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Abstract

The dynamics of magnetization coupled with an electron gas via s-d exchange interaction is
investigated by using the density matrix technique. Our theory shows that nonequilibrium spin
accumulation induces a spin torque and the electron bath leads to a damping of the magnetization .
For the two-dimensional magnetization thin film coupled to the electron gas with Rashba spin-orbit
coupling, the result for the spin-orbit torques is consistent with previous semiclassical theory.
However, our theory predicts a damping of the magnetization, which is absent in semiclassical theory.
The magnitude of the damping due to the electron bath is comparable to the intrinsic Gilbert damping
and may be important in describing the magnetization dynamics of the system.

1. Introduction

In the study of spin-transfer torque (STT), it has been proposed [ 1, 2] that one can manipulate magnetic order
parameter dynamics by using a nonequilibrium electron bath instead of external magnetic fields. The proposal
has already led to commercial products in spintronics engineering. Recently, there has been much attention on
the ‘spin-orbit torque’(SOT), which was first proposed in theory [3, 4] and later confirmed in experiments [5-8]
(see [9, 10] for a comprehensive review).

After applying an external electric field to the electron gas with spin-orbit interaction (SOI), a component of
the accumulated electron spin density misaligned with the ferromagnetic ordering can be created [3, 4], which
will then induce a field-like torque. The SOT opens the possibility of manipulating the magnetic order parameter
in collinear magnetic structures, and it may efficiently reduce the critical current density for magnetization
switching [3, 4].

In the theoretical side, a full quantum theory has been proposed and developed to describe the dynamics of a
single-domain magnet under continuous scattering by spin-polarized electrons. The quantum STT theory
recovers the results of the semiclassical STT theory, and has revealed more details about the magnetization
dynamics in the STT [11-13]. Therefore, it will be natural to apply a full quantum theory to study the
magnetization dynamics influenced by the SOI electron gas. This may be an extension of the quantum STT
theoryto SOT.

In the full quantum theory, the quantum dynamics of the magnetization can be described by the evolution of
its density matrix under the influence of the electron gas, which can be tuned by the external electric field. This
treatment will not only give the mean-field effect on the magnetization dynamics by the electron bath, but it will
also include the damping of the magnetization due to the fluctuation of the electron spin. A similar strategy has
been exploited to investigate the photoexcited dynamics of the order parameter in a Peierls chain [14].

This paper is organized as follows. In section 2, we apply the density matrix technique to derive a general
formalism for the magnetization dynamics driven by electron bath through s-d exchange interaction. In
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Figure 1. Schematic diagram for the lattice of localized spins (orange) coupled to the conduction electrons (blue) through s-d
exchange interaction. An external electric field, E, can be applied to tune the electron bath.

section 3, we apply the general formalism to the special case where the spatially uniform magnetization is
coupled with a two-dimensional electron gas with Rashba SOI, and we calculate the spin-orbit torque and the
damping effect of the electron bath. The main results are summarized and discussed in section 4.

2. General formalism

We apply the density matrix technique to study the dynamics of the magnetization driven by the electron bath
via an s-d exchange interaction. The system is schematically illustrated in figure 1, where the electron bath can be
tuned by an external electric field. The Hamiltonian of the total system is formally written as

H=Hy+ H, + Hy. (1)

Here, H)is the Hamiltonian for the magnetization subsystem in terms of the local spin operators, §1 yatsitei
with spin directions y ( = x, y, z). H,is the Hamiltonian of the electron subsystem, and Hy; describes the s-d
exchange interaction between the magnetization and the electron, where

Hsd = ]Zs‘\i,ﬂai,ﬂ- (2)
[y

Here, 5; , represents the electron spin operator at site i without //2, and Jis the exchange coupling strength.
Note that we have not specified the forms of Hy;and H, yet, so the results below will be quite general.

The effect of the s-d exchange interaction, Hy, is twofold. On one hand, the magnetization dynamics is
driven by the electron bath via H;, on the other hand, the electron states are also affected by the magnetization
configuration, which is in turn due to H,. Since the time scale of the electron dynamics is usually much faster
than that of the magnetization dynamics, we may assume that the electrons under the bias voltage establish a
stationary nonequilibrium distribution in a very short time interval, during which the change of the
magnetization configuration is negligible and the nonequilibrium electron bath is approximated to be constant.
The validity of this assumption only holds if the spin-lattice interaction is stronger than the s-d exchange
interaction to relax the electron spin. Consider a short time interval, [#y, t], where the initial density matrices of
the magnetization and the electron bath are p,, (t)) and p, (¢, ), respectively. Then the initial magnetization
configuration at eachssiteis S; , (t,) = Tr [3\1', «Pu (t0) ], and the initial electron density matrix, p, (¢,), is
determined by the bath Hamiltonian Hg = H, + ] Zi’ u Sip (t9) G, and the open boundary conditions.

To investigate the magnetization dynamics during the time interval [¢,, ¢] defined above, we redefine the

local spin operators, §, u = Siu(to) + é\l 4 Then the Hamiltonian, H, in equation (1) can be rewritten as

H=Hy + Hg + Vg, (3)

with the interaction term

Via =1 Y 8By (4)
7

During this time interval, the electron density matrix, p,, may be approximated to be constant because of the
negligible change of the magnetization, and this can be justified in the limit t — #,. Assuming the total density
matrixas p (t) = p,, (t) ® p (tr)and to the second order of interaction strength, the equation for the density
matrix, Py, (¢), in the interaction picture is [15]
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=1 e O 5000 s (10)]

dt
+(2) T [ e (oot 0[50 0 50 07 0]

i, 3j,v
= Chuin(®m O[30, Py 5, @ ]} (5)

Here, = denotes the operators in the interaction picture. The electron spin polarization is
6i,,(t) = Tr, [0}, (1) (o) ], and the electron spin-spin correlation function is
Ciyjw (t, 7) = Tr.[5;, (1) 5}, (7) 3 (ty) ], whichis a function of t — 7 only and satisfies the relation
Cisju (t, 1) = Cj i, (7, 1). Inprinciple, the solution of equation (5) gives the density matrix of the
magnetization in the time interval [#(, ] under the influence of the electron bath, and it can be applied to study
the physical qualities that we are particularly interested in.
Based on equation (5), the dynamical equation for S ; (t) = Try [§l, 1 () Py (t) ]is obtained as
d

51000 == ([Su Hu]), + 2 D)5

(Y ! S (A
+1(‘—) > e [ df{c,,ﬂ;j,f(t, (8, 08 0)
i7i Pt to 4

= Cieu(m (8@ S0 >} (6)

Here, (---); = Trp[-++py, (t) ], and the spin commutation relation [§l,,1, §i,;4 1=16), € SAZ,,, has been exploited.
The first term in the right-hand side of equation (6) gives the intrinsic magnetization dynamics due to Hy,. The
second term is the spin torque term due to the accumulation of the electron spin density, and the third term gives
the damping effect of the electron bath. If the operator §l,l, (t) in the damping term is approximately replaced by
its expectation value, S; , (¢), equation (6) becomes

d _1lyra ]
aSu(t) = £<[5u, HM]>t + 2 Eezﬂmz,ﬂ(t)&,,,(t)
2J? t
+ 52 Z €1 St (1) _/t dekCypje (1 = 1) 55 (7), (7)

Jomsts&

where K; ,;j s (t — 7) is the imaginary part of C; ,;j + (t, 7),and s+ (1) = (g\j,g ). Weintroduce the kernel
function, y (t), which satisfies the relation dy, oy (t)/dt = K} ;¢ (t). The integral in the last term in equation (7)

is rewritten as /t ) dzy; i e (t — 7) Sz (7) after integrating by parts and neglecting the boundary terms in the
limiting case, t — f,. It can be further simplified as 77 ,,; ¢ S ;¢ under the Markovian approximation,

. . . . St
S;e(7) & Sj¢(t), with the coefficient I7 ;- = /0 dry, ;. (v) for 6t =t — to.
Based on the discussions above, equation (7) can be written in a compact form

d
Lo = %<[§1 HM]>t B0 X Si(8), (8)

where y, is the gyromagnetic ratio; By is the effective magnetic field on the the local spin, Sy, originating from the
electron bath. The y-component of By, is expressed as

] 2J? .
By (t) = n—ﬁol,,,m + ﬁ%jn,ﬂ;j@(r)sj,g(t). (9)

The first term in (9) will give the torque term due to the electron spin accumulation, which has been discussed
extensively in previous studies; the second term will give the damping effect of the electron bath on the
magnetization dynamics, which only emerges in the quantum treatment. The nonlocal feature of the damping
term can be found here, which depends on the spatial correlation of 77, .

So far we have established a general dynamical equation for the magnetization when it is coupled to the
electron bath via s-d exchange interaction. Here, both the Hamiltonian for the magnetization subsystem, Hy,
and the Hamiltonian for the electron subsystem, H,, have not been specified yet. The treatment is similar to the
previous work on the order parameter dynamics in the photoexcited Peierls chain [14]. In the next section, we
apply this general formula to study the magnetization dynamics of a two-dimensional ferromagnetic thin film
under the influence of an electron gas with Rashba SOI (i.e., a model system for SOT).

3
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3. Spin-orbit torque

3.1. Electron bath with Rashba SOI

We consider a special system studied by Manchon and Zhang [3] for SOT. The two-dimensional magnetization
thin film in the x-y plane consists of N = M X N lattice sites with the lattice constant a, and we will use the
discrete notations in both real and reciprocal space. The magnetization is assumed to be uniform due to strong
exchange interaction. The lack of inversion symmetry in the z-direction induces the Rashba spin-orbit
interaction in the two-dimensional electron gas. In this case, the Hamiltonian for the electron bath is given as [3]

ﬁz agR A

HB=—+—("><Z>-8+]S-E, (10)
2m; A

where P is the electron momentum operator; m,’ is the effective mass of electrons, ap, is the Rashba interaction

strength, and S = S; is the localized spin at each site. For § = S(sin 8 cos ¢, sin € sin ¢, cos ), the energy-

dispersion relation of the electron is

Ex+ = + Ag. (11)

Here, we have denoted the electron wavevector k = k (cos ¢, sin ¢), and

Ay = \/]252 + agk? — 2JSagk sin 6 sin(¢p — @) .
The corresponding electron eigenstates, |k, +), are
Oy

Ik, +) = ——elkr 2

T W . @k,i >
2

,+ e_id)k

cos
(12)
sin

where the angles @y , and @y are determined by

Or: JAE — J28% cos? 0

2 \/ZAlf F 2JSAy cos @ ,
O+ _ +Ax —JScos0

2 \/2Aﬁ F 2JSAy cos 0 )
JS sin € cos ¢p + ark sin ¢

COoS

sin

cos P = N
JAE — J2S? cos? 6

) JS sin @ sin ¢p — ark cos ¢

sin @y = .

AL — J2S? cos? 6

The spin polarization vector for the state |k, +)is B, = (sin Oy 4 cos Py, sin Oy 4 sin Py, cos Py ).

The statistical properties of the electron bath are determined by the probability distribution function, f, ,
for the state |k, s = +), which can be tuned by the external field. If an electric field, E, is applied, the
nonequilibrium distribution of the electron states will be established due to the random scattering potential by
impurities [3]. The distribution function, fk,s ,is determined by the Boltzmann equation

-2 W= Sk (13)

The collision integral, S, [f, . |, describes the relaxation of the occupied state |k, s) and can be treated by the
relaxation time approximation, namely,

f ks f l? s
sifh]= -2 (14
T
Here, f]? BY the equilibrium distribution function, and an isotropic relaxation time, 7, has been assumed [3]. To

the first order of the electric field, the solution of equation (13) is f, , = fl? , + & o Where the out-of-equilibrium
partinduced by the external electric field is

of
= z’s eE - v 7, (15)

gk,s
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with the electron velocity vi ; = % Vi Exs- Such a treatment of the nonequilibrium electron distribution was also
exploited in previous semiclassical theory [3].

3.2. Electron spin polarization and torque
With the nonequilibrium distribution function f, _ given above, the electron spin polarization, ¢, at site land

the correlation function, C; ,;j « (t, 7), in equation (9) can be calculated, and the torque and damping effect due
to the electron bath can be obtained. In the second quantization representation of the basis set {|k, s)}, the
operator 6j,, is expressed as

1 " At A
~ K—Kk)-
Oly = § ){ﬁs;k,)s,el( ) rle,ka',s’a
k,s;k,s’

where the matrix element

S| _idr
cos ——e 7k
u _ Qk,s b o @k,s 2
Hesic.s = | €08 — e, sin Oy O
. S
sin
2
Then the electron spin polarization, oj ,, is
1 u 1
Ol = ﬁzlk,s;k,sfk,s = VZP teshies- (16)
k,s k,s

For the physically relevant case agk < JS, the approximate value of By . to the first order of {%k is

S, + “—;‘sxsykx + 25 (1- 8k,

I JS
aR agr
Pe.=+|S, - ]—5(1 - 82)k, - 5SSk |
S. + 23,8k, — -28,8.k,
IS JS

Here, the unit vector for the magnetization is denoted as S = (sin 0 cos ¢, sin 6 sin ¢, cos ¢).
For the electric current density, j, = j, (cos 8, sin 8, 0), the nonequilibrium spin polarization, é6;, which is
perpendicular to S, is calculated to be (appendix A)

cos 9§, S, + sin@(l - S,ZC)
*+ 3
arm,j,a
06y = —————| —cos 19(1 - Sf,) —sin 95, S, |

e/?Ef
cos 95,8, — sin 95, S,

where Erdenotes the Fermi energy. The torque, Tj, is then obtained as

cos 9S, s

sin 9, = R (2 x4,) x 8
2 2 e

e/i’Ey —cos 9S8, — sin IS, e/’Ey

*:+ 3
JSarm/.j,a
| =

This result reproduces the form of SOT obtained before [3], but the magnetization vector is not restricted in the
two-dimensional x-y plane in our derivations. This is easily understood from the effective Hamiltonian (10),
where the nonequilibrium distribution of electron states will produce an extra electron spin polarization along
the direction 2 X Je-

3.3. Correlation function and damping

We now calculate the correlation function C; ,; £ (¢, 7), which gives the damping term for the magnetization

NN

—iEy /7

dynamics due to the electron bath. Since /c\k,s (r) = /c\k,s e , the correlation function Cj j £ (¢, 7) is formally

written as
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Cl,;t;j & (t> T)
Z E i(kK—k)n l(k'” k)-rjei(Ek,s—Ekgsr)r/ﬁei(Ek/r,s,,—Ekm,srrr)f/ﬁ
2
N | 3 N R R

“ £ ATA AT A
X Mk X 10 ¢ qem on \ Clos Ko CIc, Cles

(17)
Wesee that C; ;¢ (t, 7) is the function of r; — rjand ¢ — 7 due to the space and time translation invariance for
the investigated system.

For simplicity, we estimate C; ,,;j s (¢, 7) with several approximations. First, we assume that the phase factor,

el =k-(m=1)) will cause the cancellation of the summations over k and k' if r; # rj, thus Cy 5, = C,¢6. Second,

)(k”s,k/ gare calculated to the zeroth order of (%k for the relevant case agk < JS, where the electron spin states are

k-independent—that s,

Xiy = (sin @ cos ¢, sin 0 sin ¢, cos 6),

Xy =(—cos @ cos ¢p — isin ¢, — cos O sin ¢ + i cos ¢, sin G).

Furthermore, we calculate the correlation function (é\lj B é\k/, s é\ljs /c\k ) with the electron bath at equilibrium,
where the effect of the nonequilibrium electric current induced by the external field will be neglected. This
enables us to apply the Wick contraction [16] to simplify the calculations. The negligence of the dependence of
the damping coefficient on the Rashba SOI and the nonequilibrium electric current is valid if the dynamical
equation (8) is kept to the first order of these two factors. With the above approximations, we get

1 1
14
ﬂﬁ(t) N ss)(ssfks N Z )(sls,l)(s’s’fk,sfk',s’
N N2
E s—Exs /}?
Z et Pl t ss fks(1 _fk’,s’)’
k sk's’

where |k, s)and |K’, s') are different states.
Since the kernel function, ¥ oy (1), is given by the relation dy, oy (O)/dt = Ky, ; (¢), where

K ysje (t) = T[Cp e (t) ], their Fourier transformations are related by L s & (w) = lCl,ﬂ;j,ée (w). The Fourier
transformation of K ,;; - (¢) is obtained as (appendix B)

Zy [xss 25.8.(0) = (2475) 8.(~) ]

m; a* :
K (w) =6
Lusj,é IJ[ 2 ;22 ] "
where the function g, (@) is defined as

0, 7w < 0;
gs(a)) = Fiw, 0< 7w < Ef —§JS;

Ef—S]S, }%w>Ef—5]S.

Then the damping kernel function, Yipsjse (t), can be calculated by the inverse Fourier transformation from
Yi,usj.¢ (@), which results in (appendix B)

2
mya*) 1 _ .
yl,lﬁjvf(t) = 51]( 2l ) 52(5145& (t) + lsz€ﬂ§”SVg5+(t)]' (18)
s v

Here, g~ )= f da)g (w)e " and g;—' (w)= % (g, (@) £ g (—w)),as schematically shown in figure 2.
Then the coefﬁc1ent I} ;j.¢ inequation (9) is obtained as

2
m; a?
E,ﬂ;jxf = 51]( Z;ﬁ r(1)5ﬂ§ + F(Z)Zeﬂéjvsu > (19)

v

with 'V = %zs foét drg” (r) and r®= %ZS 5/0& dzg " (7). Then the damping part in equation (8) can be
explicitly written as

2
* a2
D, = z[];”e“ ) (rvs x s +sr®s), (20)

which is independent of the Rashba constant and the electric current due to our approximations above.

6
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11 (@) (b)

! \ 1 EJSE+JS

—_— S =+ : ‘

0.5 b

— s=- L

= b

é OF------=--=-=-=-=--J}----- L]
oy EJSE+S
-0.5
-1
0 0
ho ho
Figure 2. Schematic diagram for g* (). Bluelinefor s = +,andredlinefor s = — . Note that ¢ * is an odd function of w and

g, (w)isan even function of w, and they approach O when |o| — oco.

The first term in (20) will give the damping effect, which drives the local spin towards the direction with the

lower energy; the second term in (20) will give a renormalized factor in equation (8). Assuming that J ~ 1eV,
* 2
m; ~ mg, a ~ 1A, one gets arough estimation of the magnitude order for the factor (T;’;)2 ~ 1073 thus the
T,
damping effect due to the electron bath is comparable to the intrinsic Gilbert damping of some ferromagnetic
materials. This damping effect can become important to understanding the dissipative features of the

magnetization dynamics driven by SOT.

4, Conclusion

In conclusion, we have applied the density matrix technique to formulate the magnetization dynamics of a
system consisting of local magnetic moments influenced by an electron gas through s-d exchange interaction. In
this approach, the magnetic subsystem is treated as an open quantum system, and the electron gas actsasa
nonequilibrium bath tuned by the external electric field. The spin torque due to the nonequilibrium electron
spin accumulation and the damping effect of the electron bath have been taken into account simultaneously.

We applied the developed formula to the model system for spin-orbit torque, where the two-dimensional
magnetization film is coupled to the Rashba electron gas through s-d exchange interaction. We calculated the
spin-orbit torque, and the results are consistent with the previous study. However, our method does not require
the magnetization direction to be in the two-dimensional plane, as the previous study dose. Our approach
enables us to obtain the damping effect due to the electron bath, which is a new feature absent in semiclassical
theory. The damping caused by the electron bath is estimated to be comparable to the intrinsic Gilbert damping,
and may be important to describing the magnetization dynamics driven by SOT.

In brief, this work has extended the previous semiclassical theory for SOT to a more complete description.
Further applications of this approach are expected to help us understand and manipulate the magnetization
dynamics through electron gas in other complex cases.
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Appendix A. Electron spin polarization

We first assume that the electric field is applied along the x-direction. Then

1 1 QaR
o0; = _ng,spk,s = _Z (gk,+ - gk,_) ky—2%,,
N N4 JS
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where X, = (S8,S,, —(1 — Sf,), S, 8;). The corresponding electric current density is

e e/ 1
.e = - S(Vk,s)x N ——— Skx)
N i N2

and the spin current density is

/2
o= T 3ngs( kodePis % Na3zk:(gk,+ 8k

Thus, a rough relation is obtained as
agm,j,a’

o) = —
eﬁEf

X

where the relation j, ~ —zﬁ% .S has been used here.
eEy
Similarly, if the electric field is applied along the y-direction, the non-equilibrium spin polarization will be
*s 3
arm,j,a
oo) = — X Je ¥
e/iE¢

with X, = (1 — Si, —8,S,, —S,S;). Therefore, for the electric current density j, = j, (cos 9, sin 9, 0), we get

| cos 9S,S, + sin&(l - S,ZC)
arm,j,a

50'1 = -
e/iE f

- cos&(l - Si) — sin 95,8,
cos 95,8, — sin 9§, S,

Appendix B. Correlation function and damping kernel

The imaginary part of C,,¢ (t) is given as
Ky (6)=3[ Ce (1) |

2 Ef €—€
(2”}%2) 23[;(5’5)(55/;]5 de : de il )t]
Ey
(2w ] o

Here, f,  is approximated as the zero-temperature Fermi distribution function, and the relation
1 a? 21, . m
J\/Zk - (2n)2/dk_ 2
1 +o0 .
Kie(w)=— [ diKc,e (e
27 J -

Ey €e—¢ i * € —€
_- 14 i 14
[217}%2] Z/ dSLf de[ 2l x 555(w+ - )+ 2()55’5‘,55,5) 5(w+ - )]
_[meain > | g @) = (xiah) g () |
27[}}2 2 ss SS S S§/As's S

5,8

Kz (w), is then

where the function g () is defined as

0, Jiw < 0;
g (@) = Jiw, 0 < /w < Ef — sJS;
Ef—sJS, 7w > Ef - sJS.

Therefore,

« 2\
g (@) = 51]‘[ o ) %g[m(xsﬁ‘xsi)gf(w + i3zl )t @) ]
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where gsi (w) = % (g (@) £g,(-w)),and y; ,; - (t)is calculated as

+o00 )
Visje (t)= / da))/l,”;j,5 (w)e !
—0

2

mya* )1 _ .

=5 = Y| Rl e 0 + i3 (e, )& (0|
2k ) 2

_s mg a* ‘1 P . S o+

= 3| —— E; uege (1) + 1s;€ﬂ@ L8, (t)

*22

mia*| _
zéljéﬂg E g (1),

where g* () = /_ ::o dwg™* (w)e " and we have used the expressions
M= xt_aE = SuS:.

* .
If,_15,+ = ()(—”J(f—) = Opug = SuSe + lzeufvsv-
14

References

[1] Slonczewski] C 1996 J. Magn. Magn. Mater. 159 L1
[2] Berger L1996 Phys. Rev. B 54 9353
[3] Manchon A and Zhang S 2008 Phys. Rev. B 78 212405
[4] Manchon A and Zhang S 2009 Phys. Rev. B 79 094422
[5] Chernyshov A, Overby M, Liu X, FurdynaJ K, Lyanda-Geller Y and Rokhinson L P 2009 Nat. Phys. 5 656
[6] MironIM, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel ] and Gambardella P 2010 Nat. Mater. 9 230
[7] Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Bliigel S, Auffret S, Boulle O, Gaudin G and Gambardella P 2013 Nat.
Nanotechnology 8 587
[8] FanY Betal 2014 Nat. Mater. 13 699
[9] Gambardella P and Miron LM 2011 Phil. Trans. R. Soc. A369 3175
[10] Brataas A and Hals KM D 2014 Nat. Nanotechnology 9 86
[11] WangY and Sham L] 2012 Phys. Rev. B 85092403
[12] WangY and Sham L] 2013 Phys. Rev. B87 174433
[13] Tay T and Sham L] 2013 Phys. Rev. B 87 174407
[14] WangY, Chen W Q and Zhang F C 2014 Phys. Rev. B90 205110
[15] Blum K 2012 Density Matrix Theory and Applications (Berlin: Springer)
[16] ALFetter Kand J D Walecka K 1971 Quantum Theory of Many-Particle Systems (New York: McGraw-Hill)



http://dx.doi.org/10.1016/0304-8853(96)00062-5
http://dx.doi.org/10.1103/PhysRevB.54.9353
http://dx.doi.org/10.1103/PhysRevB.78.212405
http://dx.doi.org/10.1103/PhysRevB.79.094422
http://dx.doi.org/10.1038/nphys1362
http://dx.doi.org/10.1038/nnano.2013.145
http://dx.doi.org/10.1038/nmat3973
http://dx.doi.org/10.1098/rsta.2010.0336
http://dx.doi.org/10.1038/nnano.2014.8
http://dx.doi.org/10.1103/PhysRevB.85.092403
http://dx.doi.org/10.1103/PhysRevB.87.174433
http://dx.doi.org/10.1103/PhysRevB.87.174407
http://dx.doi.org/10.1103/PhysRevB.90.205110

	1. Introduction
	2. General formalism
	3. Spin-orbit torque
	3.1. Electron bath with Rashba SOI
	3.2. Electron spin polarization and torque
	3.3. Correlation function and damping

	4. Conclusion
	Acknowledgments
	Appendix A.
	Appendix B.
	References



