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On the Unstable of Continuous-Time Linearized Nonlinear Systems

Graziano Chesi

Abstract— It has been shown that quantifying the unstable
in linear systems is important for establishing the existence
of stabilizing feedback controllers. This paper addresses the
problem of quantifying the unstable in continuous-time lin-
earized systems obtained from nonlinear systems for a family
of constant inputs, i.e., the largest instability measure for all
admissible equilibrium points for all admissible constant inputs.
It is supposed that the dynamics of the nonlinear system is
polynomial in both state and input, and that the set of constant
inputs is a semialgebraic set. Two cases are considered: first,
when the equilibrium points are known polynomial functions
of the input, and, second, when the equilibrium points are
unknown (polynomial or non-polynomial) functions of the
input. It is shown that upper bounds of the sought instability
measure can be established through linear matrix inequalities
(LMIs), whose conservatism can be decreased by increasing
the size of such LMIs. Some numerical examples illustrate the
proposed results.

I. INTRODUCTION

An important issue in control systems consists of quan-
tifying the unstable. Indeed, it has been shown that this
allows one to establish the existence of stabilizing feedback
controllers in linear systems. For instance, [1] considers
stochastic systems with noise and derive that a stabilizing
controller can be designed if and only if the data rate of
the channel exceeds a certain function of the instability
measure defined as the sum (continuous-time case) or the
product (discrete-time case) of the unstable eigenvalues.
Analogous results are proposed in [2] where the lowest
quantization density of infinite logarithmic quantizers in a
single-input linear system is investigated, in [3] where the
case of multiple sensors that partially observe the system is
considered, in [4] where a virtual system approach for digital
finite communication bandwidth control is described, and in
[5] for the case of channel modeled by a finite logarithmic
quantizer. The reader is also referred to [6], [7] for more
information.

The linear system that has to be considered when quan-
tifying the unstable is very often a linearized nonlinear
system. Indeed, real plants are generally characterized by
nonlinear dynamics. Moreover, considering the linearized
system obtained for a certain equilibrium point for a certain
constant input is generally sufficiently for designing a locally
stabilizing feedback controller. Unfortunately, the constant
input is very often unknown, for instance because the user
is allowed to change it in order to choose a desired perfor-
mance. Consequently, the linearized system is unknown as
well, and its dependence on the unknown constant input can
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be very complex since also the equilibrium point depends
on the unknown constant input. In fact, the set of admissible
equilibrium points cannot be parametrized in general by the
constant input since it is the solution of a system of nonlinear
equations.

This paper addresses the problem of quantifying the un-
stable in continuous-time linearized systems obtained from
nonlinear systems for a family of constant inputs, i.e., the
largest instability measure for all admissible equilibrium
points for all admissible constant inputs. It is supposed
that the dynamics of the nonlinear system is polynomial in
both state and input, and that the set of constant inputs is
a semialgebraic set. Two cases are considered: first, when
the equilibrium points are known polynomial functions of
the input, and, second, when the equilibrium points are
unknown (polynomial or non-polynomial) functions of the
input. It is shown that upper bounds of the sought instability
measure can be established through linear matrix inequalities
(LMIs), whose conservatism can be decreased by increasing
the size of such LMIs. Some numerical examples illustrate
the proposed results.

The paper is organized as follows. Section II introduces the
problem formulation. Section III describes the proposed re-
sults. Section IV presents some illustrative examples. Lastly,
Section V concludes the paper with some final remarks.

II. PROBLEM FORMULATION

The notation used throughout the paper is as follows:

• R: space of real numbers;
• C: space of complex numbers;
• 0n: n× 1 null vector;
• Rn

0 : Rn \ {0n};
• I: identity matrix (of size specified by the context);
• A′: conjugate transpose of matrix A;
• A > 0, A ≥ 0: hermitian positive definite and semidef-

inite matrix A;
• ℜ(a), ℑ(a): real and imaginary parts of a ∈ C;
• ker(A): right null space of matrix A;
• spec(A): spectrum of matrix A;
• λmin(A): minimum real eigenvalue of matrix A;
• conv{a, b, . . .}: convex hull of vectors a, b, . . ..

Let us consider the continuous-time nonlinear plant of the
form

ẋ(t) = f(x(t), u(t)) (1)

where t ∈ R is the time, x ∈ Rn is the state vector, u ∈ Rm

is the input vector, and f : Rn ×Rm → Rn is a polynomial
function.
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Let φ ∈ R
m be a reference value of interest of the input

vector. We denote with Θ(φ) ⊆ Rn the set of equilibrium
points of the nonlinear plant (1) corresponding to φ, i.e.,

Θ(φ) = {θ ∈ R
n : f(θ, φ) = 0} . (2)

Let θ ∈ Θ(φ) be an equilibrium point of interest of the
nonlinear plant (1) corresponding to φ. For local stabilization
in a neighbourhood of the pair (θ, φ), the nonlinear plant (1)
is generally approximated with its linearized form

˙̃x(t) = A(θ, φ)x̃(t) +B(θ, φ)ũ(t) (3)

where
{

x̃(t) = x(t) − θ

ũ(t) = u(t)− φ
(4)

are the variations of the state vector and input vector with
respect to θ and φ, respectively, and



















A(θ, φ) =
df(x, u)

dx

∣

∣

∣

∣

(x,u)=(θ,φ)

B(θ, φ) =
df(x, u)

du

∣

∣

∣

∣

(x,u)=(θ,φ)

(5)

are the matrices that describe the local behaviour of the plant.

In the literature, several conditions for the existence of
a stabilizing controller for the linearized plant (3) under
communication constraints have been given based on a
certain instability measure of the matrix A(θ, φ), which has
to be smaller than a specific value depending on the commu-
nication constraints considered. Specifically, let M ∈ Rn×n.
Such an instability measure is defined as µ : Rn×n → R

where

µ(M) =

n
∑

i=1

max {0,ℜ(λi(M))} (6)

and λi : R
n×n → R is the i-th eigenvalue of M .

If the reference value φ of the input vector and the
equilibrium point θ of the nonlinear plant (1) are known,
then the instability measure to consider is known as well,
since the matrix A(θ, φ) is a constant for such values of θ

and φ.

However, the pair (θ, φ) is very often unknown due to the
following reasons:

• the reference value φ might change, for instance as the
result of a choice of the user;

• the equilibrium point θ might be uncertain in the set
Θ(φ), for instance due to the initial condition of the
nonlinear plant (1).

Due to this uncertainty on the pair (θ, φ), it appears clear
that one should determine the largest value of the instability
measure for all admissible pairs (θ, φ) in order to ensure the
existence of a stabilizing controller for the linearized plant
(3) under communication constraints.

Let us denote with Φ ⊆ R
m the set of admissible reference

values of the input vector, i.e.,

φ ∈ Φ. (7)

We suppose that Φ is expressed as

Φ = {φ ∈ R
m : ai(φ) ≥ 0, i = 1, . . . , na} (8)

where ai : Rm → R, i = 1, . . . , na, are polynomials. The
problem addressed in this paper is formulated as follows.

Problem. Determine the largest instability measure
µ(A(θ, φ)) over the admissible pairs (θ, φ), i.e.,

µ∗ = sup
φ∈Φ

θ∈Θ(φ)

µ(A(θ, φ)). (9)

III. PROPOSED METHOD

This section describes the method proposed in this paper
for determining µ∗ in (9). Let us start by introducing the
following two cases.

• Case I: for all φ ∈ Φ, the equilibrium points of the
nonlinear plant (1) can be expressed by polynomial
functions of φ. That is, there exist polynomial functions
gl : Rm → Rn, l = 1, . . . , ng, such that the set of
equilibrium points Θ(φ) in (2) can be written as

Θ(φ) =
{

g1(φ), . . . , gng
(φ)

}

∀φ ∈ Φ. (10)

• Case II: any possibility (including Case I).

A. CASE I

Let us suppose that (10) holds for some polynomial
functions gl : Rm → Rn, l = 1, . . . , ng. The following
example illustrates such a situation.

Example 1. Let us consider the nonlinear system (1) with
n = 3, m = 1 and

f(x, u) =





−2x3 − x2
2

x2 − x2
1

x1 + x2 + x1u



 . (11)

The set Φ and its expression in (8) are chosen as
{

Φ = [−1, 1]
a1(φ) = 1− φ2.

(12)

It follows that the set of equilibrium points Θ(φ) in (2) can
be written as in (10) for polynomial functions gl(φ), l = 1, 2,
given by

g1(φ) =





0
0
0



 , g2(φ) =





−(1 + φ)
(1 + φ)2

−0.5(1 + φ)4



 . (13)

Figure 1 shows g1(φ) and g2(φ) for some values of φ.
�
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Fig. 1. Example 1. Equilibrium points g1(φ) (dashed) and g2(φ) (solid)
for some values of φ in Φ.

In order to determine µ∗ in (9) in this case, let us proceed
as follows. For k ∈ {1, . . . , n} define the binomial coefficient

ck =
n!

(n− k)!k!
(14)

and the matrix function Ωk : Rn×n → Rck×ck satisfying

spec(Ωk(M)) =

{

k
∑

i=1

λzi(M), z ∈ Ik

}

(15)

where M ∈ Rn×n and Ik is the set of k-tuples in {1, . . . , n},
i.e.,

Ik = {(z1, . . . , zk) : zi ∈ {1, . . . , n}, zi > zj for i < j} .
(16)

The matrix function Ωk(M) is linear, and can be directly
built from X following the idea described in [8]. For
instance:

• for n = 2 one has
{

I1 = {z(1) = 1, z(2) = 2}

I2 = {z(1) = (1, 2)}

and
{

Ω1(M) = M

Ω2(M) = trace(M);

• for n = 3,










I1 = {z(1) = 1, z(2) = 2, z(3) = 3}

I2 = {z(1) = (1, 2), z(2) = (1, 3), z(3) = (2, 3)}

I3 = {z(1) = (1, 2, 3)}

and


























Ω1(M) = M

Ω2(M) =





M1,1 +M2,2 M2,3 −M1,3

M3,2 M1,1 +M3,3 M1,2

−M3,1 M2,1 M2,2 +M3,3





Ω3(M) = trace(M).

The matrix function Ωk(M) can be exploited as follows.
For k ∈ {1, . . . , n}, l ∈ {1, . . . , ng} and w ∈ R, let us define

Dk,l(φ) = Ωk(A(gl(φ), φ)) − wI (17)

which is a matrix polynomial since gl(φ) is polynomial,
A(θ, φ) is polynomial, and Ωk(M) is linear. Moreover, for
a symmetric matrix polynomial Pk,l : R

m → Rck×ck , let us
define

Qk,l(φ) = −Pk,l(φ)Dk,l(φ) −Dk,l(φ)
′Pk,l(φ). (18)

Lastly, let us introduce the following definition: a symmetric
matrix polynomial H : Rm → R

h×h is said to be sum of
squares (SOS) if there exist matrix polynomials Hi : R

m →
Rh×h, i = 1, . . . , imax, such that

H(φ) =

imax
∑

i=1

Hi(φ)
′Hi(φ) (19)

(see for instance [9] and references therein about SOS
matrix polynomials). The following result provides a
condition for establishing an upper bound of µ∗ based on a
convex optimization problem.

Theorem 1: Let w ∈ (0,∞). Let us suppose that there
exist ε > 0 and symmetric matrix polynomials Pk,l, Rk,l,i :
Rm → Rck×ck , k ∈ {1, . . . , n}, l ∈ {1, . . . , ng} and i ∈
{1, . . . , na}, such that

Pk,l(φ) − I

Rk,l,i(φ)
Sk,l(φ) − εI







are SOS (20)

for all k ∈ {1, . . . , n} and l ∈ {1, . . . , ng}, where

Sk,l(φ) = Qk,l(φ) −

na
∑

i=1

ai(φ)Rk,l,i(φ). (21)

Then,
µ∗ < w. (22)

Proof. Suppose that (20) holds. From (19) this implies that,
for all k ∈ {1, . . . , n}, l ∈ {1, . . . , ng} and i ∈ {1, . . . , na},

Pk,l(φ) − I ≥ 0
Rk,l,i(φ) ≥ 0

Sk,l(φ)− εI ≥ 0







∀φ ∈ R
m.

Since Rk,l,i(φ) ≥ 0 and ai(φ) ≥ 0 for all φ ∈ Φ, it follows
that, for all φ ∈ Φ,

εI ≤ Sk,l(φ)
= Qk,l(φ)−

∑na

i=1 ai(φ)Rk,l,i(φ)
≤ Qk,l(φ),

i.e.,
Qk,l(φ) ≥ εI ∀φ ∈ Φ.
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Similarly, one has that Pk,l(φ) ≥ I for all φ ∈ Φ. Since
ε > 0, it follows from (18) that

spec(Dk,l(φ)) ⊂ {λ ∈ C : ℜ(λ) < 0} ∀φ ∈ Φ.

Hence, (17) implies that

spec(Ωk(A(gl(φ), φ))) ⊂ {λ ∈ C : ℜ(λ) < w} ∀φ ∈ Φ.

From (15) it follows that

µ(A(gl(φ), φ)) < w ∀φ ∈ Φ

and, therefore, µ∗ < w. �

Theorem 1 provides a condition for establishing whether
a given scalar w is an upper bound of the sought µ∗ in
Case I. This condition requires to check the existence of
ε > 0 and symmetric matrix polynomials Pk,l(φ) and
Rk,l,i(φ) satisfying (20). For chosen degrees of such matrix
polynomials, (20) is an LMI feasibility test (and, hence, a
convex optimization problem): indeed, establishing whether
a symmetric matrix polynomial depending affine linearly on
some decision variables is SOS is equivalent to establishing
feasibility of an LMI as explained for instance in [9]–[13].

The condition provided by Theorem 1 is based on a special
case of the Positivstellensatz [9], [14], and is sufficient for
any chosen degrees of the symmetric matrix polynomials
Pk,l(φ) and Rk,l,i(φ). The conservatism of the condition
can be decreased by increasing the degrees of these matrix
polynomials, see for instance [15] for a related case in the
framework of polytopic systems.

For chosen degrees of the symmetric matrix polynomials
Pk,l(φ) and Rk,l,i(φ), let us define

µI = max
k=1,...,n
l=1,...,ng

wk,l (23)

where

wk,l = inf
w∈(0,∞)

w

s.t. ∃ε > 0, Pk,l(φ), Rk,l,i(φ), i = 1, . . . , ng :
(20) holds.

(24)
From Theorem 1 it follows that

µ∗ ≤ µI . (25)

Indeed, µI is the best upper bound of µ∗ provided by
Theorem 1 for chosen degrees of the symmetric matrix
polynomials Pk,l(φ) and Rk,l,i(φ). Let us observe that the
quantities wk,l in (24) can be computed through a bisection
search on w where the LMI condition (20) is checked for
any fixed value of w.

B. CASE II

In this subsection we consider any possibility, i.e.,
either (10) holds or not for some polynomial functions
gl : Rm → Rn, l = 1, . . . , ng . The following example
illustrates a situation where such polynomial functions do

not exist.

Example 2. Let us consider the nonlinear system (1) with
n = 2, m = 1 and

f(x, u) =

(

x2
1 + x2

2 − u

1 + x1 + 2x2 + 3x1x2

)

. (26)

The set Φ and its expression in (8) are chosen as
{

Φ = [0, 2]
a1(φ) = 2φ− φ2.

(27)

It follows that the set of equilibrium points Θ(φ) in (2)
cannot be written as in (10) for polynomial functions gl(φ).
Figure 2 shows the zero level sets of f(x, u) for some values
of u.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1

x
2

Fig. 2. Example 2. Zero level set of f2(x, u) (solid) and zero level set
of f1(x, u) for some values of u in Φ (dashed). The intersections between
these zero level sets are the set of equilibrium points Θ(φ) in (2).

�

In order to determine µ∗ in (9) in this case, let us proceed
as follows. For k ∈ {1, . . . , n} and w ∈ R let us define the
matrix polynomials

Ek(θ, φ) = Ωk(A(θ, φ)) − wI. (28)

Moreover, for symmetric matrix polynomials Tk : Rn ×
Rm → Rck×ck , let us define

Uk(θ, φ) = −Tk(θ, φ)Ek(θ, φ) − Ek(θ, φ)
′Tk(θ, φ). (29)

Lastly, let us introduce the following definition: a symmetric
matrix polynomial H : Rn×Rm → Rh×h is said to be SOS
if there exist matrix polynomials Hi : R

n × Rm → Rh×h,
i = 1, . . . , imax, such that

H(θ, φ) =

imax
∑

i=1

Hi(θ, φ)
′Hi(θ, φ). (30)

The following result provides a condition for establishing an
upper bound of µ∗ based on a convex optimization problem.
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Theorem 2: Let w ∈ (0,∞). Let us suppose that there ex-
ist ε > 0 and symmetric matrix polynomials Tk, Vk,l,Wk,i :
Rn ×Rm → Rck×ck , k, l ∈ {1, . . . , n} and i ∈ {1, . . . , na},
such that

Tk(θ, φ) − I

Wk,i(θ, φ)
Xk(θ, φ) − εI







are SOS (31)

for all k ∈ {1, . . . , n}, where

Xk(θ, φ) = Uk(θ, φ) −
∑n

l=1 fl(θ, φ)Vk,l(θ, φ)
−
∑na

i=1 ai(φ)Wk,i(θ, φ).
(32)

Then,
µ∗ < w. (33)

Proof. Suppose that (31) holds. From (30) this implies that,
for all k ∈ {1, . . . , n} and i ∈ {1, . . . , na},

Tk(θ, φ) − I ≥ 0
Wk,i(θ, φ) ≥ 0

Xk(θ, φ)− εI ≥ 0







∀θ ∈ R
n ∀φ ∈ R

m.

Since Wk,i(θ, φ) ≥ 0, ai(φ) ≥ 0 and fl(θ, φ)Vk,l(θ, φ) = 0
for all θ ∈ Θ(φ) for all φ ∈ Φ, it follows that, for all θ ∈
Θ(φ) and for all φ ∈ Φ,

εI ≤ Xk(θ, φ)
= Uk(θ, φ) −

∑n

l=1 fl(θ, φ)Vk,l(θ, φ)
−
∑na

i=1 ai(φ)Wk,i(θ, φ)
≤ Uk(θ, φ),

i.e.,
Uk(θ, φ) ≥ εI ∀θ ∈ Θ(φ) ∀φ ∈ Φ.

Similarly, one has that Tk(θ, φ) ≥ I for all θ ∈ Θ(φ) for all
φ ∈ Φ. Since ε > 0, it follows from (29) that

spec(Ek(θ, φ)) ⊂ {λ ∈ C : ℜ(λ) < 0} ∀θ ∈ Θ(φ) ∀φ ∈ Φ.

Hence, (28) implies that

spec(Ωk(A(θ, φ)))⊂{λ ∈ C : ℜ(λ) < w}
∀θ ∈ Θ(φ) ∀φ ∈ Φ.

From (15) it follows that

µ(A(θ, φ)) < w ∀θ ∈ Θ(φ) ∀φ ∈ Φ

and, therefore, µ∗ < w. �

Theorem 2 provides a condition for establishing whether
a given scalar w is an upper bound of the sought µ∗ in Case
II. This condition requires to check the existence of ε > 0
and symmetric matrix polynomials Tk(θ, φ), Vk,l(θ, φ) and
Wk,i(θ, φ) satisfying (31). For chosen degrees of such matrix
polynomials, (31) is an LMI feasibility test analogously to
(20) in Theorem 1.

The condition provided by Theorem 2 is sufficient for
any chosen degrees of the symmetric matrix polynomials
Tk(θ, φ), Vk,l(θ, φ) and Wk,i(θ, φ). The conservatism of the
condition can be decreased by increasing the degrees of these
matrix polynomials as discussed for Theorem 1.

For chosen degrees of the symmetric matrix polynomials
Tk(θ, φ), Vk,l(θ, φ) and Wk,i(θ, φ), let us define

µII = max
k=1,...,n

wk (34)

where

wk = inf
w∈(0,∞)

w

s.t. ∃ε > 0, Tk(θ, φ), Vk,l(θ, φ),Wk,i(θ, φ),
l = 1, . . . , n, i = 1, . . . , na : (31) holds.

(35)
From Theorem 2 it follows that

µ∗ ≤ µII . (36)

Indeed, µII is the best upper bound of µ∗ provided by
Theorem 2 for chosen degrees of the symmetric matrix
polynomials Tk(θ, φ), Vk,l(θ, φ) and Wk,i(θ, φ). Let us
observe that the quantities wk in (35) can be computed
through a bisection search on w where the LMI condition
(31) is checked for any fixed value of w.

IV. EXAMPLES

In this section we present some illustrative examples of
the proposed results. The computations have been done
in Matlab using the toolbox SeDuMi [16]. The degree of
Rk,l,i(φ) in the LMI (20) is automatically chosen as the
largest degree for which Sk,l(φ) has its minimum degree.
Similarly, the degrees of Vk,l(θ, φ) and Wk,i(θ, φ) in the
LMI (31) are automatically chosen as the largest degrees
for which Uk(θ, φ) has its minimum degree.

A. EXAMPLE 1 (CONTINUED)

Let us consider for Case I the nonlinear system with
f(x, u), Φ and gi(φ) as in (11)–(13). We have that the matrix
A(θ, φ) of the linearized system (3) is given by

A(θ, φ) =





0 −2θ2 −2
−2θ1 1 0
1 + φ 1 0



 .

Let us determine the upper bound µI in (23). This requires
to determine the quantities wk,l in (24) for k ∈ {1, 2, 3} and
l ∈ {1, 2}.

Let us consider first l = 1. We have

A(g1(φ), φ) =





0 0 −2
0 1 0

1 + φ 1 0



 .

By searching for a symmetric matrix polynomial Pk,l(φ) of
degree 1, we obtain







w1,1 = 1.000
w2,1 = 1.000
w3,1 = 1.000.

Then, we consider l = 2. We have

A(g2(φ), φ) =





0 −2− 4φ− 2φ2 −2
2 + 2φ 1 0
1 + φ 1 0



 .
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By proceeding as in the previous case, we obtain






w1,2 = 1.000
w2,2 = 1.463
w3,2 = 1.000.

Hence, µI = 1.463.

It turns out that the found upper bound is tight. Indeed,
brute force search shows that, for φ = 0.561,

µ(A(g2(φ), φ)) = µI .

This means that µI is achieved by µ(A(θ, φ)) for an
admissible value of φ (i.e., 0.561) and θ (i.e., g2(0.561)).
Therefore, µI = µ∗.

Let us observe that, since Case II includes Case I, the
nonlinear system with f(x, u), Φ and gi(φ) as in (11)–(13)
can also be studied under Case II. However, it is interesting
that, in order to obtain µII = µ∗, one must search for a
symmetric matrix polynomial Tk(θ, φ) of degree 3, while
we simply obtain µI = µ∗ by searching for a symmetric
matrix polynomial Pk,l(φ) of degree 1: the computational
burden required by Case I is significantly smaller than that
required by Case II.

B. EXAMPLE 2 (CONTINUED)

Let us consider for Case II the nonlinear system with
f(x, u) and Φ as in (26)–(27). We have that the matrix
A(θ, φ) of the linearized system (3) is given by

A(θ, φ) =

(

2θ1 2θ2
1 + 3θ2 2 + 3θ1

)

.

Let us determine the upper bound µII in (34). This requires
to determine the quantities wk in (35) for k ∈ {1, 2}.

By searching for a symmetric matrix polynomial Tk(θ, φ)
of degree 0, we obtain

{

w1 = 6.117
w2 = 8.800.

Hence, µII = 8.800.

It turns out that the found upper bound is tight. Indeed,
brute force search shows that, for θ = (1.360,−0.388)′ and
φ = 2,

µ(A(θ, φ)) = µII .

This means that µII is achieved by µ(A(θ, φ)) for an
admissible value of φ (i.e., 2) and θ (i.e., (1.360,−0.388)′).
Therefore, µII = µ∗.

V. CONCLUSION

This paper has addressed the problem of determining
the largest instability measure in continuous-time linearized
nonlinear systems for all admissible equilibrium points for
all admissible constant inputs. It has been shown that upper
bounds of the sought instability measure can be established
through LMIs, whose conservatism can be decreased by

increasing the size of such LMIs. Two cases have been
considered in the derivation of these results: first, when the
equilibrium points are known polynomial functions of the
input, and, second, when the equilibrium points are unknown
(polynomial or non-polynomial) functions of the input.

Several directions can be considered for future work. In
particular, one can investigate the possibility of deriving
conditions for establishing the tightness of the found upper
bounds, for instance by exploiting the technique in [17].
Also, it will be interesting to understand under which con-
ditions the upper bounds are tight a priori.
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