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Abstract: Traffic safety has become a growing concern in both developed and developing 

countries. Although extensive analyses of road segments and intersections located in urban 

road networks have examined the role of many factors that contribute to the frequency and 

severity of crashes, the explicit relationship between street pattern characteristics and traffic 

safety remains underexplored. In this study, using a zone-based Hong Kong database, we 

use Space Syntax to quantify the topological characteristics of street patterns and 

investigate the role of street patterns and zone-related factors in zone-based traffic safety 

analysis. We adopt a joint probability model to analyze crash frequency and severity in an 

integrated modeling framework and use the maximum likelihood estimation method to 

estimate the parameters. In addition to the characteristics of street patterns, we consider 

speed, road geometry, land-use patterns, and temporal factors. We also include vehicle 

hours as an exposure proxy in the model to make crash frequency predictions. The results 

indicate that the joint probability model can reveal the relationship between zone-based 

traffic safety and various other factors, and that street pattern characteristics play an 



important role in crash frequency prediction. 
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1 Introduction 

Traffic safety has become an increasing global concern. In 2010, about 1.24 million 

people were killed in traffic crashes around the world [1]. It is important to identify and 

quantify the factors that contribute to crash frequency and severity to improve traffic safety. 

Although extensive safety analyses of road segments and intersections located in urban 

road networks have been conducted to examine the role of the various factors that 

contribute to the frequency and severity of crashes, the explicit relationship between street 

pattern characteristics and traffic safety has rarely been explored. 

RIFAAT et al. [2-5] conducted a series of studies to explore the effects of street 

patterns on the occurrence and severity of single-vehicle, two-vehicle, pedestrian/bicycle, 



and motorcycle crashes. They chose the City of Calgary in Canada as a case study. They 

classified street patterns into four categories: gridiron, warped parallel, loops and lollipops, 

and mixed patterns. They found that limited access patterns were associated with lower 

crash rates than gridiron patterns. LOVEGROVE and SUN [6] examined the effect of street 

patterns on road safety at the community level. They examined five road networks to 

identify road safety: fused grid, commonly used grid, cul-de-sac, 3-way offset, and Dutch 

sustainable road safety patterns. They found that fused grid and 3-way offset patterns were 

safer than commonly used grid, cul-de-sac and Dutch sustainable road safety patterns. 

These previous studies were limited in that their street pattern classification 

methods were based on the experience of the researchers, and hence may be prone to 

subjectivity and uncertainty, due to the unavailability of quantitative street pattern indices. 

Moreover, their studies examined either the frequency or severity of crashes. The factors 

that contribute to both crash frequency and severity are important to clarify overall safety 

performance and improve traffic safety. 

In this study, we adopt an innovative street pattern modeling technique known as 

Space Syntax [7][8], which we use to estimate the street pattern characteristics of 131 urban 

zones in Hong Kong. We select these urban zones from the traffic analysis zones (TAZ) 

defined in Travel Characteristics Survey 2002 [9]. The main objective of this study is to 

explore the effects of street patterns (in terms of their integration in Space Syntax) on both 

the frequency and severity of crashes using a joint probability regression model [10]. In 

addition to street patterns, we collect and explore the risk factors (road density [11], 



junction density [12][13], speed [14][15] and land-use patterns [16][17]) and temporal 

factors [18] of the study zones during 2011 and apply them as control variables. 

The remainder of this paper is organized as follows. Section 2 describes the data 

collection process. Section 3 discusses the structure of the joint probability model. Section 

4 summarizes the results of our investigation and offers a discussion. Section 5 presents the 

conclusions and future research directions. 

2 Data 

2.1 Street Pattern Measures 

We use Space Syntax to derive several topological characteristics such as 

connectivity, depth, and integration from the 131 study zones in Hong Kong. Connectivity 

refers to the number of lines that directly intersect the given line. Depth is defined as the 

average distance from any other line in terms of the number of links. Integration refers to 

the accessibility of a whole road network, which is derived by the mean depth. 

We define and estimate the various characteristics based on the axial map using 

lines derived from the traditional maps, with nodes and links representing the space 

correlation of the streets. 
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where d (an integer) denotes the shortest distance from the ith node, k is the number of 

neighborhoods, Nd denotes the number of nodes with the shortest distance d, and l denotes 

the maximum shortest distance. Furthermore, 1 k l  . k is usually equal to 3 when 



calculating the local depth, and the connectivity is equivalent to the local depth if 1k  . 

We define the mean depth, iD , as the average distance from the ith node to the 

other nodes. The formula for calculating the mean depth is 
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and D is the average of iD . 

The integration value in Space Syntax is calculated as 
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where n is the number of nodes within the system and 

      2
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Integration is correlated with the reciprocal of the mean depth, i.e., the integration 

value is high when the depth is low and vice versa. Therefore, integration can measure the 

accessibility of the road network, which is used to represent the street pattern characteristics 

in this study. 

According to the layout of the Hong Kong road network, the study zones can be 

classified into three graphical categories: grid, deformed grid, and irregular [19]. We choose 

three samples for each category. Table 1 shows the integration of the road network for each 

sample zone. The integration factor quantitatively represents the street pattern, which helps 

describe any type of street pattern. 

Table 1 Integration of Nine Samples 

 G1 G2 G3 D1 D2 D3 I1 I2 I3 



Network 

Integration 3.624 1.997 1.773 0.915 1.046 0.909 0.768 0.955 0.891

Note: G = grid; D = deformed grid; I = irregular. 

2.2 Crash Data 

We obtain the crash frequency and severity data from the Traffic Information 

System (TIS), which is maintained by the Hong Kong Police Force and Hong Kong 

Transport Department. The TIS involves crash-related information, including crash, vehicle 

and casualty information. In the TIS, crashes are classified into three categories according 

to severity level: fatal, serious, and slight, as defined by PEI et al. [10]. In this study, we 

combine the fatal and serious crashes as killed and seriously injured (KSI) crashes that 

cause serious harm to health and wealth, and attempt to determine the contributory factors 

that correspond to KSI and slight crashes. Figure 1 shows the distribution of crashes that 

occurred in the 131 study zones located in the urban area of Hong Kong during 2011. Of 

the 6,864 crashes that occurred, 884 (12.9%) were KSI crashes. 

2.3 Speed Data 

Speed is generally considered a factor that determines crash frequency and severity. 

Speed data collection is thus essential when exploring the effect of speed on traffic safety. 

In this study, we derive vehicular speeds from 480 GPS-equipped taxis traveling in the 

roadway network in Hong Kong. Each GPS-equipped taxi transmits instantaneous 

information about the location, speed, and travel direction to the control center every 30 

seconds. We use the Journey Time Survey data obtained from the Department of 



Transportation to verify the validity of the taxi speed data and find that taxi speed is a 

reasonable proxy for actual travel speed. To reveal the non-linear relationship between 

speed and safety performance, we classify the average travel speed into four categories: low 

(<20 km/h), medium (20-40 km/h), medium-high (40-60 km/h), and high (>60 km/h). 

 
Fig. 1 Crash distributions 

2.4 Exposure 

According to a previous study of the relationship between speed and road safety 

[20], time exposure measured by vehicle hours (VH) is a more reasonable proxy for 

exposure in this study.  

In terms of the total average annual daily traffic (AADT), traffic volumes are 

important for calculating exposure. We obtain the AADT data and its temporal and 

directional multiplicative factors from the Hong Kong Annual Traffic Census (ATC) system, 

which is maintained by the Transport Department of Hong Kong [21][22]. The ATC system 

provides the hourly traffic volume for approximately 100 core station roads around Hong 

Kong. According to a study conducted by WONG and WONG [23, 24], we adopt a linear 



data projection method to combine the AADT and taxi GPS dataset. First, we calculate the 

scaling factors for each ATC core station. Second, we predict the scaling factor for each 

analyzed zone according to the spatial correlation of the related core stations. Consequently, 

we estimate both the hourly traffic spots within each zone and the time exposure as it 

relates to the last time for each spot, which is supposed to be equal to the update time of the 

taxi GPS data. We incorporate a logarithmically transformed VH into the joint probability 

model to explore the effect of exposure time on crash frequency. 

2.5 Summary Statistics of Variables 

To examine the role of the street patterns and zone-related factors that contribute to 

traffic safety at a more disaggregated level, the database is organized for every 4-hour 

period: 07:00-11:00 (morning), 11:00-15:00 (noon), 15:00-19:00 (afternoon), 19:00-23:00 

(evening), 23:00-03:00 (middle of the night), and 03:00-07:00 (dawn). 

Finally, to explore the effect of street patterns on traffic safety, we control various 

relevant factors in the model, including integration, speed, road geometry, land-use patterns, 

and temporal factors. In multivariate analysis, it is important to assume that all of the 

explanatory variables are statistically independent. To eliminate this problem, we calculate 

the correlations between the explanatory variables. All of the values are less than 0.60, 

indicating no evidence of a serious correlation problem. Table 2 illustrates the descriptive 

statistics of the factors included in the final models. 

Table 2 Summary Statistics of Variables 

 Min Max Mean S.D. 
Cou
nt 

Ratio 



Number of observations=786       
Total crashes 0 53 8.733 7.720   
KSI crashes 0 7 1.125 1.349   
Integration 0.479 3.624 1.146 0.428   
Road density (km/km2) 21.198 109.392 50.074 14.962   
Junction density  
(Number of intersections per km) 

0.708 8.227 2.680 1.379   

Ln(VH) 5.371 13.516 11.044 1.250   
Low speed (0-20 km/h)     295 37.5% 
Medium speed (20-40 km/h)     362 46.0% 
Medium-high speed (40-60 km/h)     115 14.6% 
High speed (60-80 km/h)     14 1.8% 
07:00-11:00     131 16.7% 
11:00-15:00     131 16.7% 
15:00-19:00     131 16.7% 
19:00-23:00     131 16.7% 
23:00-03:00     131 16.7% 
03:00-07:00     131 16.7% 
Residential     462 58.7% 
Commercial     150 19.1% 
Mixed land     102 13.0% 
Other     72 9.2% 

3 Method 

We establish a joint probability model [10] to model crash occurrences and severity 

simultaneously in an integrated modeling framework, and apple the maximum likelihood 

estimation simulation method to estimate the relevant parameters. 

A count data model that takes the form of either a Poisson regression model or a 

negative binomial regression model is usually applied to explore the effects of related 

factors on crash frequency. In this study, the accident frequency data is over-dispersed (i.e., 

the variance of the data is significantly greater than its mean, violating the assumption 

made in the Poisson regression model). Therefore, we adopt the negative binomial 

regression model to predict the crash frequency. The formulation of the negative binomial 

distribution is defined as 
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where  /i iu      and 1/  . We define the expected accident frequency i  as a 

function of the independent variables such that   exp ln VHi iX   , where Xi is the 

vector for the independent variables, θ is the vector for the estimable coefficients, and VH 

is the time exposure. 

Two severity levels, KSI and slight, are quantified in this study. We establish a 

binomial logit model based on the frequency of KSI crashes, which we use as the 

dependent variable for the crash severity prediction. 

Let KSI
ik  denote the number of crashes at the KSI severity level. We assume that 

KSI
ik  follows a binomial distribution with parameters KSI

i  and iy , as 

 KSI KSI ,i i ik Binomial y  with the probability function 
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where iy  represents the total crashes and KSI
i  represents the probability of KSI crashes. 

We apply a logit model to estimate the associations between the binomial 

probability KSI
i  and the independent variables, which are defined as 
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where KSI  is the vector for the corresponding coefficients. 

Consequently, the joint probability function for the frequency and severity of 

crashes is defined as 
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4 Results and discussion 

We use the maximum likelihood estimation simulation method to estimate the 

relevant parameters. Table 3 presents the estimation results of the joint probability model. 

In general, the goodness-of-fit statistics confirm that the model fits the data well. 

Table 3 Joint Probability Model Results 

 Crash frequency Crash severity 
β Sig. β Sig. 

Number of observations=786 
Explanatory factors 
Constant -8.276** 0.000 -1.281** 0.000 
Integration -0.144* 0.072 -0.007 0.940 
Road density -0.012** 0.000 -0.003 0.237 
Junction density 0.174** 0.000 -0.043 0.254 
High speed (60-80 km/h) 0.713** 0.007 0.197 0.563 
Medium-high speed (40-60 km/h) -0.192* 0.077 0.279* 0.054 
Medium speed (20-40 km/h) -0.294** 0.000 0.134 0.116 
Low speed (0-20 km/h) (control) 
07:00-11:00 -0.087 0.461 -0.183 0.259 
11:00-15:00 -0.211* 0.072 -0.423** 0.010 
15:00-19:00 -0.247** 0.035 -0.439** 0.007 
19:00-23:00 -0.173 0.140 -0.438** 0.009 
23:00-03:00 -0.392** 0.001 -0.432** 0.022 
03:00-07:00 (control) 
Commercial -0.439** 0.000 -0.246** 0.047 
Mixed land -0.399** 0.000 -0.096 0.338 
Other -0.517** 0.000 -0.217 0.207 
Residential (control)
Over-dispersion parameter 
Α 0.505** 
Goodness-of-fit  
Log-likelihood -5080  
P-value <0.0001

**Statistically significant at the 5% level 



*Statistically significant at the 10% level 

The main objective of this study is to determine how street pattern characteristics 

related to integration are associated with crash frequency and severity. As shown in Table 3, 

integration is negatively correlated with crash frequency [β=-0.144, p<0.10] at the 10% 

significance level. As shown in Table 1, the higher integration value implies a more 

integrated system and a better spatial accessibility and visual field. These findings are 

helpful in avoiding crash occurrences and thereby decreasing the crash frequency. 

In addition to integration, other road characteristics, particularly road density, are 

negatively correlated with the crash frequency [β=-0.012, p<0.01] at the 5% significance 

level, indicating that the higher the road density, the lower the crash frequency. This finding 

may be also related to road accessibility. As expected, junction density is positively 

correlated with the crash frequency [β=0.174, p<0.01] at the 5% significance level. 

Consistent with previous studies by PRIYANTHA WEDAGAMA et al. [12] and XU and 

HUANG [13], our results show that increased junction density is significantly associated 

with a higher total crash frequency. This finding is reasonable because intersections are 

hazardous locations due to the number of potential conflict points and unexpected driver 

behavior. 

In addition to road characteristics, we explore the effect of average speed on crash 

frequency and severity and consider four speed levels: low (<20 km/h), medium (20-40 

km/h), medium-high (40-60 km/h), and high (>60 km/h). The average speed shows a 

U-shaped effect. Compared with low speed, medium [β=-0.294, p<0.01] and medium-high 



speeds [β=-0.192, p<0.10] are negatively correlated with the crash frequency at the 5% and 

10% significance levels, respectively. High speed is positively correlated with the crash 

frequency [β=0.713, p<0.01] at the 5% significance levels. Consistent with previous studies 

by GLADHILL and MONSERE [14] and GARBER and GADIRAU [25], our results show 

that higher average speeds (low to medium-high) are associated with a lower accident 

frequency. Favorable driving conditions may account for the reduction in crash frequency 

at higher average speeds. The roads inside the communities are higher-grade roads, the road 

infrastructures are relatively perfect, and the road environment is favorable for driving, 

which results in better vehicle control and decreases the crash frequency. However, as 

speeds increase, the result reverses due to the decreased time available for driver reaction 

and corresponding defensive vehicle maneuvers. In terms of crash severity, all three of 

these levels of speed increase crash severity, but only the result for medium-high speed is 

statistically significant [β=0.279, p<0.10] at the 10% significance level; the results for the 

other speeds are statistically insignificant. This finding is consistent with previous studies 

by HAUER [15] and NATIONAL RESEARCH COUNCIL [26]. The higher crash severity 

is a result of the higher vehicle speeds, which translate to larger impact forces in collisions. 

We consider four land-use patterns to identify their influence on crash frequency 

and severity: residential areas, commercial areas, mixed-land areas, and other areas. 

Compared with residential areas, the likelihood of crashes occurring in commercial areas 

[β=-0.439, p<0.01], mixed-land areas [β=-0.399, p<0.01], and other areas [β=-0.517, 

p<0.01] in Hong Kong is significantly lower and at the 5% significance level. In terms of 



crash severity, commercial areas [β=-0.246, p<0.05] are significantly safer than residential 

areas at the 5% significance level. Contrary to the findings of previous studies by KIM et al. 

[16] and OUYANG and BEJLERI [17], we find that the presence of additional overpasses 

may account for the crash frequency reductions in commercial and mixed-land areas of 

Hong Kong. As shown in Figure 2, these overpasses force pedestrians to cross the road at 

points separated from vehicles, thereby ensuring pedestrian safety. Moreover, in most of the 

residential areas in Hong Kong, ground-floor shops are popular and attractive to 

surrounding residents (as shown in Figure 3), inducing more pedestrian involvement in 

crashes. 

  
 Fig. 2 Commercial area in Hong Kong   Fig. 3 Residential area in Hong Kong 

We include the temporal factor in the model to represent the crash heterogeneity at 

different times of day. The crash rate and level of KSI risk are higher at dawn than they are 

at other times of the day. According to LI et al. [18], this is probably a result of the 

dangerous behavior of drivers at night, such as driving while fatigued, aggressive driving, 

and driving under the influence of alcohol. 

5 Conclusions 



This study explores the role of the topological characteristics of street patterns in 

zone-based traffic safety analysis. We derive the integration index via Space Syntax and use 

it to represent the structures of the street patterns within each TAZ. We apply a joint 

probability model to estimate crash frequency and severity in an integrated modeling 

framework. We find that street pattern characteristics play an important role in zone-based 

traffic safety analysis. Crash severity is significantly related to integration, road density, 

junction density, average speed, land-use patterns, and temporal factors. With respect to 

crash severity, commercial areas are associated with slighter crash severity and increased 

speed is significantly associated with an increase in crash severity. 

Future studies should consider the spatial correlation between zones in their models. 

Other related factors such as detailed social-economic factors may help to further analyze 

crash frequency and severity. 
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