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On the Robust H∞ Norm of 2D Mixed Continuous-Discrete-Time
Systems with Uncertainty

Graziano Chesi

Abstract— This paper addresses the problem of determining
the robust H∞ norm of 2D mixed continuous-discrete-time
systems affected by uncertainty. Specifically, it is supposed
that the matrices of the model are polynomial functions of an
unknown vector constrained into a semialgebraic set. It is shown
that an upper bound of the robust H∞ norm can be obtained
via a semidefinite program (SDP) by introducing complex
Lyapunov functions candidates with rational dependence on
a frequency and polynomial dependence on the uncertainty. A
necessary and sufficient condition is also provided to establish
whether the found upper bound is tight. Some numerical
examples illustrate the proposed approach.

I. INTRODUCTION

The study of 2D mixed continuous-discrete-time systems
has a long history, with some early works such as [10],
[19] introducing basic models, systems theory and stability
properties. Applications of these systems can be found in
repetitive processes [20], disturbance propagation in vehicle
platoons [11], and irrigation channels [14].

Researchers have investigated several fundamental prop-
erties of 2D mixed continuous-discrete-time systems, in par-
ticular stability, for which key contributions include [2], [7],
[12], [13], [21]. Another fundamental property that has been
investigated in 2D mixed continuous-discrete-time systems
is the H∞ norm, for which important contributions include
[8], [17], [18] where conditions based on linear matrix in-
equalities (LMIs) have been provided for establishing upper
bounds on the H∞ norm.

However, these conditions cannot be used whenever the
matrices of the model are affected by uncertainty. In fact,
in such a case, one should repeat the existing conditions
addressing the uncertainty-free case for all the admissible
values of the uncertainty. Clearly, this is impossible since
the number of values in a continuous set is infinite and one
cannot just consider a finite subset of values such as the
vertices in the case of polytopes.

This paper addresses the problem of determining the
robust H∞ norm of 2D mixed continuous-discrete-time
systems affected by uncertainty. Specifically, it is supposed
that the matrices of the model are polynomial functions of
an unknown vector constrained into a semialgebraic set. It
is shown that an upper bound of the robust H∞ norm can
be obtained via a semidefinite program (SDP) by introduc-
ing complex Lyapunov functions candidates with rational
dependence on a frequency and polynomial dependence on
the uncertainty. A necessary and sufficient condition is also
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provided to establish whether the found upper bound is tight.
Some numerical examples illustrate the proposed approach.

The paper is organized as follows. Section II provides
the problem formulation and some preliminaries about sums-
of-squares (SOS) matrix polynomials. Section III describes
the proposed results. Section IV presents an illustrative
example. Lastly, Section V concludes the paper with some
final remarks.

II. PRELIMINARIES

A. Problem Formulation

Notation:
- N,R,C: natural, real, and complex number sets;
- j: imaginary unit;
- I: identity matrix (of size specified by the context);
- ℜ(·), ℑ(·): real and imaginary parts;
- | · |: magnitude;
- ‖ · ‖2: Euclidean norm;
- adj(·): adjoint;
- det(·): determinant;
- trace(·): trace;
- Ā: complex conjugate;
- AT , AH : transpose and complex conjugate transpose;
- A⊗B: Kronecker product;
- Hermitian matrix A: a complex square matrix satisfying
AH = A;

- ⋆: corresponding block in Hermitian matrices;
- A > 0, A ≥ 0: Hermitian positive definite and

Hermitian positive semidefinite matrix A;
- deg(·): degree;
- ‖·‖L2

: L2 norm;
- ‖·‖Z−H∞

: Z H∞ norm;
- ‖·‖LZ−H∞

: Laplace-Z H∞ norm.

Let us consider the 2D mixed continuous-discrete-time
system with uncertainty described by










































d

dt
xc(t, k) = Acc(p)xc(t, k) +Acd(p)xd(t, k)

+Bc(p)u(t, k)

xd(t, k + 1) = Adc(p)xc(t, k) +Add(p)xd(t, k)

+Bd(p)u(t, k)

y(t, k) = Cc(p)xc(t, k) + Cd(p)xd(t, k)

+D(p)u(t, k)
(1)

where xc ∈ Rnc and xd ∈ Rnd are the continuous and
discrete states, respectively, the scalars t and k are the
continuous and discrete times, respectively, u ∈ Rnu and
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y ∈ R
ny are the input and output, respectively, and p ∈ R

q

is a time-invariant uncertain vector. It is supposed that p is
constrained as

p ∈ P (2)

where P is the set of admissible uncertainties modeled by

P = {p ∈ R
q : ai(p) ≥ 0 ∀i = 1 . . . , na} (3)

where ai(p) i = 1, . . . , na, are polynomials. The matrices
Acc : Rq → Rnc×nc , Acd : Rq → Rnc×nd , Adc : Rq →
Rnd×nc , Add : Rq → Rnd×nd , Bc : Rq → Rnc×nu , Bd :
Rq → Rnd×nu , Cc : Rq → Rny×nc , Cd : Rq → Rny×nd

and D : Rq → Rny×nu are polynomial functions of degree
not greater than dA.

Extending the classical definition of exponential stability
of 2D mixed continuous-discrete-time systems [16], we say
that the system (1)–(3) is robustly exponentially stable if, for
a null input u(t, k), there exist β, γ ∈ R such that

∥

∥

∥

∥

(

xc(t, k)
xd(t, k)

)∥

∥

∥

∥

2

≤ β̺e−γ min{t,k} (4)

for all t ≥ 0 and k ≥ 0, for all initial conditions xc(0, k)
and xd(t, 0), and for all p ∈ P , where

̺ = max{̺1, ̺2}

̺1 = sup
t≥0

‖xd(t, 0)‖2 , ̺2 = sup
k≥0

‖xc(0, k)‖2 .
(5)

Similarly, let us introduce the robust H∞ norm of (1)–(3),
i.e.,

γ∗
∞ = sup

p∈P
γ∞(p) (6)

where γ∞(p) is the H∞ norm of (1) for the fixed value p

of the uncertainty given by

γ∞(p) = sup
u: ‖u‖L2

6=0

‖y‖L2

‖u‖L2

(7)

and ‖ · ‖L2
is the L2 norm defined as

‖u‖L2
=

√

√

√

√

∞
∑

k=0

∫ ∞

0

‖u(t, k)‖22dt. (8)

Problem. The problem addressed in this paper consists
of determining the robust H∞ norm of (1)–(3), i.e., γ∗

∞. �

B. SOS Matrix Polynomials

Here we provide some information about establishing
whether a matrix polynomial is SOS via an LMI feasibility
test. For reasons that will become clear in the next section,
let us consider a matrix polynomial J : R×Rq → R2nd×2nd ,
J(ω, p) = J(ω, p)T , ω ∈ R and p ∈ Rq .

The matrix polynomial J(ω, p) is said to be SOS if there
exist matrix polynomials Ji : R × Rq → R2nd×2nd , i =
1, . . . , k, such that

J(ω, p) =

k
∑

i=1

Ji(ω, p)
TJi(ω, p). (9)

A necessary and sufficient condition for establishing whether
J(ω, p) is SOS can be obtained via an LMI feasibility test.

Indeed, J(ω, p) can be expressed as

J(ω, p) = (b(ω, p)⊗ I)
T
(K + L(α)) (b(ω, p)⊗ I) (10)

where b(ω, p) is a vector whose entries are the monomials in
ω and p of degree less than or equal to d, K is a symmetric
matrix satisfying

J(ω, p) = (b(ω, p)⊗ I)
T
K (b(ω, p)⊗ I) , (11)

L(α) is a linear parametrization of the linear subspace

L =
{

L = LT : (b(ω, p)⊗ I)
T
L (b(ω, p)⊗ I) = 0

}

(12)
and α is a free vector. The representation (10) is known as
square matrix representation (SMR) and extends the Gram
matrix method for (scalar) polynomials to the matrix case.
One has that J(ω, p) is SOS if and only if there exists α

satisfying the LMI

K + L(α) ≥ 0. (13)

See [4] and references therein for details on SOS matrix
polynomials.

III. ROBUST H∞ NORM

In this section we address the problem of determining the
robust H∞ norm of (1)–(3), i.e., γ∗

∞ in (6).
Let us start by observing that, for the case of 2D

mixed continuous-discrete-time systems without uncertainty,
a necessary condition for exponential stability is that
the matrices Acc and Add are Hurwitz (i.e., with all
eigenvalues having negative real parts) and Schur (i.e.,
with all eigenvalues having magnitude less than one),
respectively. This means that, without loss of generality,
we can introduce the following assumption, which can be
checked with existing methods such as [1], [3], [6], [15],
[22].

Assumption 1. The matrices Acc(p) and Add(p) are
Hurwitz and Schur, respectively, for all p ∈ P . �

Let us denote with UL(s, k) and YL(s, k) the Laplace
transforms of u(t, k) and y(t, k), respectively, where s ∈ C.
Let us denote with ULZ(s, z) and YLZ(s, z) the Z-transforms
of UL(s, k) and YL(s, k), respectively, where z ∈ C. The
transfer function from u(t, k) and y(t, k) can be expressed
as

F (s, z, p) =
YLZ(s, z)

ULZ(s, z)
(14)

which depends not only on s and z but also on the uncertain
vector p. Indeed, standard manipulations show that

F (s, z, p) = F3(s, p) (zI − F1(s, p))
−1

F2(s, p) + F4(s, p)
(15)
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where














F1(s, p) = Adc(p)(sI −Acc(p))
−1Acd(p) +Add(p)

F2(s, p) = Adc(p)(sI −Acc(p))
−1Bc(p) + Bd(p)

F3(s, p) = Cc(p)(sI −Acc(p))
−1Acd(p) + Cd(p)

F4(s, p) = Cc(p)(sI −Acc(p))
−1Bc(p) +D(p).

(16)
We express Fi(s, p), i = 1, . . . , 4, as

Fi(s, p) =
Gi(s, p)

g(s, p)
(17)

where Gi(s, p), i = 1, . . . , 4, are matrix polynomials of
suitable size, and g(s, p) is defined as

g(s, p) = det(sI −Acc(p)). (18)

The quantity γ∞(p) in (7) can be written as

γ∞(p) = ‖F (·, ·, p)‖LZ−H∞
(19)

where ‖F (·, ·, p)‖LZ−H∞
is the Laplace-Z H∞ norm of

F (s, z, p) defined as

‖F (·, ·, p)‖LZ−H∞
= sup

ω∈R

θ∈[−π,π]

∥

∥F (jω, ejθ, p)
∥

∥

2
. (20)

Hence, it follows that

γ∞(p) = sup
ω∈R

‖F (jω, ·, p)‖Z−H∞
(21)

where ‖F (jω, ·, p)‖Z−H∞
is the Z H∞ norm of F (jω, z, p)

defined as

‖F (jω, ·, p)‖Z−H∞
= sup

θ∈[−π,π]

∥

∥F (jω, ejθ, p)
∥

∥

2
. (22)

Since the matrices of (1) are real, one has
{

Gi(jω, p) = Gi(−jω, p) ∀i = 1, . . . , 4

g(jω, p) = g(−jω, p)
(23)

for all ω ∈ R for all p ∈ Rq . This suggests that one can focus
on Lyapunov function candidates having a similar symmetry
property with respect to ω. To this end, let us introduce the
following definitions. For a complex matrix function M :
R×Rq → Cn1×n2 , we say that M(ω, p) is even with respect
to ω if

M(−ω, p) = M(ω, p) ∀ω ∈ R ∀p ∈ R
q (24)

and we say that M(ω) is odd with respect to ω if

M(−ω, p) = −M(ω, p) ∀ω ∈ R ∀p ∈ R
q. (25)

Let us define the sets

M(n) = {M : R× Rq → Cn×n,

M(ω, p) is a Hermitian matrix polynomial}
(26)

and

Meven(n) = {M ∈ M(n), M(ω, p) is even
with respect to ω}.

(27)

Let us introduce the Lyapunov function candidate














VRAT (ω, p) =
V (ω, p)

v(ω)

V ∈ Meven(nd)
deg(V ) ≤ 2d

(28)

where d ∈ N ∪ {0},

v(ω) = (1 + ω2)d, (29)

and deg(V ) denotes the maximum degree of the entries of
V (ω, p) in the extended variable (ω, p)′. Define

Q(ω, p) =

(

q1(ω, p) q2(ω, p)
⋆ q3(ω, p)

)

(30)

where


















































q1(ω, p) = |g(jω, p)|
2
V (ω, p)

−G1(jω, p)V (ω, p)G1(jω, p)
H

−v(ω)G2(jω, p)G2(jω, p)
H

q2(ω, p) = −G1(jω, p)V (ω, p)G3(jω, p)
H

−v(ω)G2(jω, p)G4(jω, p)
H

q3(ω, p) = ξv(ω) |g(jω, p)|
2
I

−G3(jω, p)V (ω, p)G3(jω, p)
H

−v(ω)G4(jω, p)G4(jω, p)
H

(31)

and ξ ∈ R. It follows that Q ∈ Meven(nq) where

nq = nd + nu. (32)

Let us define the matrix function

Φ(W ) =

(

WR WI

−WI WR

)

(33)

where WR,WI ∈ Rn×n are the real and imaginary parts of
W ∈ Cn×n, i.e., W = WR + jWI . Let us observe that

W is Hermitian ⇐⇒ Φ(W ) = Φ(W )T . (34)

The following result provides an upper bound on the
robust H∞ norm of (1)–(3) via a semidefinite program
(SDP).

Theorem 1: Define

γ̂∞ =

√

ξ̂ (35)

where ξ̂ is the solution of the SDP

ξ̂ = inf
V ∈Meven(nd)
Ri∈Meven(nq)

ξ,ε∈R

ξ

s.t.























Φ(Ri(ω, p)) is SOS ∀i = 1, . . . , na

Φ(S(ω, p)) is SOS
ε > 0
deg(V ) ≤ 2d
deg(Ri) ≤ 2d

(36)
where

S(ω, p) = Q(ω, p)−

na
∑

i=1

ai(p)Ri(ω, p)−εv(ω) |g(jω, p)|
2
I.

(37)
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Then,
γ̂∞ ≥ γ∗

∞. (38)

Proof. Suppose that the constraints in (36) hold. It follows
that

∀ω ∈ R ∀p ∈ R
q

{

Ri(ω, p) ≥ 0 ∀i = 1, . . . , na

S(ω, p) ≥ 0.

From (37) it follows that

Q(ω, p) ≥ εv(ω) |g(jω, p)|
2
I ∀ω ∈ R ∀p ∈ P .

Let us observe that

Q(ω, p) = v(ω) |g(jω, p)|2 E(ω, p)

where E(ω, p) is obtained from Q(ω, p) replacing
q1(ω, p), q2(ω, p), q3(ω, p) with e1(ω, p), e2(ω, p), e3(ω, p),
where










































e1(ω, p) = VRAT (ω, p)
−F1(jω, p)VRAT (ω, p)F1(jω, p)

H

−F2(jω, p)F2(jω, p)
H

e2(ω, p) = −F1(jω, p)VRAT (ω, p)F3(jω, p)
H

−F2(jω, p)F4(jω, p)
H

e3(ω, p) = ξI − F3(jω, p)VRAT (ω, p)F3(jω, p)
H

−F4(jω, p)F4(jω, p)
H .

Since Assumption 1 implies that there exists ε1 > 0 such
that

|g(jω, p)| ≥ ε1 ∀ω ∈ R ∀p ∈ R
q,

and since
v(ω) ≥ 1 ∀ω ∈ R,

one can write

E(ω, p) ≥ εI ∀ω ∈ R ∀p ∈ P .

Since ε > 0, from the bounded real lemma and Schur
complement it follows that (see, e.g., [9])

√

ξ > ‖F (jω, ·, p)‖Z−H∞
∀ω ∈ R ∀p ∈ P .

From (6) and (21), this implies that (38) holds. �

Theorem 1 provides an upper bound on γ∗
∞ via an SDP.

Indeed, the constraints in (36) are equivalent to LMIs ac-
cording to Section II-B since Φ(Ri(ω, p)) and Φ(S(ω, p))
are affine linear in the decision variables V (ω, p), Ri(ω, p),
ξ and ε. Let us observe that VRAT (ω, p) defines a complex
Lyapunov function candidate with rational dependence in ω

and polynomial dependence in p.
Once that the upper bound γ̂∞ has been obtained, a

question arises: is this upper bound tight? The following
result provides a sufficient and necessary condition for
answering this question.

Theorem 2: Suppose that γ̂∞ < ∞. Then,

γ̂∞ = γ∗
∞ (39)

if at least one of the following two sub-conditions holds:

1) there exists ω̂ ∈ R and p̂ ∈ P such that

‖F (jω̂, ·, p̂)‖Z−H∞
= γ̂∞ (40)

and

det
(

Φ
(

Ŝ(ω̂, p̂)
))

= 0 (41)

where Ŝ(ω, p) is S(ω, p) evaluated for the optimal
values of the decision variables in (36);

2) there exists p̂ ∈ P such that

lim
ω→∞

‖F (jω, ·, p̂)‖Z−H∞
= γ̂∞. (42)

Moreover, if P is bounded, this condition is not only
sufficient but also necessary.
Proof. “⇐” Suppose that (40) or (42) holds. Then, it
follows that γ̂∞ ≤ γ∗

∞ since γ∗
∞ is the supremum of

‖F (jω, ·, p)‖Z−H∞
for ω ∈ R and p ∈ P , while Theorem 1

guarantees that γ̂∞ ≥ γ∗
∞. Therefore, (39) holds.

“⇒” Suppose that (39) holds and that P is bounded. This
implies that P is compact. There are two possibilities. The
first is that there exist ω̂ ∈ R and p̂ ∈ P such that

γ∗
∞ = ‖F (jω̂, ·, p̂)‖Z−H∞

,

which also satisfy (41). In fact, if one supposes for contra-
diction that (41) does not hold, from the fact that Φ(S(ω, p))
is SOS it would follow that

Φ
(

Ŝ(ω̂, p̂)
)

> 0,

hence implying that the existence of V (ω, p) = V̂ (ω, p),
Ri(ω, p) = R̂i(ω, p), ξ and ε such that the constraints in
(36) hold and

ξ < ξ̂,

which is impossible for definition of ξ̂. The second
possibility is that there exists p̂ ∈ P such that (42) holds. �

In order to check the first sub-condition of Theorem 2,
one can determine the pairs (ω̂, p̂) that satisfy (41) since
they are typically in a finite number, and then check whether
(40) holds for any of these pairs. One way to determine the
pairs (ω̂, p̂) that satisfy (41) is via the following result.

Theorem 3: The condition (41) holds if and only if there
exists x̂ ∈ R2nq , x̂ 6= 0, such that

b(ω̂, p̂)⊗ x̂ ∈ ker(T ) (43)

where T is a positive semidefinite SMR matrix of
Φ(Ŝ(ω, p)), and b(ω̂, p̂) is the corresponding vector of mono-
mials.
Proof. Since Φ(Ŝ(ω, p)) is SOS, it follows that Φ

(

Ŝ(ω, p)
)

is positive semidefinite for all ω ∈ R for all p ∈ Rq . Hence,
(41) holds if and only if there exists x̂ ∈ R2nq , x̂ 6= 0, such
that

Φ
(

Ŝ(ω̂, p̂)
)

x̂ = 0.
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This implies that

0 = x̂′Φ
(

Ŝ(ω̂, p̂)
)

x̂

= x̂′ (b(ω̂, p̂)⊗ I)
T
T (b(ω̂, p̂)⊗ I) x̂

= (b(ω̂, p̂)⊗ x̂)
T
T (b(ω̂, p̂)⊗ x̂)

where T is a positive semidefinite matrix, whose existence
is ensured by the fact that Φ(Ŝ(ω, p)). Hence, (43) holds. �

Theorem 3 provides a condition equivalent to (41) based
on the existence of ω̂ ∈ R, p̂ ∈ P and x̂ ∈ R2nq satisfying
(43). It turns out that such quantities can be determined
through linear algebra operations as explained in [5], [6].
Once the pairs (ω̂, p̂) that satisfy (41) have been determined,
one checks whether (40) holds for any of these. The positive
semidefinite matrix T in (43) is directly provided by the SDP
solver used for (36).

In order to check the second sub-condition of Theorem 2,
one can adopt a strategy similar to that just described and
simplified by the fact that ω is known. Specifically, let us
define

M̃(n) = {M : Rq → Rn×n, M(p) is a symmetric
matrix polynomial}.

(44)
Let Q̃(p) be the matrix polynomial obtained from Q(ω, p) re-
placing q1(ω, p), q2(ω, p), q3(ω, p) with q̃1(p), q̃2(p), q̃3(p),
where



































q̃1(p) = Ṽ (p)−Add(p)Ṽ (p)Add(p)
T

−Bd(p)Bd(p)
T

q̃2(p) = −Add(p)Ṽ (p)Cd(p)
T

−Bd(p)D(p)T

q̃3(p) = ξI − Cd(p)Ṽ (p)Cd(p)
T

−D(p)Ṽ (p)D(p)T

(45)

and Ṽ ∈ M̃(nd). Let us define

γ̃∞ =

√

ξ̃ (46)

where ξ̃ is the solution of the SDP

ξ̃ = inf
Ṽ ∈M̃(nd)

R̃i∈M̃(nq)
ξ,ε∈R

ξ

s.t.























Φ(R̃i(p)) is SOS ∀i = 1, . . . , na

Φ(S̃(p)) is SOS
ε > 0

deg(Ṽ ) ≤ 2d

deg(R̃i) ≤ 2d

(47)

where

S̃(p) = Q̃(p)−

na
∑

i=1

ai(p)R̃i(p)− εI. (48)

Theorem 4: Any p̂ ∈ P that satisfies (42) also satisfies

det
(

ˆ̃
S(p̂))

)

= 0 (49)

where ˆ̃
S(p) is S̃(p) evaluated for the optimal values of the

variables in (47). Moreover, (49) holds if and only if there
exists x̃ ∈ Rnq , x̃ 6= 0, such that

b(p̂)⊗ x̃ ∈ ker(T̃ ) (50)

where T̃ is a positive semidefinite SMR matrix of ˆ̃
S(p)

evaluated for the optimal values of the variables in (47), and
b(p̂) is the corresponding vector of monomials.
Proof. Let us observe that

γ̃∞ ≥ γ#
∞

where

γ#
∞ = sup

p∈P
lim

ω→∞
‖F (jω, ·, p)‖Z−H∞

.

Moreover,

γ∗
∞ ≥ γ#

∞.

If (42) holds, then

γ∗
∞ = γ#

∞

and (49) follows based on the same arguments used in the
proof of Theorem 2. Lastly, the equivalence between (49)
and (50) follows based on the same arguments used in the
proof of Theorem 3. �

Theorem 4 provides a strategy for establishing whether
(42) holds for some p̂ ∈ P . Specifically, one determines the
values of p̂ such that (50) holds similarly to Theorem 3,
and then checks whether (42) holds for any of these. The
positive semidefinite matrix T̃ in (50) is directly provided
by the SDP solver used for (47).

IV. EXAMPLES

In this section we present two illustrative examples of
the proposed results. The SDPs are solved with the toolbox
SeDuMi [23] for Matlab.

A. Example 1

Let us consider














































Acc(p) =

(

0 1
−4 −2

)

, Acd(p) =

(

−0.6
0.4p

)

Adc(p) =
(

2 0.5
)

, Add(p) = 0.5

Bc(p) =

(

0
2 + p

)

, Bd(p) = 1

Cc(p) =
(

0 −1
)

, Cd(p) = 1

D(p) = 1, P = [0, 1].

Let us use Theorem 1. The set P is expressed as in (3) with
a(p) = p−p2. We solve the SDP (36) with 2d = 0. We find
γ̂∞ = 4.157. This upper bound can be improved by using
2d = 2, which provides

γ̂∞ = 3.076.
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Next, let us use Theorem 2 to establish whether the found
upper bound is tight. We find that (43) holds with

{

ω̂ = 2.018
p̂ = 0.000.

Hence, from Theorem 3 it follows that (41) holds for such
values of ω̂ and p̂. Moreover, for such values of ω̂ and p̂,
one has that (40) holds. Consequently, from Theorem 2 we
conclude that γ̂∞ is tight, i.e., γ∗

∞ = 3.076.

B. Example 2

Let us consider














































Acc(p) = −1, Acd(p) =
(

0.4 0.4
)

Adc(p) =

(

0.3
−0.5

)

, Add(p) =

(

0.4p 0
0 0.3

)

Bc(p) = 0, Bd(p) =

(

p

1

)

Cc(p) = 0, Cd(p) =
(

0 1− p
)

D(p) = 1, P = [−1, 1].

Let us use Theorem 1. The set P is expressed as in (3) with
a(p) = 1−p2. We solve the SDP (36) with 2d = 0. We find

γ̂∞ = 3.857.

Next, let us use Theorem 2 to establish whether the found
upper bound is tight. We find that (43) does not hold for any
ω̂ and p̂. Hence, we solve the SDP (47) with 2d = 0. We
find γ̃∞ = 3.857. Moreover, (50) holds with

p̂ = −1.000.

Such a value of p̂ also satisfies (42). Consequently, from
Theorem 2 we conclude that γ̂∞ is tight, i.e., γ∗

∞ = 3.857.

V. CONCLUSION

The problem of determining the robust H∞ norm of
2D mixed continuous-discrete-time systems polynomially
affected by uncertainty constrained into a semialgebraic
set has been considered. It has been shown that an upper
bound of the robust H∞ norm can be obtained via an
SDP by introducing complex Lyapunov functions candidates
with rational dependence on a frequency and polynomial
dependence on the uncertainty. Moreover, a necessary and
sufficient condition has been provided to establish whether
the found upper bound is tight.
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