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ABSTRACT   

The CRISM imaging spectrometer orbiting Mars has been producing a vast amount of data in the visible to infrared 
wavelengths in the form of hyperspectral data cubes. These data, compared with those obtained from previous remote 
sensing techniques, yield an unprecedented level of detailed spectral resolution in additional to an ever increasing level of 
spatial information. A major challenge brought about by the data is the burden of processing and interpreting these datasets 
and extract the relevant information from it. This research aims at approaching the challenge by exploring machine learning 
methods especially unsupervised learning to achieve cluster density estimation and classification, and ultimately devising 
an efficient means leading to identification of minerals.   

A set of software tools have been constructed by Python to access and experiment with CRISM hyperspectral cubes 
selected from two specific Mars locations. A machine learning pipeline is proposed and unsupervised learning methods 
were implemented onto pre-processed datasets. The resulting data clusters are compared with the published ASTER 
spectral library and browse data products from the Planetary Data System (PDS). The result demonstrated that this 
approach is capable of processing the huge amount of hyperspectral data and potentially providing guidance to scientists 
for more detailed studies.     
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1. INTRODUCTION  
Since the launch of human’s first planetary probe, imaging and spectrometry have been the key tools for scientists to study 
planetary objects remotely [1]. While conventional photographic imaging provides the visual context of the objects of 
interest, spectrometry allows worker access the composition of materials on the surface [2, 3, 4].  

Mars, as our closest planetary neighbor, has been intensively studied for its present and past conditions on its surface and 
subsurface, and a lot of hints can be obtained by studying its mineralogy [5]. When multispectral sensors were first 
deployed to Mars about two decades ago, spectral parameters such as band ratios and spectral slopes were utilized to 
determine the global mineralogy of the Martian surface [6]. While such a robotic rendezvous can undoubtedly bring about 
datasets with a spatial resolution higher than ground-based observations, better spectral resolution must be achieved in 
order to characterize the surface mineralogy in greater details, so as to answer key questions such as whether aquatic 
environments ever existed on Mars [5].          

Higher spectral resolution is now accomplished by hyperspectral imaging instruments capable of providing unprecedented 
spectral details to its observation targets [7]. The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) 
aboard the Mars Reconnaissance Orbiter (MRO) is the most recent and advanced hyperspectral imager to arrive at Mars, 
covering visible to near-infrared (VNIR) wavelengths (0.37–3.92um) at 6.55 nm per channel. Two observation modes are 
provided by this instrument. The survey mode can achieve global coverage of the planet at 200 m/pixel in 72 selected 
channels, while targeted mode conducts observations covering less than 1% of the planet’s surface at an unprecedented 
spatial resolution of 20 m/pixel in 545 channels for hyperspectral data. [8] 
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While hyperspectral instruments open up a new era of planetary remote sensing, compared with multi-spectral imaging, 
new challenges have accompanied with its new strengths. One key challenge is the need to analyze and interpret the 
massive amount of hyperspectral data. Manual investigation of entire hyperspectral datasets is not feasible (e.g. CRISM 
high-resolution observations contain over 109 of spectra). Machine learning techniques have proven to be able to increase 
the efficiency of scientific discovery within such a vast amount of data and unsupervised machine learning provides a 
practical means for scientists to extract useful and meaningful portions in the sea of data for further study [9,10].  

 

2. STUDY AREA AND DATA 
2.1 Study Area 

Two 10km x 10km (approximate) areas with channel / depression topography were chosen along the Martian equator in 
the study with a greater chance of mineral diversity especially hydrated species representing a past environment of liquid 
water. The terrain data was obtained from Mars Orbiter Laser Altimeter (MOLA) on Mars Global Surveyor (MGS) since 
1996.  

 

 

 

 

 

 

 

 

Figure 1. Red arrows indicated the two hyperspectral data cubes extracted in this study, namely the North of Melas Chasma 
Wall (left) and South of Gale Crater (right). 

 

2.2 Data 

Two instruments on CRISM with one collecting light from wavelength of 360 to 1060 nm (sensor ID ‘S’) and another one 
collecting light from 1000 to 3920 nm (sensor ID ‘L’) constituting the dataset. The data product available from the PDS 
Geosciences received an approximate correction for photometric effects (differences in local solar time and incidence solar 
angle), and converted from radiance to I/F [8].     

 

Table 1. Hyperspectral data cubes details. 

Observation ID 000132E6 00018285 

Center Latitude -7.81046 -5.569 

Center Longitude -75.78116 138.28294 

Year/Day of Year 2009/164 2010/111 

Location North of Melas Chasma Wall South of Gale Crater 
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2.3 Spectral Library 

The ASTER library provides a comprehensive collection of over 2300 spectra comprising contributions from the Jet 
Propulsion Laboratory (JPL), Johns Hopkins University (JHU) and the United States Geological Survey (USGS). The 
library includes spectra of rocks, minerals, lunar soils, terrestrial soils, manmade materials, meteorites, vegetation, snow 
and ice covering the visible through thermal infrared wavelength region (0.4-15.4 µm). The purity and composition of each 
mineral sample was determined using standard X-ray Diffraction analysis. [11] 
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Figure 2. Selected 20 reflectance spectra for igneous (granite, quartzite, silicate), sedimentary (limestone, sandstone), 
hydrated (carbonate, fluorite, goethite, phosphate, sulfate) minerals and lithologies.  

 

3. METHODS 
3.1 Data Pipeline 

A set of software tools is constructed for the study and the scientific programming language of Python is adopted for the 
following reasons:  

i) cross-platform portability  

ii) ease of implementation  

iii) abundance of supporting modules and libraries.  

Many successful Python packages (e.g. AstroML) [12] are available and one goal of this study is to develop a module to 
be used by other scientists working on similar hyperspectral datasets from the PDS of Geosciences of NASA [13]. 

 

 

 

 

 

 

 

 

Figure 3. The proposed pipeline from data acquisition to geological mapping on hyperspectral data. 
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Spectral are extracted for each pixel in the hyperspectral datasets and in order to augment the S/N ratio and improve the 
efficiency of the classification algorithm, a group of up to five nearby pixels are adopted and “binned” to obtain the median 
spectra for each pixel in the observation dataset. 

 

 

 

 

 

 
 

 

 

 

Figure 4. Sample pixel spectra for (Obs #000132E6L) on the left and (Obs #00018285S) on the right.     

 

3.2 Data Implementation 

 

 

(1) 

 

(2) 

 

Progressive Principal Component Analysis (PG-PCA) from equation 1 [14] is adopted to achieve dimensional reduction 
to the TRDR (Targeted Reduced Data Record) from the CRISM hyperspectral data, where U and V are orthogonal basis 
where the data is to be projected onto. 

Non-parametric Kernel Density Estimator (nKDE) from equation 2 [15] is the unsupervised learning method used in this 
study, where a uniform kernel was implemented and a range of bandwidths was adopted upon a number of different trials.   

Slight modifications based on the packages AstroML [15] and scikit-learn [16] were adopted in the implementation of the 
above mathematical equations on the data.  
 

4. RESULTS 
Unsupervised classification based on nKDE was performed on hyperspectral cubes (Obs# FRT000132E6_07_IF154L and 
FRT00018285_07_F185S). Classification results were compared with browse products from Enhanced Visible Color RGB 
(592, 533, 492, 1330, BD530, SH600, BD1000, OLINDEX, LCPINDEX, HCPINDEX, BD2300, BD2210, BD1900, 
SINDEX, BD2100, BD1900 set out in [6]). Classification map is produced with the classes representing potential mineral 
groups but the interpretation of these classes are to be verified with other published data and future rover missions when a 
close-up geological survey is available.  
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Figure 5. Cluster classification for (Obs #000132E6L) on the left and (Obs #00018285S) on the right. 

5. CONCLUSIONS
Considering the sheer volume of data from planetary missions, unsupervised machine learning will be the only practical 
avenue in future space exploration in the identification of mineral classes. With the advent of software and algorithm 
design, the processing and visualization of hyperspectral data will help scientists to understand more about the geological 
past of Mars.   
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