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Abstract
The dynamics ofmagnetization coupledwith an electron gas via s-d exchange interaction is
investigated by using the densitymatrix technique. Our theory shows that nonequilibrium spin
accumulation induces a spin torque and the electron bath leads to a damping of themagnetization .
For the two-dimensionalmagnetization thinfilm coupled to the electron gaswith Rashba spin-orbit
coupling, the result for the spin-orbit torques is consistent with previous semiclassical theory.
However, our theory predicts a damping of themagnetization, which is absent in semiclassical theory.
Themagnitude of the damping due to the electron bath is comparable to the intrinsic Gilbert damping
andmay be important in describing themagnetization dynamics of the system.

1. Introduction

In the study of spin-transfer torque (STT), it has been proposed [1, 2] that one canmanipulatemagnetic order
parameter dynamics by using a nonequilibrium electron bath instead of externalmagneticfields. The proposal
has already led to commercial products in spintronics engineering. Recently, there has beenmuch attention on
the ‘spin-orbit torque’(SOT), whichwasfirst proposed in theory [3, 4] and later confirmed in experiments [5–8]
(see [9, 10] for a comprehensive review).

After applying an external electric field to the electron gaswith spin-orbit interaction (SOI), a component of
the accumulated electron spin densitymisalignedwith the ferromagnetic ordering can be created [3, 4], which
will then induce afield-like torque. The SOTopens the possibility ofmanipulating themagnetic order parameter
in collinearmagnetic structures, and itmay efficiently reduce the critical current density formagnetization
switching [3, 4].

In the theoretical side, a full quantum theory has been proposed and developed to describe the dynamics of a
single-domainmagnet under continuous scattering by spin-polarized electrons. The quantumSTT theory
recovers the results of the semiclassical STT theory, and has revealedmore details about themagnetization
dynamics in the STT [11–13]. Therefore, it will be natural to apply a full quantum theory to study the
magnetization dynamics influenced by the SOI electron gas. Thismay be an extension of the quantumSTT
theory to SOT.

In the full quantum theory, the quantumdynamics of themagnetization can be described by the evolution of
its densitymatrix under the influence of the electron gas, which can be tuned by the external electric field. This
treatmentwill not only give themean-field effect on themagnetization dynamics by the electron bath, but it will
also include the damping of themagnetization due to the fluctuation of the electron spin. A similar strategy has
been exploited to investigate the photoexcited dynamics of the order parameter in a Peierls chain [14].

This paper is organized as follows. In section 2, we apply the densitymatrix technique to derive a general
formalism for themagnetization dynamics driven by electron bath through s-d exchange interaction. In
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section 3, we apply the general formalism to the special case where the spatially uniformmagnetization is
coupledwith a two-dimensional electron gaswith Rashba SOI, andwe calculate the spin-orbit torque and the
damping effect of the electron bath. Themain results are summarized and discussed in section 4.

2.General formalism

Weapply the densitymatrix technique to study the dynamics of themagnetization driven by the electron bath
via an s-d exchange interaction. The system is schematically illustrated infigure 1, where the electron bath can be
tuned by an external electricfield. TheHamiltonian of the total system is formally written as

= + +H H H H . (1)M e sd

Here,HM is theHamiltonian for themagnetization subsystem in terms of the local spin operators, μSi, at site i
with spin directions μ = x y z( , , ).He is theHamiltonian of the electron subsystem, andHsd describes the s-d
exchange interaction between themagnetization and the electron, where

∑ σ=
μ

μ μH J S . (2)sd

i

i i

,

, ,

Here, σ μi, represents the electron spin operator at site iwithout  2, and J is the exchange coupling strength.
Note that we have not specified the forms ofHM andHe yet, so the results belowwill be quite general.

The effect of the s-d exchange interaction,Hsd, is twofold. On one hand, themagnetization dynamics is
driven by the electron bath viaHsd, on the other hand, the electron states are also affected by themagnetization
configuration, which is in turn due toHsd. Since the time scale of the electron dynamics is usuallymuch faster
than that of themagnetization dynamics, wemay assume that the electrons under the bias voltage establish a
stationary nonequilibriumdistribution in a very short time interval, duringwhich the change of the
magnetization configuration is negligible and the nonequilibrium electron bath is approximated to be constant.
The validity of this assumption only holds if the spin-lattice interaction is stronger than the s-d exchange
interaction to relax the electron spin. Consider a short time interval, t t[ , ]0 , where the initial densitymatrices of
themagnetization and the electron bath are ρ t( )M 0 and ρ t( ),e 0 respectively. Then the initialmagnetization

configuration at each site is ρ=μ μS t S t( ) Tr[ ( )]i i M, 0 , 0 , and the initial electron densitymatrix, ρ t( ),e 0 is

determined by the bathHamiltonian σ= + ∑ μ μ μH H J S t( )B e i i i, , 0 , and the open boundary conditions.

To investigate themagnetization dynamics during the time interval t t[ , ]0 defined above, we redefine the

local spin operators, = +μ μ μS S t s( ) ^ .i i i, , 0 , Then theHamiltonian,H, in equation (1) can be rewritten as

= + +H H H V , (3)M B sd

with the interaction term

∑ σ=
μ

μ μV J ŝ . (4)sd

i

i i

,

, ,

During this time interval, the electron densitymatrix, ρ ,e may be approximated to be constant because of the
negligible change of themagnetization, and this can be justified in the limit →t t0. Assuming the total density
matrix as ρ ρ ρ= ⊗t t t( ) ( ) ( )M e 0 and to the second order of interaction strength, the equation for the density
matrix, ρ∼ t( ),M in the interaction picture is [15]

Figure 1. Schematic diagram for the lattice of localized spins (orange) coupled to the conduction electrons (blue) through s-d
exchange interaction. An external electric field, E, can be applied to tune the electron bath.
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Here, ⋯͠denotes the operators in the interaction picture. The electron spin polarization is
σ σ ρ= ∼ ∼

μ μt t t( ) Tr [ ( ) ( )],i e i e, , 0 and the electron spin-spin correlation function is
 τ σ σ τ ρ= ∼ ∼ ∼

μ ν μ νt t t( , ) Tr [ ( ) ( ) ( )]i j e i j e, ; , , , 0 , which is a function of τ−t only and satisfies the relation

 τ τ=μ ν ν μt t( , ) ( , )i j j i, ; , , ; ,
* . In principle, the solution of equation (5) gives the densitymatrix of the

magnetization in the time interval t t[ , ]0 under the influence of the electron bath, and it can be applied to study
the physical qualities that we are particularly interested in.

Based on equation (5), the dynamical equation for λS t( )l, = ρ∼ ∼
λS t tTr [ ( ) ( )]M l M, is obtained as




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∑

∑
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τ τ
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Here, ρ〈⋯〉 ≡ ⋯ tTr [ ( )]t M M , and the spin commutation relation λ μ S S[ , ]l i, , = δ ϵ∑ν λμν νi Sli l, has been exploited.
Thefirst term in the right-hand side of equation (6) gives the intrinsicmagnetization dynamics due toHM. The
second term is the spin torque termdue to the accumulation of the electron spin density, and the third term gives
the damping effect of the electron bath. If the operator νS t( )l, in the damping term is approximately replaced by
its expectation value, νS t( )l, , equation (6) becomes

∫

∑

∑

ϵ σ

ϵ τ τ τ

= +

+ −

λ λ
μ ν

λμν μ ν

μ ν ξ
λμν ν μ ξ ξ

 




t

S t
i

S H
J

t S t

J
S t t s

d

d
( )

1
, ( ) ( )

2
( ) d ( ) ( ), (7)

l l M
t

l l

j

l
t

t

l j j

, ,

,

, ,

2

2
, , ,

, , ; , ,
0

⎡⎣ ⎤⎦

where  τ−μ ξ t( )l j, ; , is the imaginary part of  τμ ξ t( , )l j, ; , , and τ = 〈 〉ξ ξ τs s( ) ^
j j, , .We introduce the kernel

function, γ t( ),which satisfies the relation γ =μ ξ μ ξd t dt t( ) ( )l j l j, ; , , ; , . The integral in the last term in equation (7)

is rewritten as ∫ τγ τ τ−μ ξ ξt Sd ( ) ˙ ( )
t

t

l j j, ; , ,
0

after integrating by parts and neglecting the boundary terms in the

limiting case, →t t0. It can be further simplified as Γ μ ξ ξṠl j j, ; , , under theMarkovian approximation,

τ ≈ξ ξS S t˙ ( ) ˙ ( )j j, , , with the coefficient Γ μ ξl j, ; , = ∫ τγ τ
δ

μ ξd ( )
t

l j0 , ; , for δ = −t t t0.

Based on the discussions above, equation (7) can bewritten in a compact form

γ= + ×
t

t
i

H t tS S B S
d

d
( )

1 ^
, ( ) ( ), (8)l l M

t
e l l

⎡
⎣⎢

⎤
⎦⎥

where γe is the gyromagnetic ratio; Bl is the effectivemagneticfield on the the local spin, Sl , originating from the
electron bath. The μ-component of B ,l is expressed as

∑
γ

σ
γ

Γ= +μ μ
ξ

μ ξ ξ 
B t

J
t

J
t S t( ) ( )

2
( ) ˙ ( ). (9)l

e
l

e j

l j j, ,

2

2
,

, ; , ,

Thefirst term in (9)will give the torque termdue to the electron spin accumulation, which has been discussed
extensively in previous studies; the second termwill give the damping effect of the electron bath on the
magnetization dynamics, which only emerges in the quantum treatment. The nonlocal feature of the damping
term can be found here, which depends on the spatial correlation of Γ μ ξl j, ; , .

So far we have established a general dynamical equation for themagnetizationwhen it is coupled to the
electron bath via s-d exchange interaction.Here, both theHamiltonian for themagnetization subsystem,HM,
and theHamiltonian for the electron subsystem,He, have not been specified yet. The treatment is similar to the
previouswork on the order parameter dynamics in the photoexcited Peierls chain [14]. In the next section, we
apply this general formula to study themagnetization dynamics of a two-dimensional ferromagnetic thinfilm
under the influence of an electron gaswith Rashba SOI (i.e., amodel system for SOT).
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3. Spin-orbit torque

3.1. Electron bathwithRashba SOI
Weconsider a special system studied byManchon andZhang [3] for SOT. The two-dimensionalmagnetization
thinfilm in the x-y plane consists of  = ×M N lattice sites with the lattice constant a, andwewill use the
discrete notations in both real and reciprocal space. Themagnetization is assumed to be uniformdue to strong
exchange interaction. The lack of inversion symmetry in the z-direction induces the Rashba spin-orbit
interaction in the two-dimensional electron gas. In this case, theHamiltonian for the electron bath is given as [3]

σ σ
α

= + × +


   ( )H
m

J
p

p z S
2

^ · · , (10)B
e

R
2

*

where p is the electronmomentumoperator; me
* is the effectivemass of electrons, αR is the Rashba interaction

strength, and =S Si is the localized spin at each site. For θ ϕ θ ϕ θ= SS (sin cos , sin sin , cos ), the energy-
dispersion relation of the electron is

Δ= ±±


E
k

m2
. (11)

e
k k,

2 2

*

Here, we have denoted the electronwavevector φ φ= kk (cos , sin ), and

Δ α α θ ϕ φ= + − −J S k JS k2 sin sin( ) .R Rk
2 2 2 2

The corresponding electron eigenstates, ∣ ±〉k, , are



Θ

Θ
± =

Φ± −

±
k,

1
e

cos
2

e

sin
2

, (12)k r

k

k

i ·

, i

,

k
⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

where the angles Θ ±k, and Φk are determined by

Θ Δ θ

Δ Δ θ
Θ Δ θ

Δ Δ θ

Φ
θ ϕ α φ

Δ θ

Φ
θ ϕ α φ

Δ θ

=
−

∓

=
± −

∓

=
+

−

=
−

−

±

±

J S

JS

JS

JS

JS k

J S

JS k

J S

cos
2

cos

2 2 cos
,

sin
2

cos

2 2 cos
,

cos
sin cos sin

cos
,

sin
sin sin cos

cos
.

R

R

k k

k k

k k

k k

k

k

k

k

,
2 2 2 2

2

,

2

2 2 2 2

2 2 2 2

The spin polarization vector for the state ∣ ±〉k, is ±Pk, = Θ Φ Θ Φ Φ± ± ±(sin cos , sin sin , cos )k k k k k, , , .
The statistical properties of the electron bath are determined by the probability distribution function, f ,sk,

for the state ∣ = ±〉sk, , which can be tuned by the external field. If an electric field, E, is applied, the
nonequilibriumdistribution of the electron states will be established due to the random scattering potential by
impurities [3]. The distribution function, f ,sk, is determined by the Boltzmann equation

 − =

e

f f
E

· . (13)s c sk k k, ,
⎡⎣ ⎤⎦

The collision integral,  f[ ],c sk, describes the relaxation of the occupied state ∣ 〉sk, and can be treated by the
relaxation time approximation, namely,


τ

= −
−

f
f f

. (14)c s
s s

k
k k

,
, ,

0⎡⎣ ⎤⎦
Here, f sk,

0 is the equilibriumdistribution function, and an isotropic relaxation time, τ, has been assumed [3]. To

thefirst order of the electric field, the solution of equation (13) is = +f f gs s sk k k, ,
0

, , where the out-of-equilibrium
part induced by the external electric field is

τ=
∂

∂
g

f

E
eE v· , (15)s

s
sk

k
k,

,
0

,
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with the electron velocity =  Ev s sk k k,
1

, . Such a treatment of the nonequilibrium electron distributionwas also
exploited in previous semiclassical theory [3].

3.2. Electron spin polarization and torque
With the nonequilibriumdistribution function f sk, given above, the electron spin polarization, σ μ,l, at site l and

the correlation function,  τμ ξ t( , ),l j, ; , in equation (9) can be calculated, and the torque and damping effect due

to the electron bath can be obtained. In the second quantization representation of the basis set ∣ 〉sk{ , }, the
operator σ μl, is expressed as

 ∑σ χ=μ
μ

′ ′
′ ′

′−
′ ′ ( ) c c

1
e ^ ^ ,l

s s
s s s s

k k
k k

k k r
k k,

, ; ,
, ; ,

i ·
,

†
,

l

where thematrix element

χ
Θ Θ

σ

Θ

Θ
=μ Φ

μ

Φ

′ ′

′ ′ −

′ ′

′

cos
2

e , sin
2

cos
2

e

sin
2

.s s

s s

s

s
k k

k k

k

k
, ; ,

, i ,

, i

,

k

k⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

Then the electron spin polarization, σ μ,l, is

 ∑ ∑σ χ= =μ
μ μf P f

1 1
. (16)l

s
s s s

s

s s
k

k k k
k

k k,

,
, ; , ,

,

, ,

For the physically relevant case α ≪k JSR , the approximate value of ±Pk, to thefirst order of α k

JS
R is

S S S S

S S S S

S S S S S

α α

α α

α α

= ±

+ + −

− − −

+ −

±

( )

( )
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k
JS

k
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k
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k
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k
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k

P
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1 .

x
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R
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y
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y x
R
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R
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k,

2

2

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

Here, the unit vector for themagnetization is denoted as S θ ϕ θ ϕ ϕ= (sin cos , sin sin , cos ).
For the electric current density, ϑ ϑ= jj (cos , sin , 0)e e , the nonequilibrium spin polarization, σδ ,l which is

perpendicular to S, is calculated to be (appendix A)

S S S

S S S

S S S S

σδ
α

ϑ ϑ

ϑ ϑ

ϑ ϑ

= −

+ −

− − −
−


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m j a

e E

cos sin 1

cos 1 sin

cos sin
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y x y

y z x z

* 3

2

2

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟

where Ef denotes the Fermi energy. The torque, T ,l is then obtained as

S

S

S S

α
ϑ
ϑ

ϑ ϑ

α
=

− −
= × ×

  ( )
JS m j a

e E

J m a

e E
T z j S
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sin

cos sin

^ .l
R e e

f

z

z

x y

R e

f
e l

* 3

2

* 3

2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

This result reproduces the formof SOTobtained before [3], but themagnetization vector is not restricted in the
two-dimensional x-y plane in our derivations. This is easily understood from the effectiveHamiltonian (10),
where the nonequilibriumdistribution of electron states will produce an extra electron spin polarization along
the direction ×z j^

e.

3.3. Correlation function anddamping
Wenow calculate the correlation function  τμ ξ t( , )l j, ; , , which gives the damping term for themagnetization

dynamics due to the electron bath. Since = − c t c^ ( ) ^ es s
E t

k k, ,
i sk, , the correlation function  τμ ξ t( , )l j, ; , is formally

written as
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
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We see that  τμ ξ t( , )l j, ; , is the function of −r rl j and τ−t due to the space and time translation invariance for
the investigated system.

For simplicity, we estimate  τμ ξ t( , )l j, ; , with several approximations. First, we assume that the phase factor,
′− −e ,k k r ri( )·( )l j will cause the cancellation of the summations over k and ′k if ≠r rl j, thus   δ=μ ξ μξl j lj, ; , . Second,

χ μ
′ ′s sk k, ; , are calculated to the zeroth order of α k

JS
R for the relevant case α ≪k JSR , where the electron spin states are

k-independent–that is,

χ θ ϕ θ ϕ θ
χ θ ϕ ϕ θ ϕ ϕ θ

= ±
= − − − +

±±

+− i i

(sin cos , sin sin , cos ),

( cos cos sin , cos sin cos , sin ).

Furthermore, we calculate the correlation function 〈 〉‴ ‴′ ′ ″ ″
c c c c^ ^ ^ ^

s s s sk k k k,
†

, ,
†

, with the electron bath at equilibrium,
where the effect of the nonequilibrium electric current induced by the external fieldwill be neglected. This
enables us to apply theWick contraction [16] to simplify the calculations. The negligence of the dependence of
the damping coefficient on the Rashba SOI and the nonequilibrium electric current is valid if the dynamical
equation (8) is kept to the first order of these two factors.With the above approximations, we get
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∑ ∑

∑

χ χ χ χ

χ χ

= +

+ −

μξ
μ ξ μ ξ

μ ξ

′ ′
′ ′ ′ ′

′ ′

−
′ ′ ′ ′

′ ′  ( )( )

t f f f

f f

( )
1 1

1
e 1 ,

s
ss ss s

s s
ss s s s s

s s

E E t
ss s s s s

k
k

k k
k k

k k
k k

2
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, ,

2
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i
, ,

s sk k, ,

where ∣ 〉sk, and ∣ ′ ′〉sk , are different states.
Since the kernel function, γ μ ξ t( ),l j, ; , is given by the relation γ =μ ξ μ ξd t dt t( ) ( )l j l j, ; , , ; , , where

I =μ ξ μ ξt t( ) [ ( )]l j l j, ; , , ; , , their Fourier transformations are related by γ ω ω=μ ξ ω μ ξ( ) ( )l j
i

l j, ; , , ; , . The Fourier

transformation of  μ ξ t( )l j, ; , is obtained as (appendix B)

 ∑ω δ
π

χ χ ω χ χ ω= − −μ ξ
μ ξ μ ξ

′
′ ′ ′ ′

 ( )m a

i
g g( )

2 2
( ) * ( ) ,l j lj

e

s s
ss s s s ss s s s, ; ,

* 2

2

2

,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡
⎣⎢

⎤
⎦⎥

where the function ωg ( )s is defined as

ω
ω

ω ω
ω

=
<

< < −
− > −


 


g E sJS

E sJS E sJS
( )

0, 0;
, 0 ;

, .
s

f

f f

⎧
⎨⎪
⎩⎪

Then the damping kernel function, γ μ ξ t( )l j, ; , , can be calculated by the inverse Fourier transformation from

γ ωμ ξ ( )l j, ; , , which results in (appendix B)

S∑ ∑γ δ
π

δ ϵ= +μ ξ μξ
ν

μξν ν
− +


t

m a
g t is g t( )

2

1

2
( ) ( ) . (18)l j lj

e

s
s s, ; ,

* 2 2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

Here, ±g t( )s
= ∫ ω ω ω

−∞

+∞ ± −gd ( )es
ti and ω±g ( )s = ω ω± −

ω g g( ( ) ( ))s s
1 , as schematically shown infigure 2.

Then the coefficient, Γ μ ξl j, ; , in equation (9) is obtained as

S∑Γ δ
π

Γ δ Γ ϵ= +μ ξ μξ
ν

μξν ν
m a

2
, (19)l j lj

e
, ; ,

* 2 2

(1) (2)
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

with ∫Γ τ τ= ∑ δ −gd ( )s

t

s
(1) 1

2 0
and Γ(2) = ∫ τ τ∑ δ +s gd ( )i

s

t

s2 0
. Then the damping part in equation (8) can be

explicitly written as

π
Γ Γ= × +

 ( )Jm a
SD S S S2

2
˙ ˙ , (20)l

e
l l l

* 2

2

2

(1) (2)
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

which is independent of the Rashba constant and the electric current due to our approximations above.
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Thefirst term in (20)will give the damping effect, which drives the local spin towards the directionwith the
lower energy; the second term in (20)will give a renormalized factor in equation (8). Assuming that ∼J 1eV,

∼m me e* , ∼a 1Å, one gets a rough estimation of themagnitude order for the factor ∼
π

−


( ) 10
Jm a

2
2 3e

* 2

2
; thus the

damping effect due to the electron bath is comparable to the intrinsic Gilbert damping of some ferromagnetic
materials. This damping effect can become important to understanding the dissipative features of the
magnetization dynamics driven by SOT.

4. Conclusion

In conclusion, we have applied the densitymatrix technique to formulate themagnetization dynamics of a
system consisting of localmagneticmoments influenced by an electron gas through s-d exchange interaction. In
this approach, themagnetic subsystem is treated as an open quantum system, and the electron gas acts as a
nonequilibriumbath tuned by the external electricfield. The spin torque due to the nonequilibrium electron
spin accumulation and the damping effect of the electron bath have been taken into account simultaneously.

We applied the developed formula to themodel system for spin-orbit torque, where the two-dimensional
magnetization film is coupled to the Rashba electron gas through s-d exchange interaction.We calculated the
spin-orbit torque, and the results are consistent with the previous study. However, ourmethod does not require
themagnetization direction to be in the two-dimensional plane, as the previous study dose. Our approach
enables us to obtain the damping effect due to the electron bath, which is a new feature absent in semiclassical
theory. The damping caused by the electron bath is estimated to be comparable to the intrinsic Gilbert damping,
andmay be important to describing themagnetization dynamics driven by SOT.

In brief, this work has extended the previous semiclassical theory for SOT to amore complete description.
Further applications of this approach are expected to help us understand andmanipulate themagnetization
dynamics through electron gas in other complex cases.
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AppendixA. Electron spin polarization

Wefirst assume that the electric field is applied along the x-direction. Then

 ∑ ∑σ Σδ
α

= = −+ −g g g k
JS

P
1 1

( ) ,l

s
s s x

R
x

k
k k

k
k k

,
, , , ,

Figure 2. Schematic diagram for ω±g ( )s . Blue line for = +s , and red line for = −s . Note that +gs is an odd function ofω and
ω−g ( )s

is an even function ofω, and they approach 0when ω∣ ∣ → ∞.
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where S S S S SΣ = − −( , (1 ), )x x y y y z
2 . The corresponding electric current density is

 ∑ ∑= − ≈ − 
j

e

a
g v

e

m
g k( )

1
,e

s
s s x

e s
s x

k
k k

k
k3

,
, ,

*
,

,

and the spin current density is

S ∑ ∑= ≈ −+ −
 

a
g v

m a
g g kj P

2
( )

2

1
( ) .s

s
s s x k s

e
x

k
k k

k
k k3

,
, , ,

2

* 3 , ,

Thus, a rough relation is obtained as

σ Σδ
α

= −


m j a

e E
,l

R e e

f
x

* 3

where the relation S≈ −  jjs
JS

eE e2 f
has been used here.

Similarly, if the electric field is applied along the y-direction, the non-equilibrium spin polarizationwill be

σ Σδ
α

= −


m j a

e E
,l

R e e

f
y

* 3

with S S S S SΣ = − − −(1 , , )y x x y x z
2 . Therefore, for the electric current density ϑ ϑ= jj (cos , sin , 0)e e , we get

S S S

S S S

S S S S

σδ
α

ϑ ϑ

ϑ ϑ

ϑ ϑ

= −

+ −

− − −
−



( )
( )

m j a

e E

cos sin 1

cos 1 sin

cos sin

.l
R e e

f

x y x

y x y

y z x z

* 3

2

2

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

Appendix B. Correlation function anddamping kernel

The imaginary part of μξ t( ) is given as

I

I

 

∫ ∫

∫ ∫

∑

∑

π
χ χ ϵ ϵ

π
ϵ ϵ χ χ

=

= ′

= ′ − +

μξ μξ

μ ξ ϵ ϵ

μ ξ ϵ ϵ

′
′ ′

∞
− ′

′

∞

′ ′
− ′









( )

( )

t t

m a

m a i
h c

( ) ( )

2
d d e

2
d d

2
e . . .

e

s s
ss s s

sJS

E

E

t

e

s s
sJS

E

E
ss s s

t

* 2

2

2

,

* 2

2

2

,

f

f

i

f

f

i

⎡⎣ ⎤⎦
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ⎡

⎣⎢
⎤
⎦⎥

Here, f sk, is approximated as the zero-temperature Fermi distribution function, and the relation

 ∫ ∫ ϵ∑ → =
π π

kd da m a
k

1

(2 )
2

2
e

2

2

* 2

2 has been used. Its Fourier transformation,  ωμξ ( ), is then

 ∫

∫ ∫∑

∑

ω
π

π
ϵ ϵ χ χ δ ω ϵ ϵ χ ξ δ ω ϵ ϵ

π
χ χ ω χ χ ω

=

= ′ − + − ′
+ +

′ −

= − − −

μξ μξ
ω

μ ξ μ ξ

μ ξ μ ξ

−∞

+∞

′

∞

′ ′ ′ ′

′
′ ′ ′ ′

  




( )

( )

t t

m a i i

m a i
g g

( )
1

2
d ( )e

2
d d

2 2
*

2 2
( ) * ( ) ,

t

e

s s
sJS

E

E
ss s s ss s s

e

s s
ss s s s ss s s s

i

* 2

2

2

,

* 2

2

2

,

f

f

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡
⎣⎢

⎤
⎦⎥

where the function ωg ( ) is defined as

ω
ω

ω ω
ω

=
<

< < −
− > −


 


g E sJS

E sJS E sJS
( )

0, 0;
, 0 ;

, .
s

f

f f

⎧
⎨⎪
⎩⎪

Therefore,

R I∑γ ω δ
π

χ χ ω χ χ ω= +μ ξ
μ ξ μ ξ

′
′ ′

−
′ ′

+

 ( ) ( )m a
g i g( )

2

1

2
( ) ( ) ,l j lj

e

s s
ss s s s ss s s s, ; ,

* 2 2

,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ⎡⎣ ⎤⎦
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where ω ω ω= ± −
ω

±
g g g( ) ( ( ) ( ))s s s
1 , and γ μ ξ t( )l j, ; , is calculated as

R I

∫

∑

∑ ∑

γ ωγ ω

δ
π

χ χ χ χ

δ
π

δ ϵ

δ δ
π

=

= +

= +

≈

μ ξ μ ξ
ω

μ ξ μ ξ

μξ
ν

μξν ν

μξ

−∞

+∞
−

′
′ ′

−
′ ′

+

− +

−







( ) ( )

t

m a
g t i g t

m a
g t is S g t

m a
g t

( ) d ( )e

2

1

2
( ) ( )

2

1

2
( ) ( )

2
( ),

l j l j
t

lj
e

s s
ss s s s ss s s s

lj
e

s
s s

lj
e

, ; , , ; ,
i

* 2 2

,

* 2 2

* 2 2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ⎡⎣ ⎤⎦

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where ±g t( )s
= ∫ ω ω ω

−∞

+∞ ± −gd ( )es
ti andwe have used the expressions

∑

χ χ χ χ

χ χ χ χ δ ϵ

= =

= = − +

μ ξ μ ξ
μ ξ

μ ξ μ ξ
μξ μ ξ

ν
μξν ν

+ + + + − − − −

+ − − + − + + −( )

S S

S S i S

.

* .

, , , ,

, , , ,
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