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Reformulating the Hoogendoorn-Bovy predictive dynamic user-optimal

model in continuum space with anisotropic condition

Jie Du1, S.C. Wong2, Chi-Wang Shu3, and Mengping Zhang4

Abstract: Hoogendoorn and Bovy (Transportation Research Part B, 2004, 38(7), 571–

592) developed an approach for a pedestrian user-optimal dynamic assignment in con-

tinuous time and space. Although their model was proposed for pedestrian traffic, it can

also be applied to urban cities. The model is very general, and consists of a conserva-

tion law (CL) and a Hamilton-Jacobi-Bellman (HJB) equation that contains a minimum

value problem. However, only an isotropic application example was given in their paper.

We claim that the HJB equation is difficult to compute numerically in an anisotropic

case. To overcome this, we reformulate their model for a dense urban city that is ar-

bitrary in shape and has multiple central business districts (CBDs). In our model, the

minimum value problem is only used in the CL portion, and the HJB equation reduces

to a Hamilton-Jacobi (HJ) equation for easier computation. The dynamic path equilib-

rium of our model is proven in a different way from theirs, and a numerical algorithm is

also provided to solve the model. Finally, we show two numerical examples under the

anisotropic case and compare the results with those of the isotropic case.
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1 Introduction

Over recent decades, numerous traffic studies have been devoted to the modeling and

numerical algorithms of the traffic equilibrium problem. A conventional methodology

used in these works is the discrete modeling approach (Sheffi, 1984), in which the number

of roads is finite and each road link within the network is modeled separately. This implies

that the land use characteristics of several square kilometers are concentrated to a single

point and served by a single strategic link. This approach is used for detailed studies of

travel patterns in discrete road network systems.

In contrast, the continuum modeling approach (Buckley, 1979; Wong, 1998; Wong

et al., 1998; Xiong et al., 2011; Zhang et al., 2008) focuses on the overall behavior of

travelers and is thus more suitable for macroscopic studies. It approximates a dense

transportation system as a continuum in which users can move freely in a continuous

two-dimensional space. Hence, the continuous approach provides a more realistic repre-

sentation of the network and spatially varied quantities than does the discrete approach.

In the continuum modeling approach, the differences between adjacent areas within a

network are assumed to be relatively small compared with the variation over the entire

area, and hence the characteristics of the network, such as the flow intensity, traffic

demand, density and travel cost, can be represented by smooth mathematical functions

(Vaughan, 1987). Loo et al. (2005) applies the continuous modeling approach to solve

large-scale airport competition and co-ordination problems in the real world and provides

the modelers with valuable information about the applicability of continuum models for

real-life problems.

The majority of the studies that have used the continuum modeling approach for

urban cities have been confined to static cases. Because the temporal variations in

the traffic characteristics are not considered in the static models, they cannot be used

to handle problems such as travelers’ departure/arrival time choices or dynamic traffic

management and control, etc. To deal with these dynamic traffic problems and govern
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the dynamic changes, dynamic traffic assignment (DTA) (Chow, 2009; Lo and Szeto,

2005) has received much attention in recent decades. The DTA literature review is vast,

ranging from mathematical programming, to variational inequality, optimal control, and

simulation-based. Peeta and Ziliaskopoulos (2001) give a detailed review of the existing

literature.

According to the target conditions, DTA models can be classified in two groups: sys-

tem optimum (SO), which aims to minimize the system’s total travel cost, and dynamic

user equilibrium (DUE), which aims to minimize the travel cost of each traveler. An

important component of DUE is the route and departure-time choice model. Friesz et

al. (1993) show a variational inequality may be used to represent DUE when there are

both route and departure-time choices. Friesz et al. (2013) present a dynamic loading

procedure, which determines traffic states from the link dynamics. Unlike the reactive

dynamic user equilibrium (RDUE) problem, in which travelers make their choice to min-

imize the instantaneous travel cost and change their choice in a reactive manner (Boyce

et al., 1993; Kuwahara and Akamatsu, 2001), the predictive dynamic user equilibrium

(PDUE) problem assumes that travelers have perfect information about the modeled

domain and choose the route that minimizes the actual travel cost (Hoogendoorn and

Bovy, 2004; Lo and Szeto, 2002; Szeto and Lo, 2004; Tong and Wong, 2000).

According to the dependence of direction, the traffic equilibrium problem can be

classified into two categories: isotropic problems and anisotropic problems. In isotropic

problems, the traffic characteristics are uniform in all orientations. For example, the

traffic speed at the same point has the same intensity regardless of the direction of the

velocity vector. The local travel cost per unit distance of travel at the same point is inde-

pendent of the direction of movement. Unlike in the isotropic case, anisotropic problems

are used to describe situations in which properties vary systematically, dependent on the

direction. In the anisotropic case, the traffic speed at the same point can be different

when measured along different travel directions. The local travel cost per unit distance
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of travel depends on the direction of movement.

To remedy the limitations of the discrete modeling approach, Hoogendoorn and Bovy

(2004) put forward an approach for the predictive user-optimal DTA problem in con-

tinuous time and space, where traffic units (e.g. pedestrians) cannot improve their ex-

perienced utility (e.g. experienced or actual travel costs instead of instantaneous travel

costs) by unilaterally changing their path choice. Contrary to the discrete approach, the

traffic space is not represented as a directed graph consisting of nodes and links, but

rather as a continuous plane. Their theory allows the traffic units to choose from a non-

countable set of paths through the considered space at any location. This assignment

model enables the prediction of future traffic conditions to minimize the actual travel

cost (PDUE problem). Although their approach is primarily developed for analyzing

pedestrian flow, they emphasize that travelers can also represent other types of traffic

units moving in continuous space, such as ships and cars, etc. In particular, the approach

can be applied to model traffic flows in dense urban cities. To the best of our knowledge,

this is the first PDUE model to use the continuum modeling approach. Their model is

general enough to handle both the isotropic and anisotropic cases.

Their model consists of a conservation law (CL) and a Hamilton-Jacobi-Bellman

(HJB) equation. Each of CL and HJB contains a minimum value problem. For the

isotropic case, the minimum value problem can be solved explicitly. However, there is

no analytical solution for most anisotropic cases. In Hoogendoorn and Bovy (2004), the

authors did not offer a numerical algorithm to solve the minimum value problem. In

their numerical example, it is assumed that only the pedestrian density determines the

maximum walking speeds, irrespective of the pedestrians’ directions. Only an isotropic

application example is given in their paper for the sake of simplicity.

We claim that the HJB equation is difficult to compute numerically in the anisotropic

case. Hence, we reformulate their model for a dense urban city that is arbitrary in shape

and has multiple central business districts (CBDs). In our model, the minimum value
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problem is only used in the CL portion, and the HJB equation is reduced to a Hamilton-

Jacobi (HJ) equation for more efficient computation. The minimum value problem in

the CL portion is also easier to compute than that in the Hoogendoorn-Bovy model.

We can solve it numerically in advance and do not need to solve it again during the

model’s computational process. Our model’s dynamic path equilibrium is proven in a

different way from theirs, and the numerical algorithm to solve the model, including the

minimum value problem, is given. Finally, we provide two numerical examples under the

anisotropic case and compare the results with those of the isotropic case.

The remainder of this paper is organized as follows. The description of the problem is

given in the next section. In Section 3, we review the formulation of the Hoogendoorn-

Bovy model. In Section 4, we discuss the reformulation of their model. We describe

the solution algorithm in Section 5. In Section 6, we present two anisotropic numerical

examples and compare the results with those of the isotropic case. Our conclusions are

presented in Section 7.

2 Problem description

Figure 1: The modeling domain

As Figure 1 shows, the modeled region is an urban city with multiple CBDs. It can
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be arbitrary in shape and is denoted by Ω. Although we only plot two CBDs in Figure 1,

our model is capable for the case of more than two CBDs. Let Γo be the outer boundary

of the city and let Γm
c be the boundary of the mth compact CBD. Thus, the boundary of

Ω is Γ = Γo ∪ (∪mΓ
m
c ). The travelers’ homes are continuously located along (x, y) ∈ Ω.

We assume that all of the travelers will travel to the CBDs and no traveler is allowed to

leave the city by crossing the boundary Γo. We do not consider the destination choice

in this paper and assume that the travelers of Group m travel to the mth CBD within

the modeling region for a given time-dependent demand. Hence, CBDs other than the

mth CBD will be viewed as obstacles for the travelers of Group m.

The variables are denoted as follows.

• T = [0, tend] (in h) is the time horizon.

• qm(x, y, t) (in veh/km2/h) is the given travel demand of Group m at location

(x, y) ∈ Ω at time t ∈ T , which is a non-negative and time-varying function.

• ρm(x, y, t) (in veh/km2) is the time-varying density of Group m at location (x, y)

at time t.

• ξm(x, y, t) is the angle between the direction of movement of Group m and the

x-axis at location (x, y) at time t. We use it to represent the travel direction. It is

determined by a proper path choice strategy.

• Um
f (x, y, t) is the free-flow speed of Group m. We consider the anisotropic situa-

tion in this paper, and the free-flow speed is supposed to be related to the travel

direction ξm(x, y, t) and can be computed by

Um
f (x, y, t) = uf (x, y)h(ξ

m(x, y, t)). (1)

Here, uf (x, y) is a fixed factor to the location (x, y). h(ξm(x, y, t)) expresses that

the free-flow speed along different directions may be different due to the road

conditions such as major/minor road configuration.
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• Um(x, y, t) is the travel speed of Group m at location (x, y) and at time t and can

be determined by the free-flow speed and the total density as

Um(x, y, t) = Um
f (x, y, t)G(

∑
m

ρm(x, y, t)). (2)

We denote ρ =
∑

m ρm as the total density. G(ρ) is a monotonic decreasing function

in ρ satisfying G(0) = 1. When the total density is zero, Um reduces back to the

free-flow speed. G(ρ) is also supposed to vanish for density beyond a jam density

ρjam. From this definition, we can see that the anisotropy of speed Um is reflected

in the free-flow speed Um
f .

• vm(x, y, t) = (um(x, y, t), vm(x, y, t)) is the velocity vector of Group m, where

um(x, y, t) = Um(x, y, t) cos
(
ξm(x, y, t)

)
, (3)

vm(x, y, t) = Um(x, y, t) sin
(
ξm(x, y, t)

)
.

• Fm = (fm(x, y, t), gm(x, y, t)) is the flow vector of Group m, which is defined as

Fm = ρmvm. (4)

• |Fm| is the flow intensity of Group m, which is the norm of the flow vector Fm,

and is defined as

|Fm| = ρmUm. (5)

• cm(x, y, t) (in $/km) is the local travel cost of traveling one unit of distance along

vm at location (x, y) at time t. It is defined as

cm(x, y, t) = κ(
1

Um
+ π(

∑
m

ρm)). (6)

where κ is the value of time, κ
Um represents the cost associated with the travel time,

and κπ(
∑

m ρm) represents other costs that are dependent of the total density. If

we consider the cost associated with the travel time, then we have

cm(x, y, t) =
κ

Um
, (7)
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because the speed Um is an anisotropic variable, cm(x, y, t) is also anisotropic; that

is, the travel cost of moving one unit of distance is related to the direction of

movement.

• ϕm(x, y, t) is the actual total travel cost incurred by a traveler who departs from

location (x, y) at time t to travel to themth CBD using the constructed path-choice

strategy.

• φm(x, y, t) is the angle between −∇ϕm and the x-axis, where ∇ = ( ∂
∂x
, ∂
∂y
).

• n(x, y), (x, y) ∈ Γ is the unit outward normal vector on the boundary.

Next, we construct a path-choice strategy under the anisotropic assumption and a

model of this problem to govern these variables. Here, we assume that the road network

is very dense and that travelers can move freely in it. We also assume that travelers

have full and perfect information about traffic conditions over time, and that they will

therefore choose the path that minimizes the actual travel cost (not the instantaneous

travel cost), resulting in a predictive user equilibrium for a dynamic system.

3 The Hoogendoorn-Bovy dynamic user-optimal model

In this section, we briefly review the Hoogendoorn-Bovy dynamic user-optimal model

and show the difficulty in solving the HJB equation. For consistency, we have changed

the notations in their formulation to match ours.

Using our notations, the Hoogendoorn-Bovy dynamic user-optimal model can be

written as 
−ϕm

t = minṽ{L(x, y, t, ṽ) + ṽ · ∇ϕm},
ρmt +∇ · (ρmvm) = qm(x, y, t),
vm = arg min{L(x, y, t, ṽ) + ṽ · ∇ϕm},

(8)

with some proper initial boundary conditions. Here, L is the so-called running cost. It

reflects the cost incurred during one unit time period. ṽ(x, y, t) = (ũ(x, y, t), ṽ(x, y, t))

is any possible velocity vector at point (x, y) at time t. vm is the optimal velocity vector
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of Group m. For simplicity, we omit the superscript m in the following discussion when

there is no confusion.

The whole model consists of two coupled partial differential equations (PDEs). The

first equation in their model is an HJB or dynamic programming equation, which includes

a minimum value problem. The HJB equation typically arises in an optimal control

problem and is a result of dynamic programming theory (Bellman, 1957). The following

numerical scheme (Fleming and Soner, 1993) is used to solve this equation:

ϕn−1
i,j = ϕn

i,j −∆tĤ((ϕx)
n,−
i,j , (ϕx)

n,+
i,j , (ϕy)

n,−
i,j , (ϕy)

n,+
i,j ), (9)

with the numerical Hamiltonian Ĥ defined by

Ĥ = min
ṽ

{L(x, y, t, ṽ) + ũ+(ϕx)
n,+
i,j + ũ−(ϕx)

n,−
i,j + ṽ+(ϕy)

n,+
i,j + ṽ−(ϕy)

n,−
i,j }. (10)

Here,

w+ = max{w, 0}, w− = min{w, 0}. (11)

(ϕx)
n,+
i,j =

ϕn
i+1,j − ϕn

i,j

∆x
, (ϕx)

n,−
i,j =

ϕn
i,j − ϕn

i−1,j

∆x
, (12)

are the forward and backward finite differences in the x-axis.

(ϕy)
n,+
i,j =

ϕn
i,j+1 − ϕn

i,j

∆y
, (ϕy)

n,−
i,j =

ϕn
i,j − ϕn

i,j−1

∆y
, (13)

are the finite differences in the y-axis. The second equation of their model is a CL. In this

equation, v is the optimal velocity vector solved by the same minimum value problem;

that is,

v = argmin
ṽ

{L(x, y, t, ṽ) + ũ+(ϕx)
n,+
i,j + ũ−(ϕx)

n,−
i,j + ṽ+(ϕy)

n,+
i,j + ṽ−(ϕy)

n,−
i,j }. (14)

In Hoogendoorn and Bovy (2004), the authors use an iteration procedure to solve these

two coupled equations. In each iteration, the HJB equation and the CL are calculated

once for each group of travelers, respectively. Hence, the minimum value problem must

be solved twice for each group of travelers at each numerical point in an iteration.
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Note that to achieve the stability of the numerical scheme for the HJB equation,

the wind direction must be considered in the numerical scheme of the minimum value

problem. The partial derivatives must be replaced with appropriate finite differences.

When ũ > 0, the forward finite difference (ϕx)
+
i,j is used to approximate ϕx. When ũ < 0,

we use the backward finite difference (ϕx)
−
i,j to approximate ϕx. Similarly, the numerical

method used to approximate ϕy is determined by the sign of ṽ. The final numerical

scheme is influenced by the sign of the optimal velocity v, which is an unknown value to

be solved. In most anisotropic cases, the explicit relations between the optimal velocity

and the minimum actual route cost can not be found. Actually, there are infinite ṽ to

be chosen, and it is difficult to solve the optimal one. In Hoogendoorn and Bovy (2004),

the authors do not provide a numerical procedure to solve this minimum value problem.

Because the wind direction is considered, both ũ and ṽ are split into positive and negative

portions, and hence the scheme of the minimum value problem is not smooth with respect

to ṽ. In addition to the unknown value ṽ, there are five parameters—L, (ϕx)
+
i,j, (ϕx)

−
i,j,

(ϕy)
+
i,j and (ϕy)

−
i,j—which differ from the varied numerical points and iterations. All of

these problems increase the complexity of constructing a numerical procedure to solve

this minimum value problem.

In our reformulation of the model, we show how to compute the actual total travel

cost ϕ when the velocity vector in the time-space domain is known. In this case, the

equation to solve ϕ reduces to an HJ equation, which includes no minimum value problem

and hence is much easier to solve. The minimum value problem to solve the optimal

velocity vector is only used in the CL portion. Hence, we only need to solve the minimum

value problem one time for each group of travelers in each iteration. Moreover, the sign

of the optimal velocity vector v dose not influence the numerical scheme used to solve the

CL. Because ϕ is supposed to be known when solving the CL, we do not need to consider

the wind direction of ϕ when approximating ϕx and ϕy in solving the minimum value

problem. In other words, we do not need to use the numerical scheme (14) in which ũ
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and ṽ are split into positive and negative portions. The numerical scheme for our model

is smooth with respect to ṽ. As we show in Section 5, because we do not need to use

different finite differences to approximate ϕx and ϕy, there is only one parameter left in

the minimum value problem when the cost is only related to the travel time. Hence,

we can discretize the range of this parameter into many discrete points and solve the

minimum value problem numerically in advance at each point. Therefore, we do not need

to solve the minimum value problem again during the model’s computational process;

we need only read the result at the closest discrete point. This method is difficult to

extend to solve the minimum value problem in the Hoogendoorn-Bovy model because

there are still four parameters—(ϕx)
+
i,j, (ϕx)

−
i,j, (ϕy)

+
i,j and (ϕy)

−
i,j—even when the time is

related only to the time.

4 Reformulation of the Hoogendoorn-Bovy model

In this section, we reformulate the Hoogendoorn-Bovy model. In Section 4.1, we derive

the HJ equation to compute ϕm(x, y, t) with any given velocity vector (um(x, y, t), vm(x, y, t))

in the time-space domain. In Section 4.2, we give the CL to solve ρm(x, y, t) and illustrate

the path-choice strategy to choose the optimal velocity vector capable of minimizing the

actual total travel cost. A proof of the dynamic user equilibrium is given in the path-

choice strategy. We discuss the initial and boundary conditions of the HJ and CL in

Section 4.3. We conclude the complete formulation of our new model in Section 4.4 and

illustrate how to formulate it as a fixed-point problem.

4.1 The derivation of the HJ equation to compute the actual
total cost ϕm(x, y, t)

We use the time-space domain in our discussion, as shown in Figure 2. We use the

x-y plane to represent the space domain in which the vehicles drive. The vertical axis

represents the time. Let the coordinate of point A in the x-y plane be (x, y). The curve

that passes the point (x, y, t) represents the 3D trajectory of a vehicle passing point A
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at time t and heading toward the destination in the time-space domain.

Figure 2: The 3D trajectory of a vehicle

We now illustrate how to compute the actual total travel cost ϕm(x, y, t) when

the traffic situation of Group m in the city is known. Let us define the path in the

time-space domain as (x(t), y(t), t) with the parameter t. When the velocity vector(
um(x, y, t), vm(x, y, t)

)
is given, we have

dx

dt
= um(x(t), y(t), t)

dy

dt
= vm(x(t), y(t), t). (15)

Hence, we have

dϕm

dt
(x(t), y(t), t) = ϕm

x

dx(t)

dt
+ ϕm

y

dy(t)

dt
+ ϕm

t

= ϕm
x u

m + ϕm
y v

m + ϕm
t . (16)

From the definition of the derivative, we also know that

dϕm

dt
= lim

∆t→0

ϕm
(
x(t+∆t), y(t+∆t), t+∆t

)
− ϕm

(
x(t), y(t), t

)
∆t

= lim
∆t→0

−Umϕm
(
x(t), y(t), t

)
− ϕm

(
x(t+∆t), y(t+∆t), t+∆t

)
∆tUm

, (17)

where Um =
√
(um)2 + (vm)2 is the speed of the given velocity vector. Note that when

∆t is small enough, the motion of the travelers can be viewed as uniform. Hence,
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∆tUm is the distance between the points
(
x(t), y(t)

)
and

(
x(t + ∆t), y(t + ∆t)

)
, and

ϕm
(
x(t), y(t), t

)
− ϕm

(
x(t+∆t), y(t+∆t), t+∆t

)
is the cost of traveling between these

two points. Therefore, the fraction in the last equation in (17) is actually the local cost

cm and Equation (17) can be translated as

dϕm

dt
= −Umcm. (18)

By combining Equations (16) and (18) , we obtain the HJ equation to solve the cost

potential ϕm:

ϕm
t + ϕm

x u
m + ϕm

y v
m = −Umcm. (19)

Because um = Um cos ξm, vm = Um sin ξm, we have

ϕm
t + ϕm

x U
m cos ξm + ϕm

y U
m sin ξm = −Umcm. (20)

We provide the initial boundary conditions of this equation in Section 4.3.

4.2 Path-choice strategy

We first illustrate that all of the traffic variables can be computed, provided that the

traveling directions ξm(x, y, t) of each group in the time-space domain are given for any

(x, y) ∈ Ω and t ∈ T . Considering the conservation of mass in fluid dynamics, the density

ρm(x, y, t) is governed by the following CL:

ρmt + (ρmum)x + (ρmvm)y = qm, ∀(x, y) ∈ Ω, t ∈ T. (21)

Using the definitions in Section 2, we know that um and vm can be expressed in terms

of the total density ρ and the given ξm:

um(x, y, t) = uf (x, y)h(ξ
m(x, y, t))G(

∑
m

ρm) cos
(
ξm(x, y, t)

)
, (22)

vm(x, y, t) = uf (x, y)h(ξ
m(x, y, t))G(

∑
m

ρm) sin
(
ξm(x, y, t)

)
.
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When ξm(x, y, t) for all groups are given, we can obtain ρm(x, y, t) by solving Eqs. (21)

and (22) for each m with some proper initial boundary conditions. Then, we can obtain(
um(x, y, t), vm(x, y, t)

)
using Eq. (22). Moreover, the speed Um(x, y, t) and the local

cost cm(x, y, t) can be computed. Hence, we can get the resulting total actual cost

ϕm(x, y, t) by solving the HJ equation.

In the above, ξm(x, y, t) can be arbitrary. In this section, we show how to choose the

optimal path direction ξm(x, y, t) such that the predictive dynamic user equilibrium is

satisfied. Here, the predictive dynamic user equilibrium is defined as,

“If, for any travellers between any OD pair leaving their origin at any instant, the

actual travel times that these travellers experienced on any used routes are equal and

minimal; and the actual travel times that theses travellers would experience on any unused

routes are greater than or equal to the minimum actual travel time on used routes.” (Tong

and Wong, 2000)

From now on, we suppose that ξm(x, y, t) denotes the optimal path direction and

that all of the other variables without the superscript “∼” denote the resulting traffic

variables computed with ξm(x, y, t).

For any fixed (x0, y0) ∈ Ω and t0 ∈ T , consider a vehicle of any group (say Group

m) that departs (x0, y0) at time t0 along a path with an arbitrary travel angle ξ̃. If

ξ̃ = ξm(x0, y0, t0), we call this path the “used” path. If ξ̃ ̸= ξm(x0, y0, t0), we call this

path an “unused” path. Using the definitions in Section 2, we know that the travel speed

of this vehicle at (x0, y0, t0) is

Ũm(ξ̃) = uf (x0, y0)h(ξ̃)G(
∑
m

ρm(x0, y0, t0)). (23)

Hence, the velocity vector of this vehicle at (x0, y0, t0) is ṽ
m(ξ̃) = (ũm(ξ̃), ṽm(ξ̃)) defined

by

ũm(ξ̃) = Ũm(ξ̃) cos(ξ̃), (24)

ṽm(ξ̃) = Ũm(ξ̃) sin(ξ̃),
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and the local travel cost of moving one unit distance along ξ̃ is

c̃m(ξ̃) = κ(
1

Ũm(ξ̃)
+ π(

∑
m

ρm(x0, y0, t0))). (25)

Define

pm(x0, y0, t0, ξ̃) = ϕm
x (x0, y0, t0)ũ

m(ξ̃) + ϕm
y (x0, y0, t0)ṽ

m(ξ̃) + c̃m(ξ̃)Ũm(ξ̃). (26)

From Equation (19), we know that when ξ̃ = ξm(x0, y0, y0), we have

pm(x0, y0, t0, ξ
m(x0, y0, y0)) + ϕm

t (x0, y0, y0) = 0. ∀(x0, y0) ∈ Ω, ∀t0 ∈ T. (27)

Figure 3: The “used” and “unused” paths

We now present the path-choice strategy.

Theorem 1: If each group choose the path direction ξm(x, y, t) such that the resulting

traffic variables satisfy pm(x0, y0, t0, ξ
m(x0, y0, t0)) ≤ pm(x0, y0, t0, ξ̃), ∀ξ̃ ̸= ξm(x0, y0, t0),

for all (x0, y0) ∈ Ω and t0 ∈ T , then the dynamic predictive user equilibrium is satisfied.

Proof : Consider a vehicle of any group m at the point (x0, y0, t0). The total cost of

getting to the mth CBD on the “used” path is ϕm(x0, y0, t0). Define the total cost along

an “unused” path as ϕ̃m. We need to prove that ϕ̃m is no less than ϕm(x0, y0, t0). We

can prove this using the following two steps.
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Step 1. Let us first consider an “unused” path with angel ξ̃ that deviates from the

utilized path only in the first ∆t time, and then reverts back to the “used” path. Here,

we assume that ∆t is small enough that ϕm(x, y, t) can be treated as a linear function

of x and y in such a small area.

The cost in the first ∆t time is

c̃m(ξ̃)Ũm(ξ̃)∆t. (28)

Let (x̃, ỹ) be the position at which the vehicle arrives in ∆t time with the vector ∆tṽm.

Because we assume that the traveler reverts back to the “used” path after the first ∆t

time, the travel cost from (x̃, ỹ) to the CBD is ϕm(x̃, ỹ, t0 +∆t).

As we assume that ϕm is a linear function in such a small area, we have

ϕm(x̃, ỹ, t0 +∆t)− ϕm(x0, y0, t0)

= (ϕm
x , ϕ

m
y , ϕ

m
t ) · (ũm, ṽm, 1)∆t

= (ϕm
x ũ

m + ϕm
y ṽ

m + ϕm
t )∆t. (29)

Hence, we can obtain

ϕ̃m = ϕm(x̃, ỹ, t0 +∆t) + c̃m(ξ̃)Ũm(ξ̃)∆t

= ϕm(x̃, ỹ, t0 +∆t)− ϕm(x0, y0, t0) + ϕm(x0, y0, t0) + c̃m(ξ̃)Ũm(ξ̃)∆t

= ϕm(x0, y0, t0) + [pm(x0, y0, t0, ξ̃) + ϕm
t ]∆t

≥ ϕm(x0, y0, t0) + [pm(x0, y0, t0, ξ
m(x0, y0, t0)) + ϕm

t (x0, y0, t0)]∆t

= ϕm(x0, y0, t0). (30)

The last equality is from Equation (27).

Step 2. In the above case, if a vehicle of any group m moves along ξ̃ only in the first

∆t period, it will arrive at the mth CBD with a cost ϕ̃m ≥ ϕm(x0, y0, t0). However, if

it does not revert back to the “used” path in the next step and continues to move in a

direction other than that of the speed vector, then by the same token it will arrive at
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the mth CBD with a cost ˜̃ϕm ≥ ϕ̃m ≥ ϕm(x0, y0, t0). Therefore, for any “unused” path,

the total cost must be no less than that of the “used” path. �

Note that by taking a special condition that h(ξ̃) = 1, our anisotropic model will

reduce back to Du et al. (2013) model where the free-flow speed is isotropic. In this case,

the speed intensity and the local travel cost are independent of the travel direction ξ̃:

Ũm = Um = uf (x0, y0)G(
∑
m

ρm(x0, y0, t0)), (31)

c̃m = cm = κ(
1

Um
+ π(

∑
m

ρm(x0, y0, t0))). (32)

Hence, we have

pm(x0, y0, t0, ξ̃) = ϕm
x (x0, y0, t0)ũ

m(ξ̃) + ϕm
y (x0, y0, t0)ṽ

m(ξ̃) + c̃mŨm

= −|∇ϕm|Um cos(ξ̃ − φm) + cmUm

> −|∇ϕm|Um + cmUm. (33)

Obviously, we have

ξm = argmin
ξ̃

pm(x0, y0, t0, ξ̃) = φm, (34)

which means that we should choose the (um, vm) ∥ (−ϕm
x ,−ϕm

y ). This result is exactly

the same as the path choice strategy in Du et al. (2013).

4.3 The discussion of initial boundary conditions

In this section, we discuss the initial boundary conditions of the CL and HJ equations

to make them a complete model.

Because we assume that travelers of Group m can not leave the city and will enter

the mth CBD only, the outer boundary of the city (Γo) and the boundaries of CBDs

other than the mth CBD (Γn
c , n ̸= m) will be viewed as solid walls for Group m. We let

the normal flow intensity of Group m be zero on these solid walls, that is

Fm(x, y, t) · n(x, y) = 0, ∀(x, y) ∈ Γo ∪ (∪n̸=mΓ
n
c ), t ∈ T, (35)
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where n is the outward unit normal vector of the solid wall.

We set the initial time as t = 0 and let ρm0 (x, y) be the density of Group m at location

(x, y) at the beginning of the modeling period. As such, the initial condition of CL is

ρm(x, y, 0) = ρm0 (x, y), ∀(x, y) ∈ Ω. (36)

For the boundary condition of HJ, we let ϕm
CBD represent the boundary value of ϕm on

Γm
c , which can be interpreted as the cost to the traveler of entering the mth CBD. Now

we consider the initial condition. Note that the travel cost to the CBD only depends on

the events that will occur in the future, and has nothing to do with events that happened

in the past. Hence, it seems reasonable to solve the HJ equation along the negative time

direction.

Denote ϕm
0 (x, y) as the value of ϕm at t = tend. Now, we show how to compute it.

Here, we assume that the travelers of all groups have entered the CBDs and that there is

no traffic in the city at t = tend. This can be considered as a static state, i.e., (ϕm
0 )t = 0.

The travel cost ϕm
0 to the mth CBD is the instantaneous cost at t = tend. Because the

total density is zero everywhere at t = tend, the speed is just the free-flow speed and the

local travel cost is related to the travel time:{
Um
0 (x, y) = uf (x, y)h(ξ

m
0 (x, y)), ∀(x, y) ∈ Ω, t ∈ T,

cm0 (x, y) =
κ

Um
0
, ∀(x, y) ∈ Ω, t ∈ T. (37)

Here, ξm0 (x, y) is the optimal travel angle. By using the path-choice strategy and letting

density be zero, we have

ξm0 (x, y) = arg minξ̃ p
m
0 (x, y, ξ̃) = arg min (ϕm

0 )xũ
m
0 (ξ̃) + (ϕm

0 )yṽ
m
0 (ξ̃) + κ, (38)

with {
ũm
0 (ξ̃) = uf (x, y)h(ξ̃) cos(ξ̃),

ṽm0 (ξ̃) = uf (x, y)h(ξ̃) sin(ξ̃).
(39)

Following the derivation in Section 4.1, we can obtain the equation to solve ϕm
0 (x, y):

(ϕm
0 )xU

m
0 cos ξm0 + (ϕm

0 )yU
m
0 sin ξm0 = −κ, ∀(x, y) ∈ Ω. (40)
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4.4 The complete model and fixed-point problem

In the above sections, we know that we can compute the density ρm using the CL and

then compute the total actual travel cost ϕm using the HJ, provided that the travel angle

ξm(x, y, t) used in the CL is given for all groups and all points in the time-space domain.

Once we know the cost ϕm, we can adjust the optimal ξm(x, y, t) in the computation of

CL using the path choice strategy in Theorem 1. Hence, the whole model consists of the

CL and HJ portions. We conclude that our model can be written as follows.

The CL portion is
ρmt + (ρmUm cos ξm)x + (ρmUm sin ξm)y = qm, ∀(x, y) ∈ Ω, t ∈ T,
Um(x, y, t) = uf (x, y)h(ξ

m(x, y, t))G(
∑

m ρm), ∀(x, y) ∈ Ω, t ∈ T,

ξm(x, y, t) = arg minξ̃ pm(x, y, t, ξ̃), ∀(x, y) ∈ Ω, t ∈ T,

Fm(x, y, t) · n(x, y) = 0, ∀(x, y) ∈ Γo ∪ (∪n̸=mΓ
n
c ), t ∈ T,

ρm(x, y, 0) = ρm0 (x, y), ∀(x, y) ∈ Ω.
(41)

The HJ portion is
ϕm
t + ϕm

x U
m cos ξm + ϕm

y U
m sin ξm = −Umcm, ∀(x, y) ∈ Ω, t ∈ T,

cm = κ( 1
Um + π(

∑
m ρm)), ∀(x, y) ∈ Ω, t ∈ T,

ϕm(x, y, t) = ϕm
CBD, ∀(x, y) ∈ Γm

c , t ∈ T,
ϕm(x, y, tend) = ϕm

0 (x, y), ∀(x, y) ∈ Ω,

(42)

where ϕm
0 is solved by

(ϕm
0 )xU

m
0 cos ξm0 + (ϕm

0 )yU
m
0 sin ξm0 = −κ, ∀(x, y) ∈ Ω,

Um
0 (x, y) = uf (x, y)h(ξ

m
0 (x, y)), ∀(x, y) ∈ Ω,

ξm0 (x, y) = arg minξ̃ p
m
0 (x, y, ξ̃), ∀(x, y) ∈ Ω,

ϕm
0 (x, y) = ϕm

CBD, ∀(x, y) ∈ Γm
c .

(43)

Note that the two parts of the model are closely interconnected. When solving the

CL, we assume that ϕm(x, y, t) from the HJ portion is known for all m, and thus we can

obtain ξm(x, y, t) by solving the minimum value of pm, thereby obtaining the velocity

vector. When solving the HJ, we need the value of the density ρm to obtain the local cost.

However, neither ρm nor ϕm is known in advance, and they cannot be solved together as

they have different computation directions in time. Next, we show that we can compute

these two parts as a fixed-point problem.
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Define the vector of the numerical solutions of each group at each grid point and each

time level as

ρ⃗ = {(ρm)ni,j, i = 1, · · · , Nx, j = 1, · · · , Ny, n = 1, · · · , Nt,m = 1, · · · , Nm},
ϕ⃗ = {(ϕm)ni,j, i = 1, · · · , Nx, j = 1, · · · , Ny, n = 1, · · · , Nt,m = 1, · · · , Nm},

(44)

where Nx, Ny and Nt are the numbers of grid points in x, y and t, respectively, and Nm

is the number of groups. Let us now give the definition for one iteration. With a given

vector ϕ⃗old, we solve the CL for each group from t = 0 to t = tend and thus can obtain a

vector of density. Then we use this vector to solve the HJ equation for each group from

t = tend to t = 0 to obtain an updated vector ϕ⃗new. We call the procedure for getting

ϕ⃗new from ϕ⃗old as one iteration and denote it as

ϕ⃗new = f(ϕ⃗old). (45)

With the definition of one iteration and the function f , the model translates to the

problem

ϕ⃗ = f(ϕ⃗), (46)

which is called a fixed-point problem.

5 Solution algorithm

In this section, we describe the solution algorithms to solve the reformulated model.

5.1 Solution algorithm for the minimum value problem

When solving the CL of Group m, we need to know the travel angle ξm(x, y, t). For this

purpose, we need to solve a minimum value problem ξm(x, y, t) = arg minξ̃ p
m(x, y, t, ξ̃)

at each numerical solution point during the computation of CL. In general, it is difficult

to give an explicit expression of ξm. However, if we only consider the special case in

which the cost is only related to the travel time, the problem can be simplified. We

provide the algorithm to solve it in this section.
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Figure 4: ξ̃ and φm

When the cost is only the time, we have c̃m(ξ̃) = κ
Ũm(ξ̃)

. Hence, pm(x, y, t, ξ̃) becomes

pm(x, y, t, ξ̃)

= ∇ϕm · ṽm(ξ̃) + κ

= −|∇ϕm|Ũm(ξ̃) cos(ξ̃ − φm) + κ

= −|∇ϕm|uf (x, y)h(ξ̃)G(ρ) cos(ξ̃ − φm) + κ

= −ah(ξ̃) cos(ξ̃ − φm) + κ. (47)

For any fixed point (x, y, t) in the time-space domain, we know that a = |∇ϕm|uf (x, y)G(ρ)

is non-negative. Hence, we have

ξm(x, y, t) = arg minξ̃{ p
m(x, y, t, ξ̃)} = arg maxξ̃ {h(ξ̃) cos(ξ̃ − φm)}. (48)

In this way, we can transform the minimum value problem into a maximum value problem

and there is only one parameter φm.

In the numerical computation of CL, we know the value of ϕm and thus can obtain

φm by

cosφm = − ϕm
x

|∇ϕm|
, sinφm = −

ϕm
y

|∇ϕm|
. (49)

Here, we do not need to consider the wind direction of ϕm and can approximate ϕm
x and

ϕm
x simply using

(ϕm
x )

n
i,j ≈

(ϕm)ni+1,j − (ϕm)ni−1,j

2∆x
, (ϕm

y )
n
i,j ≈

(ϕm)ni,j+1 − (ϕm)ni,j−1

2∆y
, (50)
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where (ϕm)ni,j is the numerical approximation of ϕm at grip point (xi, yj) and at time

level tn. Now, we need to get ξm by solving the maximum value point of h(ξ̃) cos(ξ̃−φm)

and compute sin ξm and cos ξm to compute the conservation law.

We now divide the range of φm, i.e., [0, 2π] into N sets. We define φi = 2π
N
i, i =

0, 1, · · · , N . For each φi, i = 1 · · · , N , we can solve the maximum value point of

h(ξ̃) cos(ξ̃ − φi) numerically and get the corresponding result ξi, i = 1, · · · , N . In our

numerical example, we take N = 400000. Before we start to compute the model, we

perform the above computation and save the series {ξi, i = 1, · · · , N}. When solving

the CL, we just need to compute φm at each point and find the cell containing it. If

φj 6 φm < φj+1, then we take ξm = ξj. In this way, we do not need to solve the

minimum value problem during the computation of CL.

5.2 Lax-Friedrichs scheme used to solve the conservation law

In this subsection, we assume that the cost potential function ϕm(x, y, t) is known for all

(x, y) ∈ Ω and t ∈ T . Hence, we can obtain ξm by the algorithm described in the above

section. Now, we focus on the numerical method to solve the conservation law:

ρmt + (ρmUm cos ξm)x + (ρmUm sin ξm)y = qm. (51)

We use the numerical solution (ρm)ni,j to approximate the point value of ρm(xi, yj, t
n).

For simplicity, we omit the superscript m in the following where there is no confusion.

We use a conservative difference scheme to solve CL:

ρn+1
i,j = ρni,j −

∆t

∆x
(f̂i+ 1

2
,j − f̂i− 1

2
,j)−

∆t

∆y
(ĝi,j+ 1

2
− ĝi,j− 1

2
) + qni,j∆t, (52)

where qni,j = qm(xi, yj, t
n) is the given demand at location (xi, yj) at time tn, ∆x and

∆y are the mesh sizes in the x and y directions, respectively and f̂i+ 1
2
,j and ĝi,j+ 1

2
are

numerical fluxes in the x and y directions, respectively. Here, we use the Lax-Friedrichs

flux, which is a monotone flux:

f̂i+ 1
2
,j =

1

2
[f(ρni,j) + f(ρni+1,j)− αf (ρ

n
i+1,j − ρni,j)] (53)
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ĝi,j+ 1
2
=

1

2
[g(ρni,j) + g(ρni,j+1)− αg(ρ

n
i,j+1 − ρni,j)], (54)

where f(ρ) = ρum, g(ρ) = ρvm, αf = max |f ′(ρ)| and αg = max |g′(ρ)|. Note that the

optimal traveling direction solved by the minimum value problem does not influence the

numerical scheme used to solve the CL.

5.3 Lax-Friedrichs scheme used to solve the Hamilton-Jacobi
portion

In this subsection, we suppose that the density ρm(x, y, t) and the travel angle ξm(x, y, t)

are known for all (x, y) ∈ Ω and t ∈ T from the CL portion, and focus on the numerical

method to solve the Hamilton-Jacobi equation:
ϕm
t + ϕm

x U
m cos ξm + ϕm

y U
m sin ξm = −Umcm, ∀(x, y) ∈ Ω, t ∈ T,

ϕm(x, y, t) = ϕm
CBD, ∀(x, y) ∈ Γm

c , t ∈ T,
ϕm(x, y, tend) = ϕm

0 (x, y), ∀(x, y) ∈ Ω.
(55)

Note that the value of ϕm
0 (x, y) is computed by a static HJ equation. We deal with the

problem later, but now we assume that ϕm
0 (x, y) is known.

As we need to solve the HJ backwards in time, we define

τ = tend − t, Φ(x, y, τ) = ϕm(x, y, tend − τ), (56)

and thus can rewrite the time-dependent HJ equation into a usual form:
Φτ − ΦxU

m cos ξm − ΦyU
m sin ξm = Umcm, ∀(x, y) ∈ Ω, τ ∈ T,

Φ(x, y, τ) = ϕm
CBD, ∀(x, y) ∈ Γm

c , τ ∈ T,
Φ(x, y, 0) = ϕm

0 (x, y), ∀(x, y) ∈ Ω.
(57)

If we define

H(Φx,Φy) = −Um(Φx cos ξ
m + Φy sin ξ

m + cm), (58)

then the scheme to solve Φτ +H(Φx,Φy) = 0 is

Φn+1
i,j = Φn

i,j −∆tĤ((Φx)
n,−
i,j , (Φx)

n,+
i,j , (Φy)

n,−
i,j , (Φy)

n,+
i,j ), (59)

with

(Φx)
n,−
i,j =

Φn
i,j − Φn

i−1,j

∆x
, (Φx)

n,+
i,j =

Φn
i+1,j − Φn

i,j

∆x
, (60)
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(Φy)
n,−
i,j =

Φn
i,j − Φn

i,j−1

∆y
, (Φy)

n,+
i,j =

Φn
i,j+1 − Φn

i,j

∆y
, (61)

where Ĥ is a Lipschitz continuous monotone flux consistent with H. Here, we use the

global Lax-Friedrichs flux:

Ĥ(u−, u+, v−, v+) = H(
u− + u+

2
,
v− + v+

2
)− 1

2
αx(u+ − u−)− 1

2
αy(v+ − v−), (62)

where αx and αy are defined as

αx = max
A≤u≤B,C≤v≤D

|H1(u, v)|, αy = max
A≤u≤B,C≤v≤D

|H2(u, v)|. (63)

H1 (H2) is the partial derivative of H in terms of Φx (Φy), [A,B] is the value range of

u± and [C,D] is the value range of v±.

Now, we deal with the equation for ϕm
0 (x, y):

(ϕm
0 )xU

m
0 cos ξm0 + (ϕm

0 )yU
m
0 sin ξm0 = −κ, ∀(x, y) ∈ Ω,

Um
0 (x, y) = uf (x, y)h(ξ

m
0 (x, y)), ∀(x, y) ∈ Ω,

ξm0 (x, y) = arg minξ̃ p
m
0 (x, y, ξ̃), ∀(x, y) ∈ Ω,

ϕm
0 (x, y) = ϕm

CBD, ∀(x, y) ∈ Γm
c .

(64)

This is a static HJ equation. We solve it using the method of pseudo time iterations.

We reformulate the equation into the following time-dependent problem
Φt − ΦxU

m cos ξm − ΦyU
m sin ξm = κ, ∀(x, y) ∈ Ω, t > 0,

Um(x, y, t) = uf (x, y)h(ξ
m(x, y, t)), ∀(x, y) ∈ Ω, t > 0,

ξm(x, y, t) = arg minξ̃ p
m
0 (x, y, ξ̃), ∀(x, y) ∈ Ω, t > 0,

Φ(x, y, t) = ϕm
CBD, ∀(x, y) ∈ Γm

c , t > 0,
Φ(x, y, 0) = 1012, ∀(x, y) ∈ Ω/Γm

c ,

(65)

by setting a large value as the initial guess. Now, we perform the same Lax-Friedrichs

technique described above to find the steady-state solution of this time-evolving equation.

At each time level, we need to solve the minimum value problem using the updated Φ.

Finally, we set the converged solution of this time-dependent problem as ϕm
0 .

Note that the computation of ϕm
0 is independent of ρm because we assume ρm = 0 at

time tend. Hence, ϕm
0 (x, y) is fixed for each (x, y) ∈ Ω. We only need to solve ϕm

0 once

at the beginning of the whole computation procedure of the model and read them again

when needed.
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5.4 A self-adaptive MSA to solve the fixed-point problem

As illustrated in Section 4.4, our model can be viewed as a fixed-point problem ϕ⃗ = f(ϕ⃗).

It can be solved by a self-adaptive method of successive averages (MSA). We proposed

this method in Du et al. (2013) to solve the PDUE problem under isotropic assumption.

We briefly introduce this method in this section for the completeness of this paper. For

more details, we refer to Du et al. (2013).

The MSA was first introduced by Robbins and Monro (1951) to solve the fixed-point

problem. A general MSA is an iterative process. If we denote the solution before the kth

iteration as ϕ⃗k, then computing the MSA to obtain ϕ⃗k+1 involves the following steps:

Step 1. Solve a temporary solution y⃗k = f(ϕ⃗k) during the kth iteration.

Step 2. Choose a step size λk and use the following equation to obtain ϕ⃗k+1:

ϕ⃗k+1 = (1− λk)ϕ⃗
k + λk · y⃗k, k = 1, 2, · · · (66)

Convergence is declared if

∥ϕ⃗k+1 − ϕ⃗k∥ ≤ δ, (67)

where δ is a given convergence threshold value. We use δ = 10−2 and L2 as the norm in

our computation.

The choice of the step size {λk} is important to the convergence speed of MSA. Bar-

Gera and Boyce (2006) constructed a type of MSA with a constant step size sequence,

efficiently solving travel forecasting problems. With the assumption that f is smooth

enough and the Jacobi matrix of f can be diagonalized by a orthonormal matrix, Bar-

Gera and Boyce (2006) derived the following formula:

∥ϕ⃗k+1 − f(ϕ⃗k+1)∥2

∥ϕ⃗k − f(ϕ⃗k)∥2
→ r∗(λ), (68)

where λ is the constant step size and r∗(λ) is a convex quadratic function that is pointing

up. In addition, r∗(0) = 1 and ∂r∗

∂λ
(0) < 0. Any constant step size such that r∗(λ) < 1

results in convergence. There specially exists an optimal constant step size 0 < λ∗ ≤ 1
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such that r∗(λ∗) = minλ r
∗(λ). However, because the constant step size is related to

the properties of f(ϕ⃗), this method needs to estimate the optimal step size according to

past experience and decrease it as necessary. Bar-Gera and Boyce (2006) didn’t offer a

general method for determining the optimal constant step size for different problems.

Based on Formula (68), we proposed a self-adaptive MSA in Du et al. (2013) to

automatically determine the optimal MSA step size without prior information. Although

the convergence of this method depends on the property of the mapping f , it works very

well in Du et al. (2013). We also use it in this paper. The procedure for determining the

optimal step size used in the self-adaptive MSA is as follows.

1. For the first several iterations, we use the predetermined step sizes

λ1 = 1.0, λ2 = 0.4, λ3 = 0.3, λ4 = 0.2, λ5 = 0.15, λ6 = 0.1, λ7 = 0.05. (69)

2. After the kth iteration (k > 2), we record the step size λk−1 used before this

iteration and the resulting ratio of the error

rk−1 =
∥ϕ⃗k − f(ϕ⃗k)∥2

∥ϕ⃗k−1 − f(ϕ⃗k−1)∥2
, (70)

thus constituting a discrete point (λk−1, rk−1) to fit the curve r∗(λ).

3. For the n+ 1(n ≥ 7) step size, we use the least squares method to fit the discrete

points (λk, rk), k = 2, · · · , n and obtain a fitted quadratic curve r∗(λ). We require

this curve to pass through the point (0, 1), and as such only two parameters must

be determined to fit the curve. Define the new step size λn+1 as the minimum

point of r∗(λ), i.e., r∗(λn+1) = minλ r
∗(λ).

4. If the new step size is invalid, such that λn+1 ≤ 0 or λn+1 ≥ 1, then we abandon it

and set λn+1 = 0.5λn.
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Figure 5: Solution procedure

5.5 Solution procedure

To start the self-adaptive MSA, we explain how to compute the first iteration. At the

beginning of the MSA, we have no information about the actual total cost of traveling

to the CBDs. When we solving the CL, we approximate ϕm by the instantaneous total

cost to the destination at each time level and suppose that the travel direction is parallel

to −∇ϕm. We compute the instantaneous total cost at each time level by using |∇ϕm| =

cm(x, y, t). This formulation is derived in Huang et al., 2009. Hence, we can compute

the density ρm(x, y, t) by solving the following model for each group:
ρmt + (ρmUm cos ξm)x + (ρmUm sin ξm)y = qm, ∀(x, y) ∈ Ω, t ∈ T,
Um(x, y, t) = uf (x, y)h(ξ

m(x, y, t))G(
∑

m ρm), ∀(x, y) ∈ Ω, t ∈ T,

cosξm = − ϕm
x

|∇ϕm| , sinξ
m = − ϕm

y

|∇ϕm| , ∀(x, y) ∈ Ω, t ∈ T,

|∇ϕm| = cm(x, y, t), ∀(x, y) ∈ Ω, t ∈ T,

(71)

subject to the initial boundary conditions
Fm(x, y, t) · n(x, y) = 0, ∀(x, y) ∈ Γo ∪ (∪n̸=mΓ

n
c ), t ∈ T,

ρm(x, y, 0) = ρm0 (x, y), ∀(x, y) ∈ Ω,
ϕm(x, y, t) = ϕm

CBD, ∀(x, y) ∈ Γm
c , t ∈ T.

(72)

We denote the density vector solved by this equation as ρ⃗1. We can then solve the HJ

Equation (42) to obtain y⃗1, and set ϕ⃗2 = y⃗1.

The solution procedure is as follows.
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1. Compute the density ρ⃗1 from t = 0 to t = tend by solving Equation (71) for each

group. Then use it to compute the HJ Equation (42) from t = tend to t = 0 for

each group and obtain y⃗1. Hence, we obtain ϕ⃗2 = (1− λ1)ϕ⃗
1 + λ1y⃗

1 = y⃗1.

2. Use the kth solution vector ϕ⃗k to complete the kth iteration, k = 2, · · · , i.e.,

y⃗k = f(ϕ⃗k). (73)

3. Compute the step size λk(k > 7) using the method described in Section 5.4. The

step sizes λk, k = 1, · · · , 7 are predetermined.

4. Compute the (k + 1)th solution vector

ϕ⃗k+1 = (1− λk)ϕ⃗
k + λk · y⃗k. (74)

5. Stop the iteration process when ∥ϕ⃗k+1 − ϕ⃗k∥ ≤ δ is satisfied.

At the end of this section, we conclude the major differences between the algorithms

for this paper and Du et al. (2013). The main difficulty of solving the anisotropic problem

is that we do not have an explicit expression of the optimal velocity direction ξm in the

path-choice strategy. During the computation of the CL, we need to compute φm with

the given value ϕm first and then get the corresponding ξm by solving a minimum value

problem at each gird point and each time level. While in Du et al. (2013), we do not

need to solve the minimum value problem because we already know ξm = φm from the

path choice strategy under the isotropic assumption. For the computation of ϕm
0 in this

paper, we need to solve Equation (43) by using iterative method. For each iteration,

we also need to solve the minimum value problem at each grid to obtain the traveling

direction. When the speed is isotropic, the traveling direction is parallel to −∇ϕm
0 and

hence Equation (43) reduces to a very simple Eikonal equation |∇ϕm
0 | = cm(x, y, tend)

which contains no minimum value problem and is solved by an efficient method called

fast sweeping method in Du et al. (2013). Hence, the existing scheme for isotropic case
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in Du et al. (2013) is simpler and cannot be used to solve the anisotropic problem in this

paper.

6 Numerical examples

To demonstrate the effectiveness of the reformulated model and the proposed algorithm

for solving it, we present two anisotropic numerical examples in this section. In Section

6.1, we show a numerical example with a single CBD and compare the results with the

isotropic case. In Section 6.2, we show a numerical example with two CBDs. Here,

we assume that the cost is only related to the travel time so that the minimum value

problem is easy to compute.

6.1 Single CBD

6.1.1 Problem setting

Figure 6: The modeling domain

We consider a rectangular computational domain with a single destination as shown

in Figure 6. The city is 35 km long and 25 km wide. The center of the CBD is located

at (6 km, 10 km). We omit the superscript m of all functions because there is only one

group in this example.

We assume that there is no traffic at the beginning of the modeling period, i.e.,
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ρ0(x, y) = 0, ∀(x, y) ∈ Ω, and that no cost is incurred by entering the CBD (ϕCBD =

0,∀(x, y) ∈ Γc, t ∈ T ). The traffic demand function q is

q(x, y, t) = qmax[1− γ1d(x, y)]s(t), (75)

where qmax = 1200veh/km2/h is the maximum demand, γ1 = 0.01km−1 is a positive

scalar and d(x, y) =
√

(x− 6)2 + (y − 10)2 is the distance from location (x, y) to the

center of the CBD. The factor [1−γ1d(x, y)] is used to express the higher traffic demand

generated in the domain closer to the CBD, where more of the population is located.

s(t) is a non-negative and time-varying function defined by

s(t) =


t, t ∈ [0h, 1h],
1, t ∈ [1h, 2h],
−4

5
(t− 3) + 1

5
, t ∈ [2h, 3h],

1
5
, t ∈ [3h, 5h],

0, t ∈ [5h, tend].

(76)

We set tend = 7 and so the modeling period is T = [0h, 7h].

The free-flow speed is defined as Uf (x, y, t) = uf (x, y)h(ξ(x, y, t)) with

uf (x, y) = Umax[1 + γ2d(x, y)], (77)

and

h(ξ(x, y, t)) = [cos(2ξ) + 5]/6, (78)

where Umax = 30km/h and γ2 = 4 × 10−3km−1. The factor [1 + γ2d(x, y)] is used to

express the faster free-flow speed in the domain far from the CBD, where there are fewer

junctions. The factor [cos(2ξ) + 5]/6 is used to express the faster free-flow speed in the

east-west direction (see Figure 7).

We define the speed function as U(x, y, t) = Uf (x, y, t)G(ρ), where G(ρ) is defined as

G(ρ) =

{
e−β(ρ)2 − e−β(10000)2 ρ

10000
, if ρ 6 10000,

0, if ρ > 10000.
(79)

Here, β = 1
32×10002

(in km4/veh2) is a positive scalar related to the road condition. We

can see that the speed decreases as the density increases and the traffic gets stuck when

ρ exceeds the jam density 10000.
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Figure 7: Polar line: [cos(2ξ) + 5]/6

The flow intensity can be computed as

|F| = ρU = ρUfG(ρ). (80)

Here, the free-flow speed Uf (x, y, t) = uf (x, y)h(ξ(x, y, t)) dependents on both the loca-

tion (x, y) and the travel direction ξ. For any fixed (x, y) and ξ, the flow intensity is a

function of ρ only. When the density is small, |F| grows as ρ increases and the traffic is

in a non-congested condition. When ρ exceeds a critical density ρc ≈ 4000, the traffic

becomes congested and |F| decreases as ρ increases. |F| reaches the maximum value

at ρc. Note that the critical density remains the same at different locations and with

different travel directions.

In the general case, the local travel cost per unit of distance is defined as

c(x, y, t) = κ(
1

U
+ π(ρ)), (81)

where κ = 90$/h and π(ρ) = 10−8ρ2. When the cost is only the travel time, we have

c(x, y, t) =
κ

U
. (82)

A uniform rectangular mesh with an Nx ×Ny grid is used in the computation. The
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mesh grids inside the CBD are not computed. The numerical boundary conditions are

summarized as follows.

1. On the solid wall boundaries, i.e., the outer boundary of the city, Γo, we let the

normal numerical flux be 0. We set ρ = 0 at the ghost points inside the wall. In

the HJ equation, the numerical boundary values of ϕ are obtained by extrapolation

from inside the computational domain.

2. On the boundary of the compact CBD, i.e., Γc, we set ϕ = 0 in the HJ equation.

The boundary conditions for ρ inside the CBD are obtained by extrapolation from

the grids outside the CBD. We assume that the capacity of the CBD is large

enough to accommodate all of the travelers in the city. To maintain the maximum

flow intensity on the boundary of the CBD under the congested condition, we set

U(x, y, t) = Uf inside the CBD.

6.1.2 Numerical results

We present the numerical results in this section. To verify the convergence of the com-

posed algorithm, we test three grids (grid 1: 140 × 100; grid 2: 280 × 200; grid 3:

420 × 300). The one-dimensional cuts of the density at time t = 2 along different lines

are plotted in Figure 8, which shows good convergence among different grids. Grid 2 is

adopted for further discussion.
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Figure 8: Convergence curves of the density at time t = 2

Figure 9 shows the temporal and spatial distributions of the density ρ within the

modeling region. As Sub-figure 9(a) shows, the density is low at the beginning and the

traffic is in a non-congested condition. As the traffic demand grows, the density grows.

In Sub-figures 9(b) and 9(c), we can see that the density of the region near the CBD

exceeds the critical density and the traffic becomes congested. We can also observe that

the density of the region that is very close to the CBD is lower than that of the outer

region. The inflow into the CBD maintains the maximum flow intensity as long as the

traffic condition at the CBD boundary is congested. Although the demand starts to

decrease from t = 2, the areas around the CBD are still in the congested condition

at t = 3 due to limitations on the maximum flow intensity into the CBD (Sub-figure
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9(d)). As the demand decreases further, all parts of the city return to the non-congested

condition (Sub-figure 9(f)).

Figure 10 illustrates the contours of the total cost potential function ϕ at various

times. At the beginning of the modeling period, when the density is very low, the

distribution of the contours is uniform. As the traffic demand grows, the total cost

potential increases. From the density results, we know that the density around the CBD

is very high when t = 2.5 and t = 3. Hence, the travel cost around the CBD increases

rapidly, resulting in a denser set of cost potential contours in this region (see Sub-figures

10(c) and 10(d)). As the traffic demand decreases, the traffic tends to enter a free-flow

state and the cost potential contours tend to follow a series of concentric ellipses located

around the CBD, as shown in Sub-figure 10(f). The shape of the ellipses represents the

anisotropism of the model.

Figure 11 shows the plots of the flow vector, which illustrates the results of the path

choice. When the density of the region around the CBD increases, vehicles choose a

curved trajectory to avoid this region. This demonstrates the capability of the proposed

PDUE-C model in modeling how travelers alter their preferred routes in response to

dynamic changes in the network conditions to minimize their cost potentials. At the

end of the modeling period, when the density is low, vehicles move toward the CBD in

almost straight lines.

Consider the total inflow to the CBD through Γc, defined as

fCBD(t) =

∮
Γc

(F · n)(x, y, t)ds, (83)

where n is the unit normal vector pointing toward the CBD, and the total demand over

the whole domain defined as

qΩ(t) =

∫ ∫
Ω

q(x, y, t)dxdy. (84)

Figure 12 shows the relationship between fCBD(t) and qΩ(t). The numerical data show

that the areas under these two curves are the same, which demonstrates that all of the
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Figure 9: Density plot
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Figure 10: Cost potential plot
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Figure 11: Flow vector plot
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traffic has entered the CBD by the end of the modeling period. The inflow to the CBD

increases rapidly at the beginning because the demand qΩ(t) grows. fCBD(t) reaches

the maximum value quickly. This means that the density around the CBD boundary

is now greater than the critical density ρc and the traffic is in a congested condition.

The inflow does not increase further due to limitations on the maximum flow intensity.

The inflow to the CBD maintains this maximum value, and does not decrease until the

density around the CBD decreases below ρc. When the traffic demand starts to decrease

from t = 2, it takes a while to return to the non-congested condition, and the inflow

then begins to fall. Note that the total demand becomes a constant (> 0) at t = 3, and

that the inflow decreases to the same constant after a short delay. The traffic demand

falls to 0 after t = 5h, and the flow intensity decreases to 0 thereafter.
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Figure 12: Flow intensity over time

Figure 13 shows the one-dimensional cuts of the speed intensity U = UfG(ρ) along

the line x = 3 at different times. At the beginning of the modeling period, the density

is low and the speed is almost the free-flow speed Uf = ufh(ξ). Although uf (3, y) is

smaller in the region closer to the CBD (near y = 10), where there are more junctions,
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the free-flow speed Uf is faster in this region because the travel direction is pointing to

the east (see Figure 11) and hence h(ξ) in this region is bigger. This demonstrates the

anisotropy property of our model. From Figure 9, we know that the density around the

CBD increases soon and hence G(ρ) becomes small. We can see that the speed variation

dramatically impact the shape of the speed plot and the speed becomes slower near

y = 10 (see Sub-figures 13(d)-13(f)). As the density decreases after t = 3.5, the speed

returns to the free-flow speed.
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Figure 13: one-dimensional cuts of the speed at x = 3

Figure 14 shows the one-dimensional cuts of the speed intensity along the line y = 12
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at different times. The region around x = 6 is closer to the CBD and hence have smaller

uf . Also, the flux vector in this region points to the south direction and hence have

smaller h(ξ). Therefore, the free-flow speed Uf = ufh(ξ) is slower around x = 6 (see

Sub-figures 14(a) and 14(i)). As the density around the CBD grows, the speed there

decreases rapidly and we can observe a significant speed jump around x = 10. This

jump moves from the left side of x = 10 to the right side as the high density area around

the CBD becomes larger (see Sub-figures 14(b) to 14(e)). This demonstrates the wave

propagation of speed.
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Figure 14: one-dimensional cuts of the speed at y = 12

40



6.1.3 Comparison with the isotropic case

By deleting the anisotropic item h(ξ(x, y, t)) = [cos(2ξ)+5]/6 from the expression of the

speed U(x, y, t), we define an isotropic speed function V (x, y, t) as follows:

V (x, y, t) = uf (x, y)G(ρ) = Umax[1 + γ2d(x, y)]G(ρ). (85)

By replacing U(x, y, t) with V (x, y, t), the model now becomes isotropic. In this case,

the optimal travel direction is v ∥ −∇ϕ.

Figure 15 shows the comparison of the isotropic and anisotropic cases at t = 3.

Because the traffic characteristics are uniform in all orientations for the isotropic case,

the contours of the density and the cost tend to be circles (see Figures 15(a) and 15(c)).

For the anisotropic condition, the factor [cos(2ξ) + 5]/6 expresses the faster free-flow

speed in the east-west direction. Hence, the contours tend to be ellipses with the major

axis parallel to the x-axis (see Figures 15(b) and 15(d)).

By comparing Figures 15(e) and 15(f), we can see that the travelers for both cases

will choose the curved path to the CBD to avoid the high density region. However,

the travelers for the anisotropic case will choose a more circuitous path. The travelers

coming from the east side will even travel to the west side of the CBD first and turn

back due to the faster travel speed in the east-west direction.

6.2 Multiple CBDs

6.2.1 Problem setting

As shown in Figure 16, we consider a rectangular computational domain with two CBDs.

The center of CBD 1 is located at (6 km, 10 km). The center of CBD 2 is located at (30

km, 15 km). The traffic demand function of Group m (m = 1, 2) is

qm(x, y, t) = qmax[1− γ1d
m(x, y)]s(t), (86)

where dm(x, y) is the distance from location (x, y) to the center of CBD m. qmax, γ1

and s(t) remain the same as in the previous example. The free-flow speed of Group m
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Figure 15: Comparison at t = 3.0
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Figure 16: The modeling domain with two CBDs

is defined as

Um
f (x, y, t) = Umax[1 + γ2d(x, y)]h(ξ

m(x, y, t)). (87)

The factor [1+γ2d(x, y)] is used to express the faster free-flow speed in the domain with

larger d(x, y). Here, we define d(x, y) = 3
4
min{d1(x, y), d2(x, y)}+1

4
max{d1(x, y), d2(x, y)}

which shows that the impact of the closer CBD is more crucial. However, we need also

consider the influence of the farther CBD. G(ρ) and all other functions are the same as

in the previous example.

For Group m, the numerical boundary conditions at the outer boundary of the city

and the boundary of the mth CBD are the same as in the previous example. The

boundaries of CBDs other than the mth CBD (Γn
c , n ̸= m) are viewed as solid walls for

Group m. The numerical boundary conditions on these solid walls are the same as the

outer boundary of the city (Γo), that is, we let the normal numerical flux of Group m

be 0 and set ρm = 0 at the ghost points inside the wall. In the HJ equation, ϕm at the

ghost points are obtained by extrapolation from inside the computational domain.

6.2.2 Numerical results

Let us consider the convergence of self-adaptive MSA for both the previous example

with one single CBD and the example in this section with two CBDs. Figure 17 shows
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the step size sequences λk. Figure 18 shows the errors of ϕ between each iteration, i.e.,

∥ϕ⃗k+1−ϕ⃗k∥. The results of both examples are similar. For the first several iterations, the

predetermined step sizes decrease fast, avoiding too large an amplification of the error.

We can see that the errors increase at the very beginning and then decrease rapidly. After

a number of iterations, the step sizes decrease slowly and trend toward the optimal step

size, and the errors decrease at a reasonable speed.

iteration number

st
ep

si
ze
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10-2

10-1

100

101

Multiple CBDs
Single CBD

Figure 17: The step sizes of the self-adaptive MSA

Figures 19 to 21 show the plots of the density, cost potential and flow vector, re-

spectively. The results are similar as in the example with one single CBD. As the traffic

demand of each group grows, the density around each CBD increases and the traffic be-

comes congested, resulting in a denser set of cost potential contours around each CBD.

Also, the flow vector of each group becomes curved to avoid high density region. As the

density decreases at the end of the time period, the traffic reverts back to the free-flow

state and the cost potential contours tend to follow a series of concentric ellipses. Also,

the vehicles of each group move toward the CBD in almost straight lines.

The empirical observation in Geroliminis and Daganzo (2008) show that a macro-
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Figure 18: The errors of the self-adaptive MSA

scopic fundamental diagram (MFD) linking space-mean flow and density exists on a

homogeneous (low spatial variance of link density) urban area independently of the de-

mand. However, heterogeneity distribution of density can affect the shape or even the

existence of MFD (Geroliminis and Sun, 2011; Daganzo et al., 2011). In Figure 22(a), we

plot the relationship between the average flow and the average density of the entire city.

We can observe high scatter due to the heterogeneously distributed congestion. Ma-

zloumian et al. (2010) show that MFD remains well-defined in sub-regions of the urban

network. Hence, the heterogeneous networks might be partitioned into a small number

of more homogenous regions so that each region will have a well-defined MFD. See Ji

and Geroliminis (2012) for a partitioning mechanism. Note that MFD is an important

attempt to model a dense urban network. Gayah and Daganzo (2011) investigate the

effect of driver adaptation and route choice on the shape of MFD. Yildirimoglu and

Geroliminis (2014) incorporate the MFD framework into a DTA model and establish dy-

namic equilibrium conditions in case of heterogeneous urban networks. Ramezani et al.

(2015) introduce two aggregated models, region- and subregion-based MFDs, to study
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(b) t = 1.0, Group 2
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(d) t = 2.5, Group 1
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(g) t = 3.5, Group 1
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Figure 19: Density plot of Multiple CBDs
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Figure 20: Cost potential plot of Multiple CBDs
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Figure 21: Flow vector plot of Multiple CBDs
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the dynamics of heterogeneity and how they can affect the accuracy scatter and hystere-

sis of a multi-subregion MFD model. We now show that our model is able to reproduce

the MFD plots for homogenous sub-regions. Figure 22(b) shows two scattered plots in a

square sub-region near CBD 1 which is centered at (6km, 13km) and with side lengths

of 0.25 km (circle symbols) and 0.50 km (square symbols). We can see that both cases

exhibit similar MFDs, but the MFD associated with the larger sub-region with a high

degree of heterogeneity becomes more scattered, which are consistent with the above

literatures.

7 Conclusions

In this paper, we reformulate the model constructed in Hoogendoorn and Bovy (2004).

Their model consists of a CL and an HJB equation, and each contains a minimum value

problem. The HJB is difficult to compute in most anisotropic cases. The authors of

Hoogendoorn and Bovy (2004) did not offer a numerical algorithm to solve the minimum

value problem in the HJB equation for anisotropic cases, and only provided an isotropic

application example in their paper. To overcome this problem, we reformulate their

model for a dense polycentric urban city with multiple CBDs. When we compute the
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actual cost, the velocity vector is known, and hence the HJB equation reduces to a HJ

equation that includes no minimum value problem and is much easier to compute. In

our model, the minimum value problem is used only in the CL portion. Hence, the

computation of our model is simpler. Also, there is only one parameter in the numerical

scheme of the minimum value problem in our model under the assumption that the cost

is only related to the time, whereas there are still four parameters in Hoogendoorn and

Bovy (2004). Hence, the minimum value problem in our model is easier to compute. A

simple algorithm is given in this paper to solve this minimum value problem. We only

need to solve the minimum value problem in advance rather than solving it again during

the iterative solution process. We also prove the dynamic path equilibrium of our model

in a different way. Two anisotropic numerical examples are shown to demonstrate the

effectiveness of the model and the solution algorithm.

Although the model is composed for a general cost function, we only show how to

compute the minimum value problem under the assumption that the cost is only related

to the time. The solution algorithm for a general cost needs to be considered in the

future. In this paper, we develop a numerical scheme based on a rectangular grid. It

would be useful to extend the numerical scheme based on a triangular grid system,

which is more flexible for tackling complicated geometry. Extensions such as a combined

departure time and assignment could be developed in future studies.

Daganzo and Geroliminis (2008) and Geroliminis and Boyaci (2012) analytically ex-

plore the connection between network structure (e.g., topology and signal control) and

a network’s MFD for urban cities. Leclercq and Geroliminis (2013) study the influence

of route choice in the MFD for a network of parallel routes under different traffic con-

ditions, static and dynamic case for user equilibrium and system optimum. In our case,

we would be able to change the shape of MFD though controlling the parameters in the

problem setting. Efficient traffic management of large-scale urban areas is of great im-

portance. Well-defined MFDs are very useful to introduce control strategies to improve
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mobility in large urban networks such as those in Aboudolas and Geroliminis (2013);

Daganzo (2007); Geroliminis et al. (2013); Haddad et al. (2013); Keyvan-Ekbatani et al.

(2013, 2015). The dynamic continuum model presented in our paper offers an alternative

approach to the study of this interesting problem. As our model is able to reproduce

low-scatter MFDs for sub-regions, we may try to perform a similar control in the future

work. Although it may be difficult to directly apply the same in our paper, these strate-

gies are also possible for our case through controlling the parameters such as optimizing

the signal timings of the junctions that would be able to change the shape of the MFD.

For the case of discrete modeling, the existence of DUE for car traffic has been an-

alyzed by several papers (Bressan and Han, 2013; Han et al., 2013; Zhu and Marcotte,

2000). For the continuous model described in this paper, the existence of DUE might be

considered from the perspective of the existence of solution to the PDEs describing the

model. Our model consists of two coupled PDEs (CL and HJ) with forward-backward

structure. This model is similar to mean field models in finite horizon (Lasry and Li-

ons, 2006, 2007) which are also systems of two coupled PDEs with forward-backward

structure. The existence theorems of the solutions to mean field models under suitable

assumptions can be found in Cardaliaguet et al. (2012), Lasry and Lions (2006) and

Lasry and Lions (2007). Although our model is not exactly the same as the mean field

models, we can investigate the existence of DUE using the idea in the above papers in

our future work.
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