolation kits
were from Miltenyi Biotec.

Human MSC isolation and purification. Human MSCs
were isolated from the UC and BM of lupus patients and
healthy subjects. Information on the purification and identifi-
cation of MSCs is available upon request from the correspond-
ing author.

Isolation and culture of T cells. Peripheral blood
mononuclear cells (PBMCs) were isolated from patients with
active lupus and healthy controls. CD4� and CD8� T cell
subsets were purified by positive isolation using microbeads
(Miltenyi Biotec). CD4�CD25� and CD4�CD25� T cell
subsets were purified using a human CD4�CD25� regulatory
T cell isolation kit (Miltenyi Biotec). CD4� T cells were
purified using negative isolation, then CD25 T cells were
purified using positive isolation. The purified CD4� or CD8�
T cell subsets were cocultured with or without pre-plated
allogeneic human MSCs (4:1) in the presence of soluble
anti-human CD3 (2 �g/ml) and anti-human CD28 (2 �g/ml)
antibodies, and a non-CD4/CD8 T cell subset was used as a
control. After 48 hours, nonadherent cells were removed and
supernatants were collected for measurement of cytokines
(IFN� and TGF�1) by ELISA (BioLegend). The adherent
MSCs were washed 3 times with phosphate buffered saline
(PBS) and lysed with TRIzol (Takara) for real-time polymer-
ase chain reaction (PCR) analysis. In some experiments, a
Transwell system (0.4 �m pore size; Millipore) was used to
block cell–cell contact.

Treg cell differentiation in vitro. CD4�CD25� T cells
were cultured with soluble anti-CD3 (2 �g/ml) and anti-CD28
(2 �g/ml) antibodies, with the addition of recombinant human
TGF�1 (10 ng/ml) and IL-2 (100 IU/ml) to induce Treg cell
conversion (22,23). In some cultures, allogeneic human MSCs
or human lung fibroblast (HLF) cells were initially included.
Cells were cultured for 5 or 6 days and collected for measure-
ment of Treg cells.
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T cell proliferation assay. For the carboxyfluorescein
succinimidyl ester (CFSE)–labeling assay, 106 cells/ml of
PBMCs or purified T cells were incubated with 3 �moles/liter
of CFSE in PBS/0.5% bovine serum albumin (BSA) at 37°C for
15 minutes. Cells were washed 3 times with fresh, ice-cold
complete 1640 medium and resuspended in complete 1640
medium for further culture. After the cells were cultured for
several days as indicated, cells were harvested to examine the
CFSE-negative cells using flow cytometry.

Flow cytometric analysis. PBMCs or purified T cells
were resuspended in PBS containing 1% BSA and 0.1%
sodium azide. For the staining of surface antigens, cells were
incubated with FITC-conjugated, PE-conjugated, or APC-
conjugated monoclonal antibodies or their negative control
antibodies for 30 minutes on ice as indicated. Intracellular
staining of FoxP3 and IFN� was performed as described
previously (3,24).

Real-time quantitative PCR. Complementary DNA
(cDNA) was synthesized from TRIzol-isolated total RNA
using a SuperScript III First Strand Synthesis SuperMix for
quantitative reverse transcription–PCR (Takara). For real-
time PCR experiments, reactions containing SYBR Premix EX
Taq (Takara), ROX Reference Dye (50�; Takara), cDNA,
and gene primers were run on a StepOnePlus real-time PCR
system and analyzed using StepOne Software, version 2.1
(Applied Biosystems). Gene primers are available upon re-
quest from the corresponding author. Relative gene quantifi-
cation was calculated by the 2���Ct method and then normal-
ized to the level of GAPDH (25).

Western blot analysis and ELISA. We used antibodies
recognizing human STAT-1, STAT-3, STAT-5, Akt, I�B, ERK
and their phosphorylation forms, p52, p65, and GAPDH
(1:1,000; Cell Signaling Technology) to examine the concen-
trations of proteins in MSCs lysates. The concentration of IDO
protein in MSCs (1:400 dilution; Epitomics Technology) was
also determined (methods are available upon request from the
corresponding author).

We detected amounts of HGF, TGF�1, and IFN� in
the conditioned media and/or human serum using ELISA kits
(eBioscience or BioLegend) according to the manufacturer’s
instructions.

High-performance liquid chromatography. Kynure-
nine and tryptophan concentrations were analyzed by high-
performance liquid chromatography as reported (26) (methods
are available upon request from the corresponding author).

Statistical analysis. We used a t-test for statistical
analysis of parametric data and the Mann-Whitney test for
analysis of nonparametric data. One-way analysis of variance
was used when there were �2 groups, followed by the Bonfer-
roni test. Statistical analyses were performed with SPSS ver-
sion 16.0 and GraphPad Prism version 4.3 software packages.
Data are presented as the mean � SEM. P values less than 0.05
were considered significant.

RESULTS

Allogeneic UC-MSC inhibition of the prolifera-
tion of T cells from lupus patients. MSCs have been
reported to inhibit T cell proliferation in healthy subjects

(27,28), but whether this can occur in patients with lupus
remains largely unknown. We first investigated whether
allogeneic UC-MSCs regulated T cell proliferative re-
sponses in lupus patients. We found that UC-MSCs
significantly inhibited the proliferation of anti-CD3 and
anti-CD28–activated CD4� T lymphocytes from both
healthy controls and lupus patients (Figure 1A). The
allogeneic normal human fibroblasts (HLF cells) that
served as controls, however, exhibited no suppression of
T cell proliferation (Figure 1A). To determine which
subset of CD4�T cells was inhibited by UC-MSCs, we
separated CD4�CD25� (responder) and CD4�CD25�
(predominantly regulatory) T cells from the peripheral
CD4� T cells of patients and found that UC-MSCs
efficiently inhibited CD4�CD25� T cell proliferation
(Figure 1B), while they promoted CD4�CD25� Treg
cell proliferation and maintained their survival in vitro
(Figures 1C and D).

To study whether UC-MSC–mediated suppres-
sion was due to conversion of induced CD4�CD25�
Treg cells (23), we stimulated CD4�CD25� T cells with
anti-CD3/CD28 (2 �g/ml), TGF� (10 ng/ml), and IL-2
(100 IU/ml) in the presence and absence of UC-MSCs or
HLF cells. As expected, fewer induced Treg cells were
differentiated in lupus CD4�CD25� T cells as com-
pared to healthy control T cells (Figure 1E). Surpris-
ingly, UC-MSCs failed to enhance and actually inhibited
the conversion to induced Treg cells both in healthy
controls and in lupus patients (Figure 1E), whereas HLF
cells had no effect. Thus, UC-MSCs blocked T cell
receptor (TCR)–driven lupus CD4� T cell prolifera-
tion, which was not attributable to induced Treg cell
conversion.

Role of IDO in UC-MSC–mediated inhibition of
lupus T cell proliferation. We next investigated the
underlying molecular mechanisms by which UC-MSCs
suppressed lupus T cell proliferation. We hypothesized
that UC-MSCs expressed or secreted molecules/factors
in lupus patients that in turn inhibited T cell prolifera-
tion. To assess this, we cultured UC-MSCs with PBMCs
isolated from patients with active SLE or healthy con-
trols, in the absence or presence of soluble anti-CD3 and
anti-CD28 antibodies (both 1 �g/ml). After 48 hours,
PBMCs were removed through extensive washing, and
the molecules and cytokines produced by UC-MSCs
were determined. We examined HGF, TGF�1, and
IDO, since they have all been reported to influence
MSC-mediated T cell proliferation (19,28). Although
unstimulated lupus PBMCs increased HGF and
TGF�1 mRNA levels and protein levels in UC-MSCs
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as compared to untreated or normal PBMC–treated
UC-MSCs, TCR-stimulated lupus PBMCs failed to fur-
ther up-regulate the aforementioned cytokines (Supple-
mentary Figure 1, available on the Arthritis & Rheuma-
tology web site at http://onlinelibrary.wiley.com/doi/
10.1002/art.38674/abstract). Strikingly, however, TCR-
stimulated lupus PBMCs drove UC-MSCs to produce
extremely high levels of mRNA for IDO (�200-fold)
(Figure 2A). We also saw enhanced IDO enzyme activ-
ity (Figure 2B) and larger amounts of protein (Figure
2C) as compared to untreated or healthy PBMC–treated
UC-MSCs.

The increase in IDO levels by UC-MSCs in
response to lupus PBMCs prompted us to determine
whether IDO was involved in UC-MSC–mediated sup-
pression of lupus T cell proliferation. For this, we added
1-methyl-DL-tryptophan the inhibitor of IDO enzyme
activity, to the cocultures of UC-MSCs and TCR-
stimulated lupus PBMCs that had been prelabeled with

CFSE. While the IDO inhibitor itself had no effect on
TCR-driven T cell proliferation, it completely reversed
the suppression of lupus T cell proliferation mediated by
UC-MSCs (Figure 2D).

We next determined whether IDO-mediated in-
hibition of cell proliferation by UC-MSCs was specific to
T cells. We examined effects of IDO on UC-MSC–
mediated B cell suppression. PBMCs from lupus pa-
tients were cocultured with allogeneic UC-MSCs, and B
cells were stimulated with anti-human CD40 and anti-
human IgM (F[ab�]2). We found that UC-MSCs inhib-
ited B cell differentiation (as determined by CD138
staining), proliferation (as determined by CFSE label-
ing), and IgG production (as determined by ELISA)
(Supplementary Figure 2, available on the Arthritis &
Rheumatology web site at http://onlinelibrary.wiley.com/
doi/10.1002/art.38674/abstract). However, inclusion of
1-methyl-DL-tryptophan failed to reverse the inhibition
of B cells by UC-MSCs (Supplementary Figure 2). Thus,
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Figure 1. Umbilical cord–derived mesenchymal stem cells (UC-MSCs) inhibit lupus T cell proliferation, but not via conversion to induced Treg
cells. A, UC-MSCs inhibit proliferation of T cells from patients with systemic lupus erythematosus (SLE) and healthy controls (HCs). B, UC-MSCs
inhibit proliferation of CD4�CD25� responder T (Tresp) cells from patients with lupus patients and healthy controls. In A and B, ��� 	 P 
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we found that IDO plays a key role in MSC-mediated
suppression of T cells from lupus patients, although the
same is not true for B cells.

We also wanted to determine whether the en-
hanced proliferation of Treg cells by UC-MSCs was
dependent upon IDO. UC-MSCs were cocultured in
vitro with Treg cells from healthy controls or patients
with active lupus. We found that healthy Treg cells failed
to induce IDO in UC-MSCs, but lupus Treg cells
induced some IDO gene expression in UC-MSCs (Sup-
plementary Figure 2F). In a coculture of lupus PBMCs
and UC-MSCs, the addition of the TGF� kinase inhib-
itor SB431542 inhibited the proliferation of
CD4�FoxP3� Treg cells. Interestingly, the IDO inhib-
itor, 1-methyl-DL-tryptophan, had no effect on Treg cell
proliferation (Supplementary Figure 2G); thus, the ef-
fect of MSCs on Treg cells is not IDO dependent.

Lupus CD8� T cell–derived IFN� promotion of
IDO activity in UC-MSCs. To investigate which cell
subset(s) in lupus PBMCs stimulates UC-MSC produc-

tion of IDO, we first purified CD4� T cells from the
PBMCs of healthy controls and lupus patients. CD4� T
cells were cocultured with UC-MSCs for 48 hours in the
presence of anti-CD3 and anti-CD28 antibodies. Non-
CD4� cells were used as controls. Unexpectedly, we
found that non-CD4� cells from lupus patients drove
UC-MSCs to increase expression of mRNA for IDO and
exhibited higher levels of IDO enzymatic activity when
compared to CD4� T cells from lupus patients (Supple-
mentary Figure 3, available on the Arthritis & Rheuma-
tology web site at http://onlinelibrary.wiley.com/doi/
10.1002/art.38674/abstract).

To identify which cell type(s) in non-CD4� cells
was responsible for the IDO production of UC-MSCs,
we separated CD4� and CD8� T cells and the non-
CD4/CD8 cell population (B cells, monocytes, and other
cells) from both lupus and healthy PBMCs and repeated
the experiment. We determined that CD8� T cells from
lupus patients induced the highest levels of mRNA for
IDO and its enzymatic activity (Figures 3A and B).
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Lupus CD4� T cells also induced increased IDO levels
in UC-MSCs, although the levels were significantly
lower than those induced by CD8� T cells (Figures 3A
and B). In healthy subjects, CD8� T cells were also the
most potent cells at stimulating IDO in UC-MSCs, but
the levels of mRNA for IDO, as well as its activity, were
significantly lower than that in lupus CD8� T cell–
treated UC-MSCs (Figures 3A and B). Interestingly,
neither lupus nor healthy non-CD4/CD8 cells from
PMBCs induced a significant up-regulation of IDO in
UC-MSCs (Figures 3A and B). To determine whether
the ability of CD8� T cells to increase IDO mRNA
levels in UC-MSCs was dependent upon cell–cell con-
tact, we separated CD8� T cells from UC-MSCs in a
Transwell coculture system. In cell–cell contact cultures,
even when separated from the UC-MSCs, lupus CD8�
T cells induced levels of IDO similar to those induced in
UC-MSCs (Figure 3C). These data suggest that a soluble
factor(s) secreted from lupus CD8� T cells stimulates
IDO activity in UC-MSCs.

Since it has been reported that IFN� and TGF�
are important factors for the initiation of IDO activity in
DCs and macrophages (18), we focused on these 2

cytokines in UC-MSCs. We found a significant increase
in levels of IFN� in the supernatants of cultures con-
taining UC-MSCs and TCR-stimulated lupus CD8� T
cells as compared to cultures containing CD4� T cells
or non-CD4/CD8 cells (Figure 4A), while levels of
TGF�1 were unchanged (Figure 4B). This IFN� was not
produced by UC-MSCs, as the supernatants from CD8�
T cells alone contained similar amounts of IFN� (Figure
4A). To further confirm that IFN� was from CD8� T
cells, we examined intracellular IFN� expression in
CD4�, CD8�, and non-CD4/CD8 cells using flow cy-
tometry. We found that lupus CD8� T cells produced
the largest amounts of intracellular IFN� (Figure 4C).
Importantly, the addition of anti-IFN� antibody to the
cocultures of UC-MSCs and lupus CD8� T cells com-
pletely abrogated IDO gene expression (Figure 4D) as
well as supernatant kynurenine levels (Figure 4E).
Moreover, anti-IFN� antibody completely restored
TCR-driven lupus T cell proliferation that was inhibited
by UC-MSCs; when anti-IFN� was added to cocultures,
IDO enzyme activity was no longer increased (Figures
4F–H). The effect was comparable to that found when
1-DL-MT was added to the cocultures (Figures 4F–H). In
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contrast, neutralization of TGF� with anti-TGF� anti-
body failed to significantly decrease IDO activity and/or
restore T cell proliferation in the same UC-MSCs and
lupus PBMC cocultures (Figure 4F–I). These data col-
lectively indicate that the IFN� that is secreted by lupus
CD8� T cells stimulates IDO activity in UC-MSCs and
that enhanced levels of IDO then cause inhibition of T
cell proliferation.

Association of JAK/STAT pathways with en-
hanced levels of IDO activity in UC-MSCs. We next
sought to elucidate the signaling pathways by which
lupus CD8� T cells induced IDO production in UC-

MSCs. In DCs, the initiation of IDO activity is mostly
dependent upon noncanonical NF-�B signaling path-
ways (29). On the other hand, JAK/STAT signaling
activation is involved in IFN�-induced immune re-
sponses (30). How CD8� T cells induce IDO in UC-
MSCs is unknown. In vitro stimulation by lupus CD8� T
cells resulted in a significant increase in IFNGR1 but not
IFNGR2 in UC-MSCs (Figure 5A and Supplementary
Figure 4A, available on the Arthritis & Rheumatology web
site at http://onlinelibrary.wiley.com/doi/10.1002/
art.38674/abstract). In addition, downstream JAK-2 (al-
though not JAK-1) gene expression in UC-MSCs was
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significantly up-regulated in the presence of lupus
CD8� T cells, an up-regulation which was similar to that
seen when cells were stimulated with 20 ng/ml of recom-
binant human IFN� (Figure 5B and Supplementary
Figure 4B). Furthermore, STAT-1 gene expression was
also increased in these settings (Figure 5C). Western
blot analysis confirmed the activation of STAT-1,
STAT-3, and STAT-5 signaling pathways following co-
culture of lupus CD8� T cells with UC-MSCs (Figure
5D). We also examined NF-�B, ERK, and Akt pathways
in UC-MSCs, but found no obvious activation in the
presence of lupus CD8� T cells (Supplementary Figure

4C). Thus, IFNGR1/JAK-2/STAT signaling pathways
are associated with the IDO activity in UC-MSCs that is
stimulated by lupus CD8� T cells.

Defective IDO activity in lupus BM-MSCs. The
profound IDO production by allogeneic UC-MSCs in
response to lupus CD8� T cells prompted us to explore
whether MSCs in patients with active lupus had defec-
tive IDO activity. We therefore isolated MSCs from the
BM of patients with active lupus and healthy subjects
and cultured the cells in vitro. The expanded BM-MSCs
were stimulated with IFN�, and UC-MSCs were used as
controls. We found that lupus BM-MSCs had signifi-
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cantly lower IDO mRNA levels compared to healthy
BM-MSCs or UC-MSCs, in response to IFN� stimula-
tion (Figure 5E). When cocultured with allogeneic TCR-
activated lupus CD8� T cells, lupus BM-MSCs also
exhibited a profound defect in IDO secretion and activ-
ity compared to normal BM-MSCs (Figures 5F and G).
Importantly, when cocultured with allogeneic lupus PB-
MCs, lupus BM-MSCs had a reduced ability to suppress
T cell proliferation as compared to normal BM-MSCs
(Figure 5H). These data demonstrate a decrease in IDO
levels in MSCs derived from lupus patients in response
to IFN� and CD8� T cells.

Increased circulating IDO activity after UC-
MSC transplantation in lupus patients. Since IFN� and
CD8� T cells trigger allogeneic MSCs to produce IDO
and inhibit lupus T cell proliferation, we assessed
whether IFN� and CD8� T cells were increased in lupus
patients. We therefore analyzed a clinical index in lupus
patients in vivo. First, we compared circulating levels of
IFN�, CD4�, and CD8� T cell subsets in the peripheral
blood of lupus patients and healthy controls. We found
that lupus patients had a significantly higher frequency
and total number of peripheral CD8� T cells and
increased levels of circulating IFN� (Figures 6A–C).
Moreover, there was an increased frequency and abso-
lute number of IFN��CD8� T cells from lupus patients

compared to those from healthy controls (Figures 6D
and E). These data suggest that the lupus microenviron-
ment can initiate the function of allogeneic MSCs in
vivo. Importantly, we observed that serum IDO activity
(as evidenced by kynurenine concentrations) was signif-
icantly increased in 6 lupus patients 1 month after
intravenous UC-MSC transplantation (Figure 6F). Se-
rum tryptophan levels, however, did not change (Figure
6G), while the ratio of kynurenine to tryptophan was
markedly increased (Figure 6H). Furthermore, in an-
other clinical study, we found that percentages of peri-
pheral blood CD3�CD4� T cells decreased after UC-
MSC transplantation in patients (Supplementary Figure
5, available on the Arthritis & Rheumatology web site at
http://onlinelibrary.wiley.com/doi/10.1002/art.38674/
abstract). These data are consistent with our in vitro
data and suggest that IDO plays a pivotal role in
allogeneic MSC treatment in lupus patients.

DISCUSSION

The molecules that mediate MSC inhibition of
lupus inflammatory cells remain incompletely under-
stood. Herein we show that UC-MSC–produced IDO
was critical for the inhibition of T cells and that IFN�
produced by lupus CD8� T cells was the main factor
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driving IDO induction by MSCs. We have highlighted a
novel mechanism by which allogeneic MSCs regulate
lupus T cells in the disease microenvironment.

SLE is a typical autoimmune disease, character-
ized by abnormal T and B cell functions. Recently, a
defect in Treg cell number and function was reported in
patients with active lupus, which correlated with disease
onset and progression (31). Current immunosuppressive
drugs used to treat lupus inhibit T and B lymphocytes in
vivo indiscriminately, which may increase drug-related
adverse events, such as infection (32,33). New biologic
drugs that target B cells, such as anti-CD20 monoclonal
antibody (rituximab) and anti-BAFF monoclonal anti-
body (belimumab), have shown satisfactory clinical effi-
cacy in patients with refractory disease, but treatment-
related adverse events occurred after long-term
application and followup (34,35). MSCs, however, may
selectively inhibit activated lymphocytes and have there-
fore been proposed as an alternative treatment option
for patients with lupus and other autoimmune diseases.
The activity of MSCs is affected by the microenviron-
ment into which they are transferred. As such, establish-
ing how MSCs act within a diseased environment and,
more specifically, how they mediate immune tolerance
in lupus patients, is pivotal to improving our understand-
ing of MSC transplantation and identifying the patients
in whom an MSC transplant would provide the most
clinical benefit. Our findings reveal a CD8� T cell/
IFN�/IDO axis, by which allogeneic MSCs inhibit T cell
proliferation.

IFN signaling pathways are activated in lupus
patients and are tightly correlated with disease activity
(36). It has been reported that circulating IFN� is
increased in lupus patients and can facilitate B cell
activation and antibody production (37,38). Previously,
it was reported that the high levels of IFN� in lupus
patients were mainly produced by DCs (39) or natural
killer cells (40). Not only have we identified CD8� T
cells as dominant cellular sources of IFN� in lupus
patients, but we have also importantly discovered that
CD8� T cells are the major stimulus for induction of
IDO in UC-MSCs. Furthermore, we observed signifi-
cantly elevated levels of circulating IFN� produced by
CD8� T cells in lupus patients. More research on lupus
is needed to determine whether circulating IFN� levels
are positively correlated with allogeneic MSC treatment
efficacy. In the present study, we also found that lupus
Treg cells enhanced UC-MSCs–mediated IDO produc-
tions, but IDO was not involved in Treg proliferation.
This increase in IDO expression by UC-MSCs cocul-
tured with lupus Treg cells might be due to a slight

increase in IFN� production by these lupus Treg cells
(Wang D, et al: unpublished observations), although this
needs to be further confirmed in future studies.

Our previous studies showed that BM-MSCs
from lupus patients functioned abnormally (7,41) and
that autologous BM-MSC infusion had no significant
effect on animal models of lupus (42). In this study, we
found that BM-MSCs from patients with active SLE
were much less responsive to recombinant IFN� or
allogeneic CD8� T cell stimulation and, importantly,
failed to inhibit allogeneic T cell proliferation. This
defect in suppressing T cell proliferation is at least partly
attributed to their reduced ability to produce IDO in
response to IFN� and/or lupus CD8� T cells. These
findings explain why activated T cells were elevated in
lupus patients and why autologous lupus BM-MSC
transplantation was less effective at treating lupus pa-
tients. Many patients have received allogeneic MSC
transplantation in our facility, and we have shown a good
clinical safety profile as well as treatment efficacy (43).
However, because the outcome of treatment with the
infused allogeneic cells is unknown, long-term clinical
safety needs further investigation.

We recently examined the characteristics of BM-
MSCs from SLE patients and healthy controls. Our data
showed that there were no significant differences in the
surface phenotype of CD29, CD44, CD105, CD14,
CD34, CD45, and HLA–DR cells (41). We suggest that
the decreased IDO from SLE-derived MSCs may be a
result of some intrinsic factors that occur in lupus
disease progression, but which do not necessarily cause
changes in the surface phenotype of MSCs. Moreover,
IFN� treatment in vitro had no effect on MSC surface
HLA–DR, CD80, and CD86 expression, although it
enhanced IDO activity in a dose-dependent manner
(Wang D, et al: unpublished observations). Further-
more, a study has demonstrated that BM-MSCs from
young (NZB � NZW)F1 lupus mice (5–6 weeks old)
efficiently reduced severity of lupus in an MRL/lpr
mouse model (42). However, BM-MSCs from old
(NZB � NZW)F1 mice (26–27 weeks old) failed to
ameliorate disease, indicating that BM-MSCs lose their
suppressive capabilities as the disease progresses. Loss
of regulatory activity by BM-MSCs is likely caused by
the inflammatory milieu present in the host, which could
well mediate epigenetic changes and in consequence
yield changes in protein expression in BM-MSCs from
lupus patients.

Taken together, our findings reveal novel mech-
anistic insight into how UC-MSC–mediated immuno-
suppression occurs in lupus patients. Additionally, our
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data suggest that allogeneic MSCs are more appropriate
for clinical transplantation in lupus patients, although
autologous MSCs are not.
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