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Abstract 

We report a gradual transition in the deposition product from pure Cu2O to pure 

Cu, during electrodeposition on Au/Pd sputter-coated silicon wafer substrates in 

copper sulphate electrolyte with various dc potential. At voltages lower than 0.3V, 

only pure Cu in a nanocrystalline form is deposited on the cathode substrate, while at 

voltages higher than 1.2V, only pure Cu2O, also in a nano/microcrystalline form, is 

deposited. At intermediate voltages between 0.3 to 1.2 V, the deposition product 

comprises a mixture of both Cu and Cu2O nano/micro-crystals. The Cu2O crystals are 

generally of an octahedral shape with sizes ranging from 30nm to 100nm, while Cu 

nano/microcrystals are of irregular shape ranging from 100nm to 2μm. This work 

provides a method to fabricate nanocrystalline Cu2O, Cu and Cu/Cu2O on substrates 

in a single step without the use of additives. 
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1. Introduction 

 

For many years, synthesizing and fabricating nanostructured materials have been 

of immense interest, since nano-scale materials often possess enhanced physical and 

chemical properties. Over the past decade, in addition to metals, nanostructured 

semiconductors and composites have attracted increasing attention. As a non-toxic 

semiconductor, Cu2O nanostructures have been reported to exhibit Bose-Einstein 

condensation of excitons at lower light intensities [1]. Cu2O is also important in 

applications including solar cells [2], gas sensors [3] and photocatalysis in H2 

production [4]. Metallic copper, on the other hand, has very different physical 

properties, the differentiation between the lattice parameters and the electrical 

resistivity of Cu and Cu2O nanostructures can be used to produce rectifiers and 

resonant tunneling devices at room temperature [5].  

Various techniques have been developed to synthesize different forms of Cu2O 

nanostructures, such as thermal decomposition [6], thermal oxidation [7], dc 

sputtering [8], solution phase synthesis [9], and electrodeposition [10]. Of these, 

electrodeposition is regarded as an efficient and inexpensive method to fabricate 

nanostructures. Different compositions of the as deposited films can be controlled by 

varying the parameters of the electrochemical setup, and different nanostructures such 

as nanocrystals, nanowires, and nanocrystalline coatings of Cu2O, have been 

fabricated by electrodeposition [11-13]. 
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Co-deposition of Cu/Cu2O has also been reported to be favored only in high pH 

solution for electrodeposition, or with the use of different additives. Lee et. al. 

demonstrated that Cu/Cu2O composite nanowire arrays could be deposited by varying 

the pH value and potentials by using anodic aluminum oxide (AAO) [14]. Switzer et 

al. have fabricated Cu/Cu2O layered nanostructures by using Cu(II) lactate and in 

alkaline solution [15]. Luo et. al. have fabricated copper nanocubes and Cu2O 

depositions and studied the effect of temperature, pH value and reaction time on the 

shape evolution [16]. All of these studies made use of alkaline media. Yu et al showed 

that Cu/Cu2O fingering branches of deposits can be obtained without changing the pH 

value, but a complicated setup and an ultrathin layer of electrolyte are needed [17].   

We have recently used electrodeposition to fabricate Cu2O nanocrystals and 

nanowires on different substrates such as Si wafer, stainless steel plate and HOPG [11, 

12], by cathodic reactions. In the present study, we report an additive-free 

electrodeposition approach to co-deposit nanocrystalline Cu/Cu2O at room 

temperature.  

 

2. Experimental methods 

The electrolyte was prepared by mixing analytical-grade copper (II) sulphate 

(supplied by Sigma Aldrich Co Ltd.) and distilled water to achieve a concentration of 

0.018M. The electrolyte was ultrasonically treated for 10 min before the experiments 

to ensure good solubility. The pH value was measured to be 4.0. A simple 

two-electrode system was used for the experiments.  
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1” diameter x 250μm thickness [100]-oriented silicon wafers (supplied by 

Universitywafer.com) were used as the substrates. Before electrodeposition, the Si 

wafers were sputtered with Au/Pd for 220s at 15μA by using a sputter coater 

(BAL-TEC SCD 005). During electrodeposition, the silicon substrate was used as the 

cathode while a 0.5mm x 30mm x 50mm polished copper plate (with purity > 99.9%) 

was used as the anode. Deposition potentials were controlled by an electrochemical 

workstation (LK2006A, Lanlike). The electrodes were separated by a distance of 

20mm, and the whole electrodeposition process was kept at room temperature. All 

experiments were carried out under constant voltage conditions. After 

electrodeposition, the substrates were rinsed several times with distilled water and 

ethanol, and were put inside a desiccator at room temperature before characterization. 

A set of experiments was conducted by varying the deposition potential from 0.3V to 

1.2V in order to study the effect of the deposition potential on the volume fraction of 

the Cu content in the co-deposition process.  

The morphology and chemical composition were characterized by a 

field-emission scanning electron microscope (FEG SEM, Hitachi S4800) equipped 

with energy-dispersive x-ray spectroscopy (EDX) analysis function, x-ray diffraction 

(XRD, Bruker D8 diffractometer) equipped with a Cu X-ray tube operated at 40kV 

and 30mA and a transmission electron microscope (scanning TEM, FEI Tecnai G2 20) 

operating at 200kV. 
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3. Results 

3.1. Co-deposition of nanocrystalline Cu/Cu2O  

Fig. 1(a) is an SEM image of the co-deposition of Cu2O and Cu crystals on a Si 

substrate using a voltage of 0.5V for 60s. Two types of crystals were formed on the 

substrate: first, Cu2O nanocrystals of octahedral shape in general which were quite 

uniformly distributed over the substrate surface, and secondly, larger Cu nanocrystals 

of irregular shapes. The edge length of the Cu2O nanocrystals ranged from 30nm to 

100nm. In terms of shape, about 82% of Cu2O crystals were perfectly octahedral, the 

rest of them were truncated octahedrons. On the other hand, the diameter of the Cu 

crystals ranged from 100nm to 500nm. Fig. 1(b) shows an SEM image of the 

co-deposition at 0.5V for 600s. Compared with Fig. 1(a), the size of both the Cu2O 

and Cu crystals increased with the increased deposition time. It can be seen that small 

nanocrystals were deposited on the surface of the larger Cu crystals. These deposited 

nanocrystals were not randomly distributed on the surface of the Cu crystals, but were 

more preferentially deposited on their edges. As shown in the mapping analysis in Fig. 

3, O is found on the surface of the Cu crystals, suggesting that these nanocrystals 

were Cu2O. It is believed that since the Cu crystals contained surface protrusions, they 

intensified the electric field and favour further growth. The electric field around the 

edges of the Cu crystals was particularly high, and when Cu2+ ions reached there, they 

became reduced and form Cu2O nanocrystals on the edges, and continued deposition 

led to preferential deposition on the edges as shown in Fig. 1(b).  

The two types of crystals in Fig. 1 were identified by electron diffraction as well 
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as by compositional analysis. Fig. 2 shows a TEM bright-field image of several 

nano/micro-crystals desquamated from a Si substrate. The upper selected-area 

electron diffraction (SAED) pattern was taken along the [112] zone of a typical 

octahedral Cu2O nanocrystal at position (i) marked. The {110} and {111} reflections 

are indicated in the diffraction pattern. The nanocrystal shows a cubic structure with a 

lattice constant of 0.42 0.01nm which is in agreement with the known value of 

0.427nm for Cu2O [18]. The lower SAED pattern was taken along the [011̅] zone of a 

larger microcrystal at position (ii). The {111} and {200} reflections are indicated in 

the diffraction pattern, and the lattice constant was calculated to be 0.36 0.01nm, 

which is in agreement with the value of 0.362nm for Cu [19].  

To confirm the chemical compositions of the deposited products, EDX point 

analysis and mapping were performed. Fig. 3 shows the EDX composition 

spectroscopy and mapping of the deposited products at 0.5V for 600s. The point 

analysis results in the right panel of Fig. 3 show that only Cu was present in the large 

micro-crystal labeled as (iii), while both Cu and O were detected at the octahedral 

nanocrystals labeled as (iv). Moreover, in the mapping analysis, it can be seen that Cu 

is intensively detected at the two larger particles, but O is uniformly distributed all 

over the substrate area, suggesting that the two larger particles are copper 

microcrystals. Oxygen is also detected on the surface of the two Cu micro-crystals, 

indicating that the surface of the Cu has been slightly oxidized.  

 

3.2 Pure nanocrystalline Cu2O deposition 
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At a lower electrodeposition potential, pure Cu2O nanocrystals were obtained. Fig. 

4(a) shows a low-magnification SEM image of the deposited Cu2O nanocrystals 

deposited at 0.1V for 60s on a Si substrate. As shown in the example in the inset of 

Fig. 4(a), the deposited crystals typically exhibit an octahedral shape with edge length 

of 100nm. To reconfirm the structure of all the as-synthesized nanocrystals, large 

quantities of nanocrystals were desquamated from the substrate and studied by TEM 

with a selected-area aperture large enough to cover many nanocrystals. Fig. 4(b) 

shows a resultant SAED pattern comprising dotty concentric rings, all of which can be 

identified to belong to the simple cubic structure of Cu2O.  

 

3.3 Pure nanocrystalline Cu deposition 

At a higher potential, pure Cu nanocrystals were obtained. Fig. 5 shows an SEM 

image of the deposited Cu microcrystals deposited at 1.2V for 60s on a Si substrate. 

As can be seen in the image, no octahedral nanocrystals were present, and the whole 

area was covered by irregular shaped Cu nanocrystals. To characterize the structure of 

the deposited nanocrystals, EDX spectroscopy was performed. The results of EDX 

(not shown) show that only Cu was detected which supports the product crystals to be 

copper.   

Fig. 6 is the XRD patterns of the deposited products obtained at different 

deposition potentials. All of the diffraction peaks are indexed according to the 

standard cubic structures of copper (JCPDS file No. 85-1326) and the standard 

diffraction peaks of cuprous oxide (JCPDS file No. 78-2076). The nanocrystals 
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deposited at 0.3V were pure Cu2O as shown in Fig. 6(a). The results indicate that only 

Cu2O is present on the deposited product. The peaks are attributed to the {111} and 

{220} reflections of Cu2O and those from the Si substrate (marked with solid stars). 

As a deposition potential of 0.7V, Cu reflections emerge as indicated by solid square 

symbols in Fig. 6(b). The results indicated that both Cu and Cu2O co-existed on the 

deposition products. Besides the reflections of Cu2O, the diffraction peaks at 2 = 

43.8º, 50.9º and 74.4º correspond to the {111}, {200} and {220} reflections of the 

cubic Cu. It can be seen that initially, Cu2O(220) is dominant but then Cu2O(111) 

becomes stronger as the potential increases before both peaks disappear at high 

potential. This is thought to be due to the fact that at a lower potential, the deposited 

Cu2O nanocrystals are mostly truncated octahedrons, butt a higher potential, more 

Cu2O nanocrystals grew into octahedrons each consisting of eight (111) planes, so 

that the intensity of Cu2O(111) becomes stronger as the potential increased. As the 

applied potential is increased to 1.2V, the reflections of Cu2O disappeared, and only 

those of Cu remained as shown in Fig. 6(c). 

 

3.4 Effects of electrodeposition potentials on volume fractions of Cu content 

By controlling the electrodeposition potential, different products can be obtained. 

Pure Cu2O nanocrystals were obtained at potentials below 0.3V, while pure Cu 

nanocrystals were obtained for potentials higher than 1.2V. From 0.3V to 1.2V, both 

Cu and Cu2O were found as Cu/Cu2O co-deposition. The relative fraction of the 

co-deposition product can be controlled by varying the applied potential.  
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Fig. 7 shows the volume fraction of Cu in the deposition product at different 

deposition potentials on Si wafer substrates. The deposition duration for all the 

experiments was maintained at 60s. The insets are representative SEM micrographs 

showing the distributions of the Cu and Cu2O nanocrystals at different deposition 

potentials. It can be seen that as the potential was increased from 0.5V to 1.2V, the 

volume percentage of Cu content increased from 65% to 97%. Insets B to D show the 

distribution of Cu and Cu2O nanocrystals deposited on Si at the corresponding 

potentials. Below 0.3V, the deposition product was pure Cu2O as mentioned before, 

and the substrate was fully covered by octahedral Cu2O nanocrystals as shown in inset 

A. Above 1.2V, the deposition product became pure Cu with no Cu2O nanocrystal 

found, and the substrate was fully covered by irregular shaped Cu nanocrystals as 

shown in inset E. It is, however, important to note that the experiments here were 

performed using a two-electrode set-up, and so the true cathode potential was not 

fixed. The current values measured at the applied potential of 0.3V, 0.5V and 1.2V 

were ~1mA, ~3.3mA and ~9mA respectively, at which Cu2O, Cu/Cu2O and Cu were 

electrodeposited. It is clear that deposition of pure Cu2O only needed a small current, 

while larger current was needed for the deposition of Cu. 

 

As for the size of the crystals, the edge length of the Cu2O crystals did not change 

much but the average size of the Cu crystals decreased as the deposition potential 

increased. At potential 0.3V, the edge length of Cu2O is 63nm which is similar to that 

at 0.9V, while for Cu crystal, it is 300nm at 0.5V compared to 200nm at 1.2V.  
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4. Discussion 

In the present experiments, the micro- and nano-crystals formed on the Si wafer 

substrates were identified to be Cu and Cu2O depending on the potential used. The 

Cu2O crystals were also found to have an octahedral shape in the steady state. In the 

literature, Cu2O nanocrystals and co-deposition of Cu and Cu2O were usually 

obtained by electrodeposition in alkaline media [15] or with the use of additives in the 

electrolyte [16]. In this study, however, we successfully fabricated nanosized single 

crystals of Cu2O, co-deposition of Cu and Cu2O, as well as pure Cu nanocrystals, on 

Si wafer by low-potential electrodeposition using a simple two-electrode setup at 

room temperature (25oC) at pH 4. Comparing to the study by Switzer et. al. [15], the 

Cu content at a given current density is a strong function of the solution pH, namely, 

as the pH increased, the Cu content decreased. At pH 12, the films deposited were 

pure Cu2O even for relatively high current densities. However, in the present study, 

the electrolyte pH was maintained constant, and so the variation of the Cu fraction is 

all accounted for by the deposition potential. 

The cyclic voltammogram of copper sulfate is known to exhibit two reductive 

peaks [16], which indicate that the electrochemical reduction of Cu(II) ions proceeds 

via two steps, namely, (i) the reduction of Cu(II) ions to Cu(I) ions, and (ii) the further 

reduction of Cu(I) ions to form Cu metal. Since both Cu2O and Cu can be deposited 

according to the present experiments, the possible chemical reactions at the cathode 

that correspond to the two-step reduction of Cu(II) are as follows: 
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(i) First reduction step Cu(II)  Cu(I) 

2Cu2+ + H2O + 2e-  Cu2O + 2H+         [1a] 

or 

Cu2+ + e-  Cu+        [1b] 

 

(ii) Second reduction step Cu(I)  Cu 

Cu2O + H2O + 2e-  2Cu + 2OH-    [2a] 

or 

Cu+ + e-  Cu        [2b] 

 

The results in Fig. 7 may then be explained on the basis of such a two-step 

reduction process of Cu(II). Below ~0.3V, the cathode over-potential is sufficient to 

enable the first reduction step to occur, so that Cu(II) ions would reduce to form Cu2O 

according to Eq. [1a], but the potential is not high enough to allow the further 

reduction of Cu(I) in Eq. [2a] to proceed. Therefore, only Cu2O results in the reaction 

product. The absence of Cu in the deposition product in this potential range also 

suggests that Eqs. [1b] and [2b] are not operative in this regime. This is supported by 

the fact that the equilibrium electrode potential of Cu2O (0.347V) vs standard 

hydrogen electrode is higher than that of Cu (0.297V) [17], which indicates that the 

cathodic formation of Cu2O is thermodynamically more favorable than Cu in CuSO4 

electrolyte at low over-potentials.  
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At higher potentials in the range between ~0.3V and ~1.2V, the cathode 

over-potential is large enough to allow both reduction steps of Cu(II) to occur, so that 

both Cu2O and Cu are deposited on the substrate (Fig. 7). Nucleation of Cu2O may 

first occur on the substrate according to Eq. [1a], and some of the Cu2O seeds may be 

further reduced to form Cu nanocrystals according to Eq. [2a]. Alternatively, Eqs. [1b] 

and [2b] may become operative in this potential regime, so that Cu(II) ions arriving 

from the electrolyte may directly form Cu nanocrystals on the substrate without 

undergoing the Cu2O formation as an intermediate step. Once Cu seeds are formed on 

the substrate surface from either alternative route, they act as concentrators of electric 

field on the substrate surface since their counterpart, Cu2O, is a semi-conductor with a 

much lower electrical conductivity. Fresh Cu(II) ions from the electrolyte are thus 

preferentially attracted to the surface of the Cu nanocrystal seeds and get reduced on 

them according to Eqs. [1b] and [2b]. As the Cu crystals become larger than the Cu2O, 

they become surface protrusions which further intensify the electric field, thus further 

enhancing their growth compared with that of the Cu2O. This explains the present 

observation in Figs. 1 and 7 that the Cu crystals were much larger than the Cu2O at 

the same deposition time. On the other hand, our previous study has shown that even 

in the regime where only Cu2O is deposited, the crystal size of Cu2O did not change 

significantly as the deposition time or potential increased [11], and inspection of Fig. 

7 here shows that the crystal size of Cu2O also did not change significantly with the 

deposition potential in the ~0.3 to 1.2V regime where Cu2O and Cu were co-deposited. 

As discussed previously [11], this is attributed to a competition between crystal 
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nucleation and growth. At low deposition potentials, the ion flux arriving at the 

electrode from the electrolyte is low and the ions may have enough time to diffuse to 

favorable sites for nucleation, so that the Cu2O nuclei may grow slowly with a limited 

crystal size observed. At higher potentials, the ion flux is large and so many nuclei 

may form simultaneously on the substrate. The further arriving ion flux is therefore 

shared by a high density of nuclei, and so the growth of each Cu2O nucleus is also 

slow.  

As the potential increases beyond ~0.3V, the rate of the Cu(I)  Cu reduction 

step increases, and so the Cu content increases with potential as shown in Fig. 7. 

Eventually, at potentials above ~1.2V, only Cu is observed to form which suggests 

that any Cu2O produced by Eq. [1a] is further reduced to form Cu via Eq. [2a]; the 

overall reaction is thus effectively  

Cu2+ + 2e-  Cu        [3]  

In this regime, the arriving Cu(II) ion flux is utilized mostly in forming new nuclei of 

Cu rather than supporting the growth of existing ones. As the ion flux is shared by 

more nuclei, the size of the Cu crystals becomes smaller at higher potentials.   

Under the additive free condition, Cu2+ ions undergo Eq. [1a]. They react with 

water and are reduced to form Cu(I) oxide on the cathode, releasing H+ to the solution. 

The possible mechanism of Cu2O can be described as follows. First, during 

electrodeposition, the Cu2+ ions were driven by electric field to the cathode. As 

mentioned, the equilibrium electrode potential of Cu2O is relatively high, and so it is 

deposited with priority. At a low deposition voltage, Cu2+ ions are slowly attracted to 
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the surface of the cathode, and they have time to find thermodynamically favorable 

locations to attach to and get reduced to form flat and smooth surfaces with the lowest 

specific energy, {111} planes. The mechanism here described is different from that 

reported by Switzer et al [15] and Luo et al [16] who investigated the deposition of 

Cu/Cu2O by using alkaline medium and by using additive sodium dodecyl sulphate 

(SDS) respectively. The chemical reaction under alkaline medium is as follows: 

 

2Cu2+ + 2OH- + 2e-  Cu2O + H2O     

 

Additive works by preferentially adsorbing on {111} planes, blocking other ions from 

the electrolyte approaching those faces and hindering the growth along <111> 

directions, and therefore octahedral-shaped crystals are formed. In this study, we 

managed to fabricate Cu2O without using additive and changing the pH of the 

solution.      

 

5. Conclusions 

 We reported a facile method to achieve co-deposition of nanocrystalline Cu/ 

Cu2O, and deposition of pure Cu and pure Cu2O nanocrystals, by electrochemical 

deposition. For potentials higher than 1.2V, the deposition product was pure Cu while 

for potentials lower than 0.3V, the deposition product was pure Cu2O. Also, without 

the use of any additives or changing the pH value of the electrolyte, different volume 

fractions of co-deposited Cu and Cu2O can be obtained by simply controlling the 
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deposition potential. The growth mechanisms of the deposited products and the effect 

of the deposition potential on the size of the Cu2O and Cu crystals have also been 

discussed.   
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Figure Captions 

 

 

Fig. 1. SEM image showing (a) the distribution of Cu/Cu2O nanocrystals 

electrodeposited over Si substrate at 0.5V for 60s, (b) co-deposition of Cu2O 

nanocrystals and Cu microcrystals at 0.5V for 600s.  

 

Fig. 2. TEM bright-field image of Cu2O nanocrystals and Cu microcrystals 

deposited on Si substrate. Upper: Selected-area electron diffraction (SAED) 

pattern of the as-deposited Cu2O nanocrystal at zone [112] at position (i). 

Lower: SAED pattern of the as-deposited Cu microcrystal at zone [011̅] at 

position (ii).  

 

Fig. 3.  EDX composition spectroscopy at positions (iii) and (iv), and mapping 

spectroscopy of the deposited products at 0.5V for 600s.  

 

Fig. 4. (a) SEM image showing Cu2O nanocrystals deposited on a Si substrate at 

0.1V for 60s. The inset shows a single octahedral shaped Cu2O nanocrystal in 

high magnification. (b) SAED pattern of Cu2O nanocrystals desquamated 

from Si substrate. 

 

Fig. 5.  SEM image showing the distribution of Cu nanocrystals deposited over a Si 

substrate at 1.2V for 60s.  

 

Fig. 6.  The XRD patterns of the nanocrystals obtained at different deposition 

potentials: (a) 0.3V, (b) 0.7V and (c) 1.2V.  

 

Fig. 7.  Percentage volume fraction of Cu at different deposition potentials on Si 

wafer substrates.  
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